Evolutionary Optimization of Echo State Networks:
multiple motor pattern learning

André Frank Kraus€, Volker Diir3, Bettina Blasing?, and Thomas Schatk

! Faculty of Sport Science, Dept. Neurocognition & Actipandr e_f r ank. kr ause,

bettina. bl aesi ng, thomas. schack} @ni -bi el ef el d. de
2 Faculty of Biology, Dept. for Biological Cybernetics
vol ker . duerr @ini - bi el ef el d. de
3 Cognitive Interaction Technology, Center of Excellence
University of Bielefeld, D-33615 Bielefeld, Germany

Abstract. Echo State Networks are a special class of recurrent neural network
that are well suited for attractor-based learning of motor patterns. Wsinctural
multi-objective optimization, the trade-off between network size and acgur
can be identified. This allows to choose a feasible model capacity for afoio
full-weight optimization. Both optimization steps can be combined into a nested,
hierarchical optimization procedure. It is shown to produce small &iceat
networks, that are capable of storing multiple motor patterns in a single siet. E
pecially the smaller networks can interpolate between learned patternshiising
furcation inputs.

1 Introduction

Neural networks are biological plausible models for pattgeneration and learning.
A straight-forward way to learn motor patterns is to storenthin the dynamics of re-
current neuronal networks. For example, Tani (1) arguetlttiia distributed storage
of multiple patterns in a single network gives good gensagiion compared to local,
modular neural network schemes (2). In (3) it was shown thatriot only possible to
combine already stored motor patterns into new ones, battalestablish an implicit
functional hierarchy by using leaky integrator neuronshwdgtfferent time constants
in a single network. This network can then generate and |lsaguences by use of
stored motor patterns and combine them to form new, compidvaviours. Tani (3)
uses back-propagation through time (BPTT, (4)), that ismatationally complex and
rather biologically implausible. Echo State Networks (ES[¥)) are a special kind of
reccurent neuronal networks that are very easy and fastitodompared to classic, gra-
dient based training methods. Gradient based learningadstuffer from bifurcations
that are often encountered during training. Bifurcatiopruptly change the dynamic
behaviour of a network, rendering gradient informatioralit/ (6). Additionally, it was
shown mathematically that it is very difficult to learn loregrn correlations because of
vanishing or exploding gradients (7). The general idearmkBSNSs is to have a large,
fixed, random reservoir of recurrently and sparsely corateoturons. Only a linear
readout layer that taps this reservoir needs to be trainee rdservoir transforms usu-
ally low-dimensional, but temporally correlated inputrsads into a rich feature vector
of the reservoir’s internal activation dynamics.

Typically, the structural parameters of ESNs, for examplke teservoir size and
connectivity, are choosen manually by experience and taskadds. This may lead
to suboptimal and unnecessary large reservoir structares given problem. Smaller
ESNs may be more robust, show better generalisation, ber fastrain and computa-
tionally more efficient. Here, multi-objective optimizati is used to automatically find
good network structures and explore the trade-off betwestwark size and network
error.

Section 2 describes the ESN equations and implementatewiio8 3 introduces
the optimization of the network structure and explains howalsand effective networks
can be identified. Good network structures are further dpéithat the weight level in
section 4. Section 4.1 shows how to combine structural anghtvéevel optimization
into a single, nested algorithm, facilitating a genetidhare of good solutions. In sec-
tion 5, the dynamic behaviour of the optimized ESNs is shawifferent bifurcation
inputs.

2 Echo State Network

w back

/ sensor readings

Fig. 1. General structure of an echo state network. Solid arrows indicate fixedpm connec-

tions, while dotted arrows are trainable readout connections. The d@®pe®?] sets the joint
angles of a bi-articular manipulator, e.g., an bio-inspired active tactilgoseJoint angles are fed
back via the backprojection weight mati&®2<*.

A basic, discrete-time ESN with a sigmoid activation fuong was implemented
in Matlab®©2009b. The purpose of this ESN was to control the joints of-articular
manipulator that could serve as a bio-inspired, activaléasénsor. The overall goal
was to use the input to the ESN to set the tactile samplingipeéts desired. The state
update equations used are:

y(n) = Wx(n) , (1)
x(n + 1) = tanh(W7"®z(n) + Winu(n + 1) + Wb,y (n) 4 v(n))
whereu, x andy are the activations of the input, reservoir and output nesjro
respectivelyr(n) adds a small amount of uniformly distributed noise to thévation
values of the reservoir neurons. This tends to stabilizetigwis, especially in models

that use output feedback for cyclic attractor learning @8y, W7es, Wout andWback
are the input, reservoir, output and backprojection weightrices. All matrices are
sparse, randomly initialised, and stay fixed, excepMot“. The weights of this linear
output layer are learned using offline batch training. Dgitiaining, the teacher data is
forced into the network via the back-projection weightaifteer forcing), and internal
reservoir activations are collected (state harvestinffer&ollecting internal states for
all training data, the output weights are directly caloedatising ridge regression. Ridge
regression uses the Wiener-Hopf soluti°** = R~'P and adds a regularization
term (Tikhonov regularization):

W = (R + 1) 'P 2)

whereca is a small number is the identity matrix,R = S’S is the correlation
matrix of the reservoir states afitl= S'D is the cross-correlation matrix of the states
and the desired outputs. Ridge regression leads to morke stalutions and smaller
output weights, compared to ESN training using the Mooner®&e pseudoinverse. A
value ofa = 0.08 was used for all simulations in this paper.

3 Multi-objective network structure optimization

Multi-objective optimization (MO) is a tool to explore tragbffs between conflicting
objectives. In the case of ESN optimization, the size of #servoir versus the net-
work performance is the main trade-off. In MO, the concepahinance replaces the
concept of a single optimal solution in traditional optiatibn. A solution dominates
another, if strictly one objective value is superior andaglier objectives are at least
equal to the corresponding objective values of anothetisaluFollowing this defini-
tion, multiple (possibly infinite) non-dominated solutioan exist, instead of a single
optimal solution. The set of non-dominated or pareto-ogtisolutions is called the
pareto front of the multi-objective problem. The goal of M&té find a good approx-
imation of the true pareto front, but usually MO algorithnmeerge to a local pareto
front due to complexity of the problem and computationalstraints.

Usually, the structural parameters of an ESN are choosematigrby experience
and task demands. Here, the full set of free network parametas optimized using
MO. The MO was performed with the function 'gamultiobj’ frothe Matlab Genetic
Algorithm and Direct Search (GADS) Toolhdkat implements a variant of the 'Eli-
tist Non-dominated Sorting Genetic Algorithm version IN§GA-II algorithm, (9)).
The network structure was encoded into the genotype as a-sivensional vector of
floating point numbers. The first six structural parametezsavthe sparsity and weight
range of the input-, reservoir- and backprojection weighte seventh parameter was
the number of reservoir neurons. The search range of theithigowas constrained
to [0, 1] for the sparsity values, tp-5, 5] for the weight values and td, 100] for the
reservoir size|(, 500] for the 4-pattern problem). The optimization was startetth\ai
population size of 1000 and converged after around 120 g&aes. In each iteration of
the MO, all genomes were decoded into network structurespéitworks were trained
and then simulated with random initial activations for 1®@0nes per pattern. In order
to neglect the initial transient behaviour, the first 50atems of network output were

rejected. The network output and the training patterns atmlly not in-phase. The
best match between training pattern and network output e@sked by phase-shifting
both output time courses by 50 frames relative to the training pattern and calculat-
ing the mean Manhattan distance across all pairs of dataspdihe training error was
then defined as the smallest distance found in that rangeaddeptable error threshold
(fig.2) is expressed as the percentage of the amplitude tftiméng patterns, thatis 1.0
units for all patterns. The pareto front for a circular patté~ig.2a) reveals that even
very small networks are capable of learning and generatigstne waves with iden-
tical frequency and 90phase shift. The smallest network found had only 3 reservoir
neurons. Including the two output neurons, the overall netwgize was 5. In compar-
ison, 7 neurons are required for this task when using gradiased learning methods
(10). Network size increases with the complexity of the mgattern, and especially
when having to store multiple patterns in a single netwotdri8g 4 patterns in a single
network required 166 reservoir neurons to reach an erromb8% (Fig.2d).

4 Full optimization of the network weights

From the pareto front of the two-pattern task, four candidegtwork structures were
selected and optimized further, using a single-objectimeetic algorithm. This time,
all network weights except the output layer were fully optied. The output layer was
still trained by ridge regression. An initial random pogida of 200 parents was cre-
ated from the network structure information of the seleciaadidate solutions with 4,
14, 26 and 37 reservoir neurons. Network weights were caingtd to[—5, 5] and de-
coded from the genome with a threshold function that presesparsity. The threshold
function sets a weight to zero, if the genome value is betwéamd 1, see fig.3.

The Genetic Algorithm (GA) options were set to ranked rdeletheel selection,
20 elitist solutions, 80% crossover probability with seedtd crossover and self adap-
tive mutation. Other options were left at their default es{see GADS toolbox, Mat-
lab2009b). The GA-optimization was repeated 20 times faheazetwork size. Fig.
4a shows the improvement in performance compared to the M@tste optimiza-
tion run. A small network with only 14 reservoir neurons abegproduce the learned
patterns with an error of 2.3%. Weight range and connegtafiter optimization was
analysed with an unpaired Wilcoxon rank sum test. Significifferences in connec-
tivity and weight range were found (Fig. 4b) with a clear ttdor smaller reservoir
weights and less reservoir connectivity with increasinggvoek sizes. Both input- and
backprojection weights tend to increase with reservoe dig. 4a). Although standard
ESNs usually have full connectivity for input- and backeijon weights, evolutionary
optimization seems to favor sparse connectivity for smalégworks, when given the
choice (Fig. 4b).

4.1 Hierarchical evolutionary optimization

In the previous section, individual solutions of the MO stural evolution were se-
lected and optimized further on the weight level, using a 86th steps can be com-
bined by performing a full-weight GA optimization for eadbriation of the MO. This

a
0.045} 1 o045t
0.04f 1 oaf

0.035 1 035,

IR |
XX

0.03
£ 0.025
© X
0.02
0.015

0.01

0.005

80 100
0.5
< XX < o
0451 4
%
CoomD ¥
0.4r ‘ %
o 7
rectangle *¢
0.3 1
x
N X
<] x
5 0.25 ¥
x
0.2 1
X
0.15 b
' i
0.1 %% x 1
SN THE :
L X X i
0.05 5% ®® X x & X x x {X i x
. £ | T T T R £3 | I PR
0 20 40 60 80 200 300 400 500
network size network size

Fig. 2. Minimum reservoir size depends on task complexity. All panels show afsgareto-
optimal solutions (red circles) and the final population (blue crossap).€arning a simple,
circular pattern. All networks with 3 or more neurons show an erronbéks. (b) Pareto-front
for the figure eight pattern. Learning this pattern requires a notablyrlaggervoir. Please note
the different scaling of the error compared to the easier circle task.ddetvwith 17 or more
neurons have an error below 5%. (c) Storing two motor patterns (cinddigure-eight) as cycli-
cal attractors in a single networkrequires 37 or more reservoir nedoorerrors below 5%. (d)
Simultaneous learning of four patterns required 166 neurons.

A

5

]

E

-5 1 1 5 >
genome value

Fig. 3. Threshold function that
decodes genome values into
weight values, preserving sparse

N weight coding.

0.25 : X% <
a %x % g %
x
® € %
XK By
02} o % §§§ x 1
¥ o % Ry §x %
® XX X RyxXx
¥ % @%; xg : *xg xgx x
X XXX %
® x g Xx
0.15 x X Xy g x x 4
. ¥ Ty Xox
5
5 xx K x . x
X x
01f <1
x
®
x
0.05 § ® ® ES&; §
% x
5% % xE o
%
X i §g§
, ‘ ‘ W
0 10 40 50

network size

Fig. 4. Subsequent full-weight matrix optimization improves performance.ithafdhl optimiza-
tion of the four best networks of the two-pattern task with a reservoir diZe 4, 26 and 37
neurons. Starting from the best multi-objective solution, 20 GA runs werformed. a) Green
crosses indicate the best fitness values of each run. Black squaiczgérttie overall best solu-
tions that were found.

1,0
144 @ b $
1,24 0,84 I?l
1,04 .
ﬂg’, S 06
0,8 B
g g
%06< S 044
T 8 ==
2
0,4
== 0,2
0,2 =
00— 0,0 ==
4 14 26 37 4 14 26 37 4 14 26 37 4 14 26 37 4 14 26 37 4 14 26 37
network size network size

Fig. 5. Optimal weight range and connectivity depends on reservoir size.ddlestructure after

full-weight optimization of the selected networks from fig.4. a) Weightgeaof all non-zero

weights of the reservoir (red), the backprojection weights (green}tladhput weights (blue).
b) Connectivity (percentage of non-zero weights). Boxplots showZ8%g, 50%, 75% and 95%
quantiles of N=20 datapoints. * p < 0.05; ** p < 0.01

error
error

20 30 30
network size network size

Fig. 6. Left graph: Average pareto front from N=30 repetitions of the stralcMO. Blue crosses
show the final populations, red crosses show the pareto fronts, anettl#cles show the mean
and standard deviation of the pareto-optimal solutions for each netiwaerkRight graph: Hier-

archically nesting a full-weight GA optimization into the MO optimization gives aeraxcurate

approximation of the true pareto front, as compared to structural M@aldre plot shows a sin-
gle run of the nested MO-GA optimization over 25 generations. Crosses thie population at

each generation in grey levels ranging from light grey (first genergtioblack (last generation).
A single run outperforms the best solutions found in 30 runs of the staldlO, see Fig.7.

way, the pareto front improves by moving closer towards thigiro of both optimiza-
tion objectives. This nested, hierarchical optimizatisrcomputationally demanding.
To speed up the convergence of the MO, good solutions of thevfiight GA are stored
in an archive, keeping each iteration of the MO accessihlsubsequent iterations, the
archived genome having the closest structure is injectediie new population of the
full-weight GA. Good networks can emerge faster by fadilitg cross-over with the
archived solutions. This way, the full-weight optimizatidoes not need to start from
scratch in each iteration. See Fig.6 for hierarchical opttion of the two-pattern task.
The MO had a population size of 200, running - at each itematia full-weight opti-
mization with a population size of 20 individuals for 50 geate®ns. Fig. 7 compares
the pareto fronts of the different optimization strategiesingle run of the nested op-
timization algorithm achieves almost the same result astebination of structural
and subsequent full-weight optimization.

5 Dynamic network behaviour

Most of the smaller networks show an unexpected behavidway &re able to interpo-
late between the learned patterns, generating novel, ptitigly trained outputs. Fig.
8 shows the dynamical responses from the fittest networkeatios 4.1. The first in-
put value was changed gradually in 15 steps from 1.0 to 0.@ewime second input
was changed from 0.0 to 1.0. A gradual morphing from the trcio the figure-eight
pattern can be observed. Itis surprising, that already # &88l with six reservoir neu-
rons can store two different patterns. Larger networks ter@bnverge to fixed points

0.25

0.2

0.15F

error

0.1r

0.051

0 . n
0 10 20 30 40 50
network size

Fig. 7. Comparison of the different optimization runs. The structural MO is shiowred (cir-

cles), full-weight optimization of selected solutions from the structural M@réen (diamonds),
and the hierarchical optimization in magenta (squares). A single run ofasied, hierarchical
optimization shows almost the same performance as the full-weight optiomZeom section 4.

for input values other than the trained ones. This intetoieeffect might be applied
to complex and smooth behaviour generation for neural nétaantrolled robots.

6 Conclusions

Using MO, good candidate network structures can be selextediarting points for a
followup whole-network optimization and fine-tuning usiggnetic algorithms. Both
steps can be combined into a nested, hierarchical muléietibg optimization. The re-
sulting pareto front helps to identify small and sufficigrefficient networks that are
able to store multiple motor patterns in a single networkis istributed storage of
motor behaviours as attractor states in a single net is itrastrto earlier, local module
based approachedf sequences contain similarities and overlap, howeverpaflict
arises in such earlier models between generalization ampneatation, induced by
this separated modular structure(3). By choosing a feasible model capacity, over-
fitting and the risk of unwanted - possibly chaotic - attractates is reduced. Also,
with the right choice of the network size, an interestinggratinterpolation effect can
be evoked. Instead of using a classic genetic algorithm fe-tiining of the network
weights, new, very fast and powerful black box optimisatdgorithms (11) (12) could
further increase network performance and allow to find evealler networks for bet-
ter generalisation. ESNs can be used for direct controbktéske (13)) and scale well
with a high number of training patterns and motor outputg.(Admore complex simu-
lation, for example of a humanoid robot, will show if direat{ractor-based storage of
parameterized motor patterns is flexible enough for comipéraviour generation.

QQQQOOQOQOQOOOO
2L L) L)L) L)L) L) oL o) oL

O OO KGN

OCCTRRAANNAMONNK

05—

1

| | | I |
0 2 4 6 8 10 12 14

Fig. 8. Dynamic behaviour of selected networks with different reservoir lale trajectories).
Shifting the dynamics of the networks by gradually changing the first inpluie (red) from 1.0
to 0.0 and the second input (green) from 0.0 to 1.0 in 15 steps. Chwatiganinput to the network
causes a slow morphing between the two learned patterns, allowing t@genew patterns that
were not explicitly trained. Especially the small networks keep stable withhaotc regions.
Larger networks tend to converge to fixed points for input values otla@rzbro or one.

Bibliography

[1] Tani, J., Itob, M., Sugitaa, Y.: Self-organization osttibutedly represented mul-
tiple behavior schemata in a mirror system: reviews of rabqteriments using
rnnpb. Neural Network47 (2004) 1273 — 1289

[2] Haruno, M., Wolpert, D.M., Kawato, M.: Mosaic model fagrssorimotor learning
and control. Neural Computatidr(10) (2001) 2201-2220

[3] Yamashita, Y., Tani, J.: Emergence of functional hiehgrin a multiple timescale
neural network model: A humanoid robot experiment. PLoS Qatational Biol-
ogy4 (11) (2008) —

[4] Werbos, P.: Backpropagation through time: what it doed how to do it. In:
Proceedings of the IEEE. Volume 78(10). (1990) 1550-1560

[5] Jager, H., Haas, H.: Harnessing nonlinearity: Predictihaotic systems and sav-
ing energy in wireless communication. Scier3fd (2004) 78 — 80

[6] Jaeger, H.: Tutorial on training recurrent neural netwocovering bppt, rtrl, ekf
and the "echo state network™ approach. Technical RepdDGReport 159,
German National Research Center for Information Techno{@902)

[7] Hochreiter, S., Bengio, Y., Frasconi, P., SchmidhuBer, Gradient flow in re-
current nets: the difficulty of learning long-term dependes. In S. C. Kremer,
J.F.K., ed.: A Field Guide to Dynamical Recurrent Neuralwks. IEEE Press
(2001)

[8] Jaeger, H., Lukosevicius, M., Popovici, D., Siewert; @ptimization and appli-
cations of echo state networks with leaky integrator nesirddeural Networks
20(3) (2007) 335-352

[9] Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fasidaglitist multiobjective
genetic algorithm: Nsga-ii. IEEE Transactions on Evolnéicy Computatiors,
No. 2 (2002) 182-197

[10] Pearimutter, B.A.: Learning state space trajectani@gcurrent neural networks.
Neural Computatior (1989) 263—269

[11] Kramer, O.: Fast blackbox optimization: Iterated lbsaarch and the strategy
of powell. In: The 2009 International Conference on Genatid Evolutionary
Methods (GEM’'09). (2009) in press.

[12] Vrugt, J.A., Robinson, B.A., Hyman, J.M.: Self-adaptmultimethod search for
global optimization in real-parameter spaces. Evolutipr@omputation, IEEE
Transactions o3(2) (2008) 243-259

[13] Krause, A.F., Blasing, B., Durr, V., Schack, T.: Diréxntrol of an Active Tactile
Sensor Using Echo State Networks. In: Human Centered Rotstei®s. Cogni-
tion, Interaction, Technology. Volume 6 of Cognitive SysteMonographs. Berlin
Heidelberg: Springer-Verlag (2009) 11-21

[14] Jager, H.: Generating exponentially many periodi@atbrs with linearly growing
echo state networks. technical report 3, IUB (2006)

