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Abstract

An improved algorithm for the simultaneous alignment of multiple protein and nucleic acid sequences, the Divide-and-Conquer
Alignment procedure (DCA), is presented. The basic method described in Tönges et al. (1996) (Tönges, U., Perrey, S.W., Stoye,
J., Dress, A.W.M., 1996. A general method for fast multiple sequence alignment. Gene, 172, GC33–GC41) is generalized to align
any number of sequences and to work with arbitrary (e.g. affine linear) gap penalty functions. Also, the practical efficiency of the
method is improved so that families of more than 10 sequences can now be aligned simultaneously within a few seconds or
minutes. After a brief description of the general method, we assess the time and memory requirements of our implementation of
DCA. We present several examples showing that the program is able to deal with real-world alignment problems. © 1998 Elsevier
Science B.V. All rights reserved.

Keywords: Divide-and-Conquer Alignment; Multiple Sequence Alignment

1. Introduction Progressive alignment methods iteratively align pairs of
sequences or already-aligned subfamilies (so-called pro-

Basically, all methods for sequence alignment are files or average sequences) guided by the branching
based, one way or another, on the dynamic program- order of a pre-given (mostly unrooted) tree whose leaves
ming algorithm of Needleman and Wunsch (1970). Yet, represent the sequences. Algorithms that fall into the
while it is, in theory, very simple and elegant, the second class, fragment-based methods, follow the strat-
generalization of the pairwise method to simultaneous egy of assembling pairwise or multiple local alignments.
multiple sequence alignment is computationally demand- After a consistency check, the local alignments define
ing and becomes—despite much work on improving fixed regions or anchors of the intended global align-
this situation—impracticable for about six and more ment. The remaining subsequences between the anchors
sequences of relevant length. Moreover, with the NP are then aligned optimally.
completeness of multiple sequence alignment (Wang and The Divide-and-Conquer Alignment method that we
Jiang, 1994), any attempt at developing a fast algorithm describe and assess in this paper can (in some sense) be
for the computation of optimal alignments of many seen as flowing from the same concept as the fragment-
sequences is expected to fail. Consequently, there is a based methods but being more general than previous
great need for heuristic algorithms producing near- procedures. Systematically, anchor points are fixed in
optimal alignments, and an abundance of procedures all of the sequences, whether there are obvious local
have been developed. For reviews and comparisons, see similarities or not. Hence, a considerable increase in
Argos et al. (1991), Chan et al. (1992), Pevzner (1992) speed compared to optimal multiple alignment by
and McClure et al. (1994). Existing approaches gen- dynamic programming can be guaranteed.
erally fall into one of the following two classes. With restricted functionality, the method has been

previously presented in Tönges et al. (1996) and Stoye
* Present address: University of California at Davis, Department of et al. (1997a), and a thorough discussion of the algo-
Computer Science, Davis, CA 95616, USA. Tel: +1 530 754 8742; rithm can be found in Stoye (1997). In this paper, we
Fax: +1 530 752 4767; e-mail: stoye@cs.ucdavis.edu show how the method is generalized to more than three

sequences and how general gap costs are handled,Abbreviations: DCA, Divide-and-Conquer Alignment; MSA, Multiple
Sequence Alignment; SP, Sum of Pairs. making the resulting computer program DCA now
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applicable to real-world alignment problems. We also alignment weight function, w2, find an alignment
AµA(s1,...,sk) with minimal weight:present alignments computed with DCA of several fre-

quently used benchmark problems from the literature.
w(A):= ∑

1≤p<q≤k
a
p,q

· w
2
(s*
p
,s*
q
),DCA is freely available on-line from the address

http://bibiserv.TechFak.Uni-Bielefeld.DE/dca/.
where a

p,q
are weight factors as discussed above, and

s*
p

and s*
q

are the aligned pth and qth sequence. In our
general description of DCA, we consider pairwise func-2. Materials and methods
tions w2 with arbitrary length-dependent gap penalty
functions g(l ). The current implementation is restrictedIn the first part of this section, we briefly state the
to affine gap costs of the form g(l ):=a+bl for a gap ofmultiple sequence alignment problem whose solution we
length l, which are generally considered appropriate foraim to approximate. Then, the DCA procedure is pre-
biological sequences. We assume the cost a for openingsented in its generalized form, followed by a closer look
a gap and b for each symbol in the gap to be non-at the ‘heart’ of the procedure, how cut positions are
negative numbers.computed. For details regarding the implementation, we

refer to other publications.
2.2. Divide-and-Conquer Alignment Algorithm

2.1. Simultaneous multiple sequence alignment
The general idea of DCA is the following: Suppose,

as above, that we are given a family of sequencesFor various reasons, it is our objective to align—
in contrast to progressive alignment methods—the s1,...,sk. First, one of the sequences, say s1 (in our current

implementation, we always select the longest one), issequences simultaneously, i.e. we do not presuppose a
phylogenetic tree of the sequences as the basis of our cut at position c1 near its midpoint. Then, depending

on this choice, the remaining sequences s2,...,sk are cutalignment. This can have—at least in principle—advan-
tages, in particular when the alignments are used to at suitably fitting positions, say, sequence s2 is cut at

position c2, s3 is cut at position c3, and so on. Inreconstruct phylogenetic relationships of the involved
sequences: it has often been noticed that the order of this way, two new families of shorter sequences are

obtained, one family consisting of the prefixesprogressive sequence alignment can bias the alignment
towards exactly that phylogeny which was used as a s

1
(≤c

1
),...,s

k
(≤c

k
) and one family consisting of the

suffixes s
1
(>c

1
),...,s

k
(>c

k
). Here, s(≤c) denotes thebasis for the alignment (Lake, 1991; Thorne and

Kishino, 1992; Hein, 1994). The simultaneous alignment (prefix) subsequence of s with indices running from 1 to
c, and s(>c) denotes the (suffix) subsequence of s withapproach avoids such circularities.

It has also been argued that alignment errors in early indices running from c+1 to |s| where |s| denotes the
length of sequence s. If these two new families ofstages of progressive methods cannot be corrected when

more information about the true situation becomes sequences could be aligned optimally, then by simple
concatenation of the resulting alignments, an alignmentavailable. Feng and Doolittle (1987) coined the term

‘once a gap, always a gap’. Such problems are also of the original sequences could be obtained that is
expected to be quite good if the cut sites are chosenavoided by our approach since the full information from

all of the sequences is taken into account already in the carefully. However, if it still takes too much time to
align these two new families optimally, the procedurefirst alignment step.

Among objective functions for simultaneous multiple can be applied in a recursive manner both to the prefix
and to the suffix family. In this way, the original multiplesequence alignment, in the last decade, the so-called

sum-of-pairs (SP) score, defined as the sum of the scores alignment problem is divided into an increasing number
of alignment problems involving shorter and shorterof all induced pairwise alignments, has received a large

amount of attention (Carrillo and Lipman, 1988; sequences, until the (sub)sequences are sufficiently short
(e.g. shorter than a threshold, L, the so-called recursionAltschul and Lipman, 1989; Gusfield, 1993; Gotoh,

1996). Sometimes, the pairwise costs are additionally stop size) so that they can be aligned optimally. Finally,
the remaining short alignments of the subsequences areweighted according to sequence-dependent (non-nega-

tive) weight factors (Altschul and Erickson, 1986; concatenated, yielding a solution of the original align-
ment problem.Gotoh, 1996; Ben-Dor et al., 1997) to avoid overweight-

ing redundant information that can arise, e.g. from By this recursive procedure, the problem of aligning
k sequences of length at most n is reduced to the problemsome identical or very similar sequences in the data set.

Formally, we will consider the multiple sequence of aligning about n/L families of short (sub)sequences
of maximal length L. For a schematic representation ofalignment problem in the following form: Assume a

family of k sequences s1,...,sk. Let A(s1,...,sk) denote the the divide-and-conquer method for three sequences,
see Fig. 1.set of all alignments of s1,...,sk. Then, given a pairwise
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s1, there always exist positions c2,...,ck , such that there
are alignments, A of the family of prefixes and B of the
family of suffixes, so that the concatenation of A and
B, short A++B, is an optimal alignment of the original
sequences. However, due to the NP completeness of
multiple sequence alignment, one cannot expect to find
a way computing such optimal cut positions efficiently.
Instead, we proposed a heuristic method for an efficient
computation of good—though not necessarily optimal—
cut positions (Tönges et al., 1996), formulated in the
following for the weighted SP score with an arbitrary
pairwise alignment cost function w2.

First, consider a pair of sequences (s,t). For each
possible choice of the cut positions (i,j), 0≤i≤|s|,
0≤j≤|t|, we define the pairwise additional cost with
respect to the pairwise cost function w2 by

C
s,t

(i,j):=min {w
2
(A++B)|AµA[s(≤i),t(≤j)],

BµA[s(>i),t(>j)]}−wopt
2

(s,t),
Fig. 1. Divide-and-conquer alignment algorithm. where wopt

2
(s,t) denotes the optimal (i.e. minimal ) align-

ment cost of s and t. The matrix
Fig. 2 gives an impression of the reduction of search

C
s,t

:=[C
s,t

(i,j)]
0≤i≤|s|,0≤j≤|t|space achieved: Suppose each of the three sequences is

represented by a set of parallel edges of the large box is called the additional-cost matrix of s and t with
in Fig. 2a. Then, the size of the corresponding alignment respect to w2.problem is proportional to the volume of this box. By Fig. 3 illustrates the definition: Let an optimal align-
cutting the sequences, the large problem is reduced to ment path with cost wopt

2
(s,t) be represented by the chain

several smaller alignment problems, represented by the of light shaded boxes and a best alignment path passing
‘chain’ of boxes along the main diagonal of the large through vertex (i,j) be represented by the dark shaded
box (see Fig. 2b and c). The remaining search space is boxes. The additional cost is simply the ‘length differ-
then the sum of the volumes of these small boxes. ence’ of these two paths.

For efficiency reasons, DCA uses the widely known Note that in case of an additive alignment score
program MSA (Lipman et al., 1989; Gupta et al., 1995) function w2, the above definition of the pairwise addi-
for aligning the families of remaining short subse- tional cost is equivalent to that given in Tönges et al.
quences. Therefore, the current implementation of DCA (1996):
can be seen as a wrapper for MSA, although, in prin-

C
s,t

[i,j]=min {w
2
(A++B)|AµA[s(≤i),t(≤j)],ciple, any other multiple alignment program could be

used here. BµA[s(>i),t(>j)]}−wopt
2

(s,t)

=min {w
2
(A)+w

2
(B)|AµA[s(≤i),t(≤j)],2.3. Computing cut positions

BµA[s(>i),t(>j)]}−wopt
2

(s,t)
Of course, the main difficulty arising with DCA is

=min {w
2
(A)|AµA[s(≤i),t(≤j)],+min {w

2
(B)|how to find suitable cut positions such that the resulting

total alignment is optimal or, at least, close to an BµA[s(>i),t(>j)]}−wopt
2

(s,t)
optimal alignment of the original sequences.

First, notice that for any cut position c1 of sequence =wopt
2

[s(≤i),t(≤j)]+wopt
2

[s(>i),t(>j)]−wopt
2

(s,t).

Fig. 2. Reduction of search space.
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additional-cost matrix C
s,t

for affine gap penalties is
computed in time proportional to |s| · |t|:

C
s,t

i,j=min CV
s,t

(i,j)+V r
s,t

(i,j)−a,

H
s,t

(i,j)+Hr
s,t

(i,j)−a,

D
s,t

(i,j)+Dr
s,t

(i,j) D
for all (i,j), 0≤i≤|s|, 0≤j≤|t|. In the first two cases, the
gap open penalty a is subtracted from the sum of the
forward and reverse matrix entries because here upon
concatenation, a gap at the right terminus of the left
hand alignment merges with a gap at the left terminus
of the right hand alignment resulting in a single gap
crossing the cut position.

We now return to our original problem of computing
suitable cut positions simultaneously for all of the
sequences s2,...,sk given a cut position c1 of sequence
s1. To this end, we compute—in analogy to the SPFig. 3. Definition of C

s,t
. Light shaded boxes denote an optimal align-

alignment score—the weighted sum over all pairwisement path, and dark shaded boxes denote a best alignment path
through the vertex (i,j) (the black box). additional-cost matrix entries. Our heuristic is that com-

binations (c2,...,ck) minimizing the value

For this case, it is shown in Tönges et al. (1996) that C(c
1
;c
2
,...,c

k
):= ∑

1≤p<q≤k
a
p,q

C
s
p
,s
q

(c
p
,c
q
)

C
s,t

can be computed efficiently by a forward and
backward pass over the alignment matrix, similar to yield good, if not optimal cut positions. Yet, finding the
approaches developed, for example, by Vingron and minimum of this value is itself a non-trivial problem,
Argos (1990) in the context of dot plots and by and several heuristics based on a method described in
Waterman (1983) to compute near-optimal alignments. Stoye et al. (1997a) have been developed to speed up

Yet, also for affine gap costs of the form g(l )=a+bl, the procedure. Details can be found in Stoye (1997).
we can establish an algorithm that runs in time propor- For a general description of the current implementation
tional to |s| · |t|. Using two auxiliary matrices H

s,t
and of DCA, see Stoye et al. (1997b).

V
s,t

, Gotoh (1982) showed how to compute ‘ordinary’
alignments of two sequences s and t with affine gap
costs in quadratic time: 3. Results

V
s,t

(i,j)=min [D
s,t

(i−1,j)+a,V
s,t

(i−1,j)]+b
In the first part, we discuss the general behavior of

H
s,t

(i,j)=min [D
s,t

(i,j−1)+a,H
s,t

(i,j−1)]+b DCA depending on several independent parameters such
as the number and the average length of the sequences.
Since nature does not provide ‘benchmark’ problemsD

s,t
(i,j)=min CD

s,t
(i−1,j−1)+d(s

i
,t
j
),

V
s,t

(i,j),H
s,t

(i,j) D suited for all considerable problem instances, we decided
to perform these experiments on artificially createdwith initializations
related random sequences1. We therefore developed a

D
s,t

(0,0)=0, method to create sequence families simulating an evolu-
tionary process by iterated mutation of a commonV

s,t
(0,0)=H

s,t
(0,0)=+2,

ancestor sequence following the edges of a pre-given
D
s,t

(i,0)=V
s,t

(i,0)=g(i), rooted mutation guide tree (Stoye et al., in press).
After the general discussion, several example align-H

s,t
(i,0)=+2,

ments of protein sequence families from the literature
D
s,t

(0,j)=H
s,t

(0,j)=g(j), are presented.

V
s,t

(0,j)=+2
1 Recently, a study consisting of a broad range of multiple sequence
alignment problems has been published (Gotoh, 1996). However—for all i, 1≤i≤|s| and j, 1≤j≤|t|.
although a valuable source for test cases of various kind—even theseUsing the three matrices V, H and D as well as the
sequence families do not equally cover the whole sequence space and

corresponding reverse matrices V r, Hr and Dr, which hence are not suitable to assess the general time and quality behavior
are computed in a similar fashion (running the dynamic of an alignment algorithm depending on several independent

parameters.programming procedure in the reverse direction), the
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The computation of all examples presented here was 30, and the values for L=40 and L=50 almost always
coincide. This can be easily understood by observingperformed on the compute server of the Bielefeld

Bioinformatics WebServer, a 167-MHz Sun Sparc- the series of average sequence lengths of the subse-
quences when starting with an initial length of n=250:Station Enterprise with 256 Mb of RAM and 512 Mb

of swap space running Solaris 2.5.1. 125, 63, 31, 16,... Both L=20 and L=30 (as well as
L=40 and L=50) fall into the same class, and thus
they have (in most cases) the same number of recursions,3.1. The general behavior of DCA
resulting in the same subsequence families aligned by
MSA.Except when stated otherwise, the sequences used in

the following are simulated ‘proteins’ with an average Fig. 5 shows the computation time of DCA for
different sequence lengths. The curves show a quadraticpairwise sequence similarity of 250 PAM. The expected

average length is 250 letters, and the size of the families behavior that can also be theoretically devised (Stoye,
1997).ranges from k=3 to k=14 sequences. The recursion

stop size of DCA is set to L=40. Since the sequences The corresponding memory usage is shown in Fig. 6.
While, in the theoretical worst case, the memory require-of the example families considered here are rather equ-

ally distributed, we use the unweighted SP score, i.e. all ment of DCA grows quadratically with the number and
length of the sequences (Stoye, 1997), the practicalweights are set to a

p,q=1. All results presented in this
section are average values over 100 runs with different increase of memory usage with sequence length seems

to be almost linear (the non-monotonicities are due tosequence families.
The interdependence of DCA’s computation time on boundary effects for short sequences).

The time and memory requirements of DCA depend-the one hand and the alignment quality on the other
hand, depending on the recursion stop size L, has ing on the number of sequences are shown in Fig. 7. Up

to 11 of our random sequences of length n=600 can bealready been shown in Tönges et al. (1996). Fig. 4 ( left
hand side: average score error, i.e. the relative difference aligned within less than half a minute of computation

time.of the score of an alignment computed by DCA and
that of a score-optimal alignment computed by MSA; Finally, we have evaluated the dependence of DCA

on the similarity of the sequences. We have createdright hand side: average computation time; note the
logarithmic time scale) shows similar results for a larger random sequence families with average similarities rang-

ing from 100 up to 1000 PAM. Again, the sequences areparameter space of three up to six sequences. Although
DCA could compute alignments for even much larger of an average expected length of 250. Time and memory

usage of DCA are shown in Fig. 8. As is also true forsequence families (as will be shown below), it was not
possible to obtain optimal alignments with MSA for all other alignment programs, the closer the sequences are

related, the faster the algorithm proceeds and—due to100 families with seven and more sequences, which we
needed for the comparison of alignment scores. The the better behavior of our speed-up heuristics—the less

memory is consumed.quality versus time trade-off, which is discussed in detail
by Tönges et al. (1996), is confirmed. For the small
sequence families used here, a value for L of between 3.2. Four benchmark families
40 and 100 seems a good compromise with a rather high
alignment quality and still comparatively quick compu- McClure et al. (1994) applied a variety of multiple

alignment programs to four protein families covering atation times. For larger sequence families, of course, a
smaller value for L between 20 and 40 should be wide range of sequence divergence: 12 globins, 12

kinases, 12 aspartic acid proteases, and 12 ribonucleasepreferred.
It is noteworthy that the values for L=20 and L= H (RH) sequences, respectively. They also defined sub-

Fig. 4. Relative deviation from the optimal alignment score and computation time of DCA for different values of the recursion stop size, L.
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Fig. 5. Time usage of DCA versus sequence length.

Fig. 6. Memory usage of DCA versus sequence length.

Fig. 7. Time and memory usage of DCA versus number of sequences.

Fig. 8. Time and memory usage of DCA versus sequence similarity.

families containing the six and 10 sequences of each some of the programs could even not align these
sequences at all. The fragment-based methodfamily with the widest distance distribution of sequence

relationship (see Table 1). ASSEMBLE (Vingron and Argos, 1991)—which pro-
duces excellent alignments of the globins and theWhereas the globins and the kinases are rather similar

and hence the computation of reasonable alignments of kinases—for example had enormous problems in detect-
ing reliable anchor subsequences in the proteasethese sequences is not difficult, the protease and RH

sequences are much more diverse. Here, several of the sequences and the RH proteins (McClure et al., 1994).
The output of the alignment programs was scored bytested alignment programs performed less well, and
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Table 1 then—due to requirements of MSA—shifted them to
The sequences used in the study of McClure et al. (1994) non-negative values. For each substitution matrix, we

fixed the gap parameters to values that seemed to yieldGlobins 6 HAHU, HBHU, MYHU, IGLOB, HEYL, HEMB
the best results. Table 2 lists the ranges of the entries inGlobins 10 HAHU, HADK, HBHU, HBDK, MYHU, MYOR,

IGLOB, HENL, HEYL, HEMB the used substitution matrices as well as the correspond-
Globins 12 HAHU, HAOR, HADK, HBHU, HBOR, HBDK, ing gap functions. By clicking on their names, the full

MYHU, MYOR, IGLOB, HENL, HEYL, HEMB matrices are displayed.
Kiniases 6 CAPK, CD28, WEE1, VFES, PDGM, EGFR

Table 3 shows the results and computation times ofKinases 10 CAPK, PSKH, CD28, WEE1, RAF1, CMOS,
DCA for L=20, and Table 4 shows the results for L=VFES, PDGM, EGFR, HSVK

Kinases 12 CAPK, MLCK, PSKH, CD28, WEE1, RAF1, 40. Some of the runs took rather a long time (more
CMOS, CSRC, VFES, PDGM, EGFR, HSVK than 50 h of CPU time) and have therefore been stopped.

Proteases 6 MoMLV, CaMV, 17.6, TY 3, COPIA, PEPH This is indicated by a question mark.
Proteases 10 HTLVI, RSV, HIVI, MoMLV, CaMV, TY 3,

The globins are very rapidly aligned by DCA, andCOPIA, PEPH, PECH, PEPP
the results are almost always close-to-optimal or opti-Proteases 12 HTLVI, RSV, HIVI, SRV-I, MoMLV, CaMV, 17.6,

TY 3, COPIA, PEPH, PECH, PEPP mal. Also for the kinases (which are comparatively long
RH 6 HTL2, ROUS, MMLV, 176H, HEPB, ECOL protein sequences) and for the smaller families of the
RH 10 HTL2, SRVI, ROUS, HIV2, MMLV, INGT, kinase and RH sequences, DCA is relatively fast.

CAMV, 176H, COPH, ECOL
However, the families of 12 protease and 12 RHRH 12 HTL2, SRVI, ROUS, HIV2, MMLV, INGT,
sequences require extensively more time. Neither theCAMV, 176H, MAUP, HEPB, COPH, ECOL
length nor the number of sequences seem to have the

The sequence names are linked directly to the corresponding PIR (for highest influence on the computation time of DCA, but
the globins) and SwissProt entries of the NCBI Entrez database

rather the sequence similarity has. In addition, some ofbrowser. Note that in the DCA runs described below, we align exactly
the families with 10 sequences take, for L=40, consider-the sequences used by McClure et al. (1994), which, in some cases,

differ slightly from the sequences in the databases. ably longer to compute than for L=20 indicating long
MSA runs of the comparatively long subsequences of
length ≤40.the following procedure: From structurally verified

alignments of the test families, highly conserved An influence of the score function on the computation
time is also observed. Some alignments with the PAMregions—so-called sequence motifs—of three to nine

amino acids and some single completely conserved resi- 160 matrix take more than 50 times as long as the
corresponding runs with the Blosum 62 matrix. This isdues (for convenience, also called motifs) were extracted:

five motifs in the globins family, eight in the kinase, due to the high influence of the chosen substitution
matrix and gap function on the effectiveness of ourthree in the protease, and four motifs in the RH family.

Then—individually for each motif—the percentage of method for speeding up the search for good cut positions
(Stoye, 1997).the number of sequences in each data set was measured,

for which the motif was correctly identified (i.e. all We have also developed a heuristic method allowing
large amounts of computation time to be skipped in ourpositions of the motif coincide). If a motif was aligned

correctly in more than one subfamily of the sequences optimization procedure, with the drawback of slightly
less accurate, so-called approximate cut positions. Here,without aligning these blocks to one another, the total

percentage correct match was a combined score of the the cut positions are computed by an iterated greedy
procedure which was originally developed to speed-upaligned subfamilies.

Also, a condensed way of presenting the results has the standard DCA method (Perrey and Stoye, 1996).
The results obtained with this procedure and with L=been used (Gupta et al., 1995): the scores of all indivi-

dual motifs are added, and the sum is divided by 100. 20 are shown in Table 5.
Compared to Table 3, the computation times of theWhen motifs are spread over more than one subfamily

of the aligned sequences, we will indicate this by an
asterisk. Thus, a single number gives an impression of

Table 2
the quality of an alignment. In the tables below, the The substitution matrices and corresponding gap functions used in
individual scores of the distinct motifs as well as the this study
complete alignments computed by DCA are displayed

Substitution Lowest Highest Gapupon clicking on the corresponding score values.
matrix distance distance function

We have run DCA with different values of the recur-
sion stop size, L, and different substitution matrices: PAM 250 0 25 g(l )=8+12l

PAM 160 0 29 g(l )=8+12ltwo matrices from the PAM seriers (Dayhoff et al.,
Blosum 62 0 15 g(l )=6+10l1979) and three matrices from the Blosum series
Blosum 45 0 20 g(l )=10+9l(Henikoff and Henikoff, 1992). We converted these
Blosum 30 0 27 g(l )=10+11l

matrices to distance (rather than similarity) scores and
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Table 3
Score and computation time of DCA with L=20 using different amino acid substitution matrices

Sequences Motifs PAM 250 PAM 160 Blosum 62 Blosum 45 Blosum 30

Globins 6 5.00 4.83 0.9 s 4.83 1.0 s 5.00 0.8 s 4.83 1.2 s 4.67 1.3 s
Globins 10 5.00 4.90 2.7 s 4.90 3.0 s 5.00 2.7 s 4.90 3.3 s *4.90 3.6 s
Globins 12 5.00 4.92 4.9 s 4.92 5.4 s 5.00 4.1 s 4.92 5.0 s 4.83 6.1 s

Kinases 6 8.00 7.67 4.9 s *8.00 3.9 s 7.83 4.3 s 8.00 4.0 s 7.67 3.9 s
Kinases 10 8.00 7.70 2.9 min 7.70 13.9 min 7.80 1.5 min 7.90 26.2 min 8.00 3.3 h
Kinases 12 8.00 7.83 6.5 min 8.00 28.2 min 7.92 2.8 min 7.92 18.0 min 8.00 14.6 min

Proteases 6 3.00 *1.83 1.9 s 1.33 5.8 s 1.00 1.5 s 1.67 5.0 s 2.17 10.3 s
Proteases 10 3.00 *2.00 4.1 min *2.40 14.9 min *2.20 7.2 min *2.20 38.1 *2.20 2.2 h
Proteases 12 3.00 *2.25 1.5 h ? *2.00 19.2 h ? ?

RH 6 4.00 2.67 1.4 s *3.83 1.6 s 3.00 1.1 s 3.33 1.8 s 3.67 2.0 s
RH 10 4.00 *3.50 1.7 min *3.50 8.5 min *3.30 25.4 s *3.70 12.9 min 3.60 63.6 min
RH12 4.00 *2.83 28.2 min ? *3.42 2.2 ? ?

Table 4
Score and computation time of DCA with L=40 using different amino acid substitution matrices

Sequences Motifs PAM 250 PAM 160 Blosum 62 Blosum 45 Blosum 30

Globins 6 5.00 4.83 0.9 s 4.67 0.9 s 4.83 0.9 s 4.83 1.1 s 4.67 1.0 s
Globins 10 5.00 4.90 2.8 s 5.00 13.6 s 5.00 3.3 s 4.90 3.3 s 4.80 3.4 s
Globins 12 5.00 4.92 5.0 s 4.83 5.0 s 5.00 4.1 s 4.92 5.1 s 4.83 5.6 s

Kinases 6 8.00 7.83 4.5 s 8.00 4.7 s 7.83 4.5 s 7.83 4.1 s 7.67 4.0 s
Kinases 10 8.00 7.70 3.1 min 7.80 32.4 min *7.70 1.6 min 7.90 26.3 min 7.90 3.4 h
Kinases 12 8.00 7.67 7.3 min 7.92 32.7 min 7.92 2.8 min 7.92 21.2 min 8.00 1.3 h

Proteases 6 3.00 *1.83 33.2 s 1.33 17.3 min 1.33 3.4 s 1.83 32.9 s *2.50 45.8 min
Proteases 10 3.00 *2.10 4.0 min *2.40 8.0 h 1.90 6.6 min *2.40 3.8 h *2.30 4.2 h
Proteases 12 3.00 *2.17 1.5 h ? *2.08 19.0h ? ?

RH 6 4.00 *3.00 1.5 s 3.33 3.7 s 3.17 1.1 s *3.50 3.2 s 3.67 3.0 min
RH 10 4.00 *3.60 3.1 min *3.50 2.6 h *3.30 1.2 h 3.50 18.4 min 3.50 1.5 h
RH 12 4.00 *3.25 27.7 min ? *3.42 2.2 h ? ?

Table 5
Score and computation time of DCA with L=20 when approximate cut positions are used

Sequences Motifs PAM 250 PAM 160 Blosum 62 Blosum 45 Blosum 30

Globins 6 5.00 4.83 0.9 s 4.83 1.0 s *4.83 0.8 s *4.67 1.0 s *4.67 1.3 s
Globins 10 5.00 5.00 2.7 s 4.80 3.1 s 5.00 2.5 s 4.90 2.9 s 5.00 3.2 s
Globins 12 5.00 5.00 4.3 s 4.83 4.0 s 4.92 4.5 s 4.92 4.6 s 4.83 5.3 s

Kinases 6 8.00 7.50 4.0 s 7.50 3.4 s 7.67 4.0 s 7.50 3.4 s 7.33 3.5 s
Kinases 10 8.00 7.40 15.0 s 7.50 13.3 s 7.80 12.9 s 7.90 13.7 s 8.00 16.5 s
Kinases 12 8.00 7.92 19.6 s *7.83 19.7 s 7.83 18.7 s 8.00 20.5 s 8.00 21.5 s

Proteases 6 3.00 1.50 1.1 s 1.33 1.7 s 0.67 1.0 s 1.83 1.2 s *1.83 1.5 s
Proteases 10 3.00 *2.10 8.2 s *2.30 3.4 s *1.90 3.5 s *2.40 3.1 s *2.50 13.7 s
Proteases 12 3.00 *2.17 4.6 s *2.25 67.1 s *1.92 4.5 s *2.33 5.6 s *2.50 2.4 min

RH 6 4.00 2.50 1.2 s 2.67 1.1 s 2.83 1.0 s 3.50 1.2 s 3.33 1.6 s
RH 10 4.00 *3.10 3.7 s *3.60 3.9 s *3.50 3.6 s 3.40 3.9 s 3.50 3.9 s
RH 12 4.00 *3.25 5.5 s *3.33 6.5 s *3.00 5.9 s 3.25 5.8 s *3.42 6.0 s
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larger sequence families are reduced enormously when 3.3. Assessment of alignment score functions
approximate cut positions are used (see Table 5). Each
of the sequence families can be aligned within several Given the results of the previous section, of course,

we wondered why, for some sequence families, theseconds up to slightly above 1 min. Where the computa-
tion of ordinary cut positions takes extremely long (e.g. results obtained with DCA are still slightly different

from the biologically correct alignments despite the greatfor the family of twelve protease sequences), a speed-up
factor of more than 1000 is achieved. Accompanied with proximity of our alignments to the SP optimal ones.

Also, of course, the answer is that our alignments canthis speed increase, only a low decrease of alignment
accuracy is observed. Often, the same number of motifs hardly be better than the score function that we approxi-

mate. Consequently, we have compared the score ofare aligned correctly. Occasionally, the score even
increases (e.g. for the 12 kinases with the Blosum 45 alignments computed with DCA to that of the biolo-

gically correct ‘true’ alignments as published in McCluresubstitution matrix).
In general, we have observed that substitution matri- et al. (1994). The result of this comparison is presented

in Tables 7 and 8. For the example of the PAM 250ces from the Blosum series on these data produce slightly
better results than the corresponding PAM matrices. score, Table 7 explains how we compute the relative

difference of the score of the DCA-alignment and the[Due to Henikoff and Henikoff (1992), the PAM 250
matrix is comparable to Blosum 45, and PAM 160 is score of the true alignment. Table 8 shows the relative

differences for all the examined sequence families andcomparable to Blosum 62.] This result is in accordance
with Henikoff and Henikoff (1993), who also observed substitution matrices.

In all cases, the score of an alignment computed withthat the Blosum matrices perform better for distantly
related proteins.

In Table 6, we compare the best alignments obtained
Table 7with DCA to the results of the alignment programs
Comparison of the absolute PAM 250 scores of the true alignments

DFALIGN (Feng and Doolittle, 1987) and AMULT and of those computed with DCA (L=20)
(Barton and Sternberg, 1987a,b), which were the best

Sequences True DCA Difference Relative differenceand second best scoring programs in the study of
McClure et al. Both DFALIGN and AMULT are

Globins 6 37 054 36 834 220 0.60%
implementations of the progressive sequence alignment Globins 10 108 460 108 093 367 0.34%
approach. McClure et al. do not give the computation Globins 12 156 074 155 657 417 0.27%

Kinases 6 73 685 71 249 2436 3.42%times of the methods that they tested. Therefore, we can
Kinases 10 217 760 214 661 3099 1.44%only compare the quality of the alignments. DCA out-
Kinases 12 314 288 308 662 5626 1.82%performs AMULT in all cases and produces results
Proteases 6 36 089 34 138 1951 5.71%

comparable to those of DFALIGN. In four cases, DCA Proteases 10 107 085 103 972 3113 2.99%
computes alignments scoring higher than any of the Proteases 12 156 051 151 663 4388 2.89%

RH 6 40 334 37 596 2738 7.28%programs evaluated in the study of McClure et al.
RH 10 118 720 112 129 6591 5.88%(1994). This proves that—provided the score function
RH 12 178 069 168 600 9469 5.62%is selected carefully—the divide-and-conquer alignment

method can compete with the best alignment programs The relative difference is the absolute difference divided by the score
of the DCA alignment.currently available.

Table 6
Numbers of correctly aligned motifs in alignments computed with the programs DFALIGN and AMULT compared to the highest scoring
alignments computed with DCA

Sequences Motifs DFALIGN AMULT DCA (DCA score function)

Globins 6 5.00 5.00 5.00 5.00 Blosum 62, L=20
Globins 10 5.00 5.00 5.00 5.00 e.g. Blosum 62, L=20
Globins 12 5.00 5.00 5.00 5.00 e.g. Blosum 62, L=20
Kinases 6 8.00 7.67 7.33 8.00 e.g. Blosum 45, L=20
Kinases 10 8.00 8.00 7.70 8.00 e.g. Blosum 30, L=20
Kinases 12 8.00 8.00 7.75 8.00 e.g. Blosum 30, L=20
Proteases 6 3.00 2.33 1.17 *2.50 Blosum 30, L=40
Proteases 10 3.00 *3.00 *2.40 *2.50 Blosum 30, L=20, approx.
Proteases 12 3.00 *3.00 *2.40 *2.50 Blosum 30, L=20, approx.
RH 6 4.00 3.67 *3.30 *3.83 PAM 160, L=20
RH 10 4.00 3.30 3.20 *3.70 Blosum 45, L=20
RH 12 4.00 3.83 *2.92 *3.42 e.g. Blosum 30, L=20, approx.
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Table 8
Relative difference of scores of the true alignments and of those computed with DCA (L=20) for the different amino acid substitution matrices

Sequences PAM 250 PAM 160 Blosum 62 Blosum 45 Blosum 30

Globins 6 0.60% 0.75% 0.93% 0.61% 0.45%
Globins 10 0.34% 0.45% 0.68% 0.38% 0.08%
Globins 12 0.27% 0.24% 0.60% 0.11% 0.33%
Kinases 6 3.42% 3.30% 4.63% 2.90% 1.99%
Kinases 10 1.44% 0.72% 3.44% 1.15% 0.16%
Kinases 12 1.82% 0.97% 3.70% 1.81% 0.74%
Proteases 6 5.71% 4.76% 8.78% 3.44% 2.41%
Proteases 10 2.99% 1.19% 5.04% 0.88% 0.24%
Proteases 12 2.89% ? 3.82% ? ?
RH 6 7.28% 5.58% 10.69% 6.66% 4.54%
RH 10 5.88% 3.45% 8.11% 3.91% 3.18%
RH 12 5.62% ? 8.78% ? ?

DCA is lower than that of the corresponding true used for these runs a Sun SparcStation 10 as they did
in their study.alignment. However, for the globins and the kinases—

where we detected almost all motifs correctly—both The speed-up factor of DCA over MSA ranges from
12.8 to over 1100, and the memory usage of DCA isscores differ much less than for the proteases and the

RH proteins. It also can be observed that the subfamilies two to 20 times lower than that of MSA. Moreover,
our alignments with the same substitution matrix oftenof six sequences are much harder to align than the larger

families, which is in accordance with our results shown find the same number of motifs as those computed with
MSA. In four cases, there are less, and in one case, evenin Tables 3–5. Assuming that the score of an alignment

computed with DCA differs by less than 1% from the more motifs are aligned correctly. Again, with matrices
from the Blosum series, the results can be improved.optimal score, this proves that the studied alignment

score functions—even if we could compute an SP opti- For all sequence families, DCA can compute alignments
that score higher than, or equal to, the SP-optimal onemal alignment—will not allow a biologically correct

alignment of the RH sequences, for example, to be regarding the PAM 250 score. This again supports our
assertion that the alignment score function influencescomputed. To close this gap, further work on the

development of better alignment score functions will be the alignment quality (in biological terms) much more
than the remaining difference of less than 1% betweennecessary.

Similar to the results shown in the previous section, an alignment computed with DCA and an SP-optimal
one.this comparison of alignment scores shows that the

alignments computed with the Blosum matrices (in
particular Blosum 45 and Blosum 30) are mostly closer
to the true alignments than those computed with the 4. Conclusions
matrices from the PAM series. With this study, we have
shown that due to its speed and high accuracy of the Due to the generalizations described, the divide-and-

conquer algorithm for an approximate solution of theresults, DCA makes it possible to analyze directly the
properties of multiple alignment score functions. global multiple sequence alignment problem is now

applicable to real-world alignment tasks. Experimental
results indicate that the computed alignments are com-3.4. Comparison with MSA
parable to those of other state-of-the-art alignment
programs. Furthermore, since the alignment is simulta-The authors of the improved version 2.0 of MSA,

Gupta et al. (1995), applied their alignment program to neous, i.e. not based on a pre-given or pre-computed
alignment guide tree, the alignments are well suited alsothe same sequences as those used in the comparison of

McClure et al. described above. Because they could still as an unbiased starting point for the reconstruction of
evolutionary relationships.not align the full data sets, they selected some subfamilies

(denoted by the letters A, B, C) that MSA was able to The basic DCA algorithm is quite simple: The main
parameter, the recursion stop size, L, is easily under-align SP-optimally [with regard to PAM 250 and gap

function g(l )=8+12l ]. stood and allows a high degree of control over the
performance of the program. This might be an importantIn Table 9, we report the results of Gupta et al. (1995)

compared to the results of DCA on the same subfamilies. step for multiple sequence alignment from being a black
box for molecular biologists toward becoming a mecha-For better comparability of our computation times to

those of MSA reported in the study by Gupta et al., we nism with transparent behavior and performance.
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Table 9
Running time and percent correctly aligned motifs in alignments computed with MSA (using the PAM 250 substitution matrix) and the
corresponding values of DCA (PAM 250 and the best-scoring matrix from the Blosum series)

Sequences Number (Length) Motifs MSA (PAM250) DCA (PAM250) DCA (Blosum)

Globins A 7 (141–153) 5.00 4.86 157 s 4.86 4.4 s 5.00 5.4 s
Globins B 10 (141–153) 5.00 5.00 130 s 4.90 10.1 s 5.00 10.5 s
Kinases A 5 (255–293) 8.00 8.00 10 min 8.00 7.9 s 8.00 17.2 s
Kinases B 6 (255–293) 8.00 8.00 118 min 8.00 9.7 s 8.00 61.8 s
Kinases C 4 (255–339) 8.00 6.75 210 s *7.50 4.6 s 7.25 4.9 s
Proteases A 5 (998–150) 3.00 2.80 37 s 2.40 2.5 s 2.80 19.7 s
Proteases B 4 (113–150) 3.00 0.50 9 min 0.00 1.5 s 1.00 3.7 s
RH A 5 (126–157) 4.00 2.60 68 min *2.60 3.5 s 3.40 32.1 s

Due to its simplicity, the algorithm is also highly Finally, we believe that with DCA, we have reached
a limit of what can be done with the SP model and thesuitable for incorporation into larger systems that

require a number of reliable, but not necessarily optimal commonly used alignment score functions. For obtaining
results that are still nearer to biologically correct align-multiple sequence alignments. The version of DCA for

three sequences has already been incorporated in a ments, it seems that more sophisticated score functions
incorporating further biological criteria have to beprogram that simultaneously computes an alignment

and reconstructs a phylogenetic tree (Bergmann et al., considered.
in preparation). For a generalization of this method, we
also plan to use the general DCA algorithm presented
here.
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