
Evolutionary Optimization of Echo State Networks:
multiple motor pattern learning

André Frank Krause13, Volker Dürr23, Bettina Bläsing13, and Thomas Schack13

1 Faculty of Sport Science, Dept. Neurocognition & Action{andre_frank.krause,
bettina.blaesing, thomas.schack}@uni-bielefeld.de

2 Faculty of Biology, Dept. for Biological Cybernetics
volker.duerr@uni-bielefeld.de

3 Cognitive Interaction Technology, Center of Excellence
University of Bielefeld, D-33615 Bielefeld, Germany

Abstract. Echo State Networks are a special class of recurrent neural networks,
that are well suited for attractor-based learning of motor patterns. Usingstructural
multi-objective optimization, the trade-off between network size and accuracy
can be identified. This allows to choose a feasible model capacity for a follow-up
full-weight optimization. Both optimization steps can be combined into a nested,
hierarchical optimization procedure. It is shown to produce small and efficient
networks, that are capable of storing multiple motor patterns in a single net. Es-
pecially the smaller networks can interpolate between learned patterns usingbi-
furcation inputs.

1 Introduction

Neural networks are biological plausible models for pattern generation and learning.
A straight-forward way to learn motor patterns is to store them in the dynamics of re-
current neuronal networks. For example, Tani (1) argued that this distributed storage
of multiple patterns in a single network gives good generalisation compared to local,
modular neural network schemes (2). In (3) it was shown that it is not only possible to
combine already stored motor patterns into new ones, but also to establish an implicit
functional hierarchy by using leaky integrator neurons with different time constants
in a single network. This network can then generate and learnsequences by use of
stored motor patterns and combine them to form new, complex behaviours. Tani (3)
uses back-propagation through time (BPTT, (4)), that is computationally complex and
rather biologically implausible. Echo State Networks (ESNs, (5)) are a special kind of
reccurent neuronal networks that are very easy and fast to train compared to classic, gra-
dient based training methods. Gradient based learning methods suffer from bifurcations
that are often encountered during training. Bifurcations apruptly change the dynamic
behaviour of a network, rendering gradient information invalid (6). Additionally, it was
shown mathematically that it is very difficult to learn long term correlations because of
vanishing or exploding gradients (7). The general idea behind ESNs is to have a large,
fixed, random reservoir of recurrently and sparsely connected neurons. Only a linear
readout layer that taps this reservoir needs to be trained. The reservoir transforms usu-
ally low-dimensional, but temporally correlated input signals into a rich feature vector
of the reservoir’s internal activation dynamics.

Typically, the structural parameters of ESNs, for example the reservoir size and
connectivity, are choosen manually by experience and task demands. This may lead
to suboptimal and unnecessary large reservoir structures for a given problem. Smaller
ESNs may be more robust, show better generalisation, be faster to train and computa-
tionally more efficient. Here, multi-objective optimization is used to automatically find
good network structures and explore the trade-off between network size and network
error.

Section 2 describes the ESN equations and implementation. Section 3 introduces
the optimization of the network structure and explains how small and effective networks
can be identified. Good network structures are further optimized at the weight level in
section 4. Section 4.1 shows how to combine structural and weight level optimization
into a single, nested algorithm, facilitating a genetic archive of good solutions. In sec-
tion 5, the dynamic behaviour of the optimized ESNs is shown for different bifurcation
inputs.

2 Echo State Network

0

0

1

u(t)
y(t)

a

b

sensor readings

W in

W out

W back

W res

Fig. 1. General structure of an echo state network. Solid arrows indicate fixed,random connec-
tions, while dotted arrows are trainable readout connections. The output[????] sets the joint
angles of a bi-articular manipulator, e.g., an bio-inspired active tactile sensor. Joint angles are fed
back via the backprojection weight matrixWback.

A basic, discrete-time ESN with a sigmoid activation functions was implemented
in Matlabc©2009b. The purpose of this ESN was to control the joints of a bi-articular
manipulator that could serve as a bio-inspired, active tactile sensor. The overall goal
was to use the input to the ESN to set the tactile sampling pattern as desired. The state
update equations used are:

y(n) = Woutx(n)
x(n+ 1) = tanh(Wres

x(n) +Winu(n+ 1) +Wbacky(n) + ν(n))
(1)

whereu, x andy are the activations of the input, reservoir and output neurons,
respectively.ν(n) adds a small amount of uniformly distributed noise to the activation
values of the reservoir neurons. This tends to stabilize solutions, especially in models

that use output feedback for cyclic attractor learning (8).Win,Wres,Wout andWback

are the input, reservoir, output and backprojection weightmatrices. All matrices are
sparse, randomly initialised, and stay fixed, except forWout. The weights of this linear
output layer are learned using offline batch training. During training, the teacher data is
forced into the network via the back-projection weights (teacher forcing), and internal
reservoir activations are collected (state harvesting). After collecting internal states for
all training data, the output weights are directly calculated using ridge regression. Ridge
regression uses the Wiener-Hopf solutionWout = R−1P and adds a regularization
term (Tikhonov regularization):

Wout = (R+ α
2I)−1P (2)

whereα is a small number,I is the identity matrix,R = S′S is the correlation
matrix of the reservoir states andP = S′D is the cross-correlation matrix of the states
and the desired outputs. Ridge regression leads to more stable solutions and smaller
output weights, compared to ESN training using the Moore-Penrose pseudoinverse. A
value ofα = 0.08 was used for all simulations in this paper.

3 Multi-objective network structure optimization

Multi-objective optimization (MO) is a tool to explore trade-offs between conflicting
objectives. In the case of ESN optimization, the size of the reservoir versus the net-
work performance is the main trade-off. In MO, the concept ofdominance replaces the
concept of a single optimal solution in traditional optimization. A solution dominates
another, if strictly one objective value is superior and allother objectives are at least
equal to the corresponding objective values of another solution. Following this defini-
tion, multiple (possibly infinite) non-dominated solutions can exist, instead of a single
optimal solution. The set of non-dominated or pareto-optimal solutions is called the
pareto front of the multi-objective problem. The goal of MO is to find a good approx-
imation of the true pareto front, but usually MO algorithms converge to a local pareto
front due to complexity of the problem and computational constraints.

Usually, the structural parameters of an ESN are choosen manually by experience
and task demands. Here, the full set of free network parameters was optimized using
MO. The MO was performed with the function ’gamultiobj’ fromtheMatlab Genetic
Algorithm and Direct Search (GADS) Toolbox, that implements a variant of the ’Eli-
tist Non-dominated Sorting Genetic Algorithm version II’ (NSGA-II algorithm, (9)).
The network structure was encoded into the genotype as a seven-dimensional vector of
floating point numbers. The first six structural parameters were the sparsity and weight
range of the input-, reservoir- and backprojection weights. The seventh parameter was
the number of reservoir neurons. The search range of the algorithm was constrained
to [0, 1] for the sparsity values, to[−5, 5] for the weight values and to[1, 100] for the
reservoir size ([1, 500] for the 4-pattern problem). The optimization was started with a
population size of 1000 and converged after around 120 generations. In each iteration of
the MO, all genomes were decoded into network structures, the networks were trained
and then simulated with random initial activations for 1000frames per pattern. In order
to neglect the initial transient behaviour, the first 50 iterations of network output were

rejected. The network output and the training patterns are usually not in-phase. The
best match between training pattern and network output was searched by phase-shifting
both output time courses by± 50 frames relative to the training pattern and calculat-
ing the mean Manhattan distance across all pairs of data points. The training error was
then defined as the smallest distance found in that range. Theacceptable error threshold
(fig.2) is expressed as the percentage of the amplitude of thetraining patterns, that is 1.0
units for all patterns. The pareto front for a circular pattern (Fig.2a) reveals that even
very small networks are capable of learning and generating two sine waves with iden-
tical frequency and 90◦ phase shift. The smallest network found had only 3 reservoir
neurons. Including the two output neurons, the overall network size was 5. In compar-
ison, 7 neurons are required for this task when using gradient-based learning methods
(10). Network size increases with the complexity of the motor pattern, and especially
when having to store multiple patterns in a single network. Storing 4 patterns in a single
network required 166 reservoir neurons to reach an error below 5% (Fig.2d).

4 Full optimization of the network weights

From the pareto front of the two-pattern task, four candidate network structures were
selected and optimized further, using a single-objective genetic algorithm. This time,
all network weights except the output layer were fully optimized. The output layer was
still trained by ridge regression. An initial random population of 200 parents was cre-
ated from the network structure information of the selectedcandidate solutions with 4,
14, 26 and 37 reservoir neurons. Network weights were constrained to[−5, 5] and de-
coded from the genome with a threshold function that preserves sparsity. The threshold
function sets a weight to zero, if the genome value is between-1 and 1, see fig.3.

The Genetic Algorithm (GA) options were set to ranked roulette wheel selection,
20 elitist solutions, 80% crossover probability with scattered crossover and self adap-
tive mutation. Other options were left at their default values (see GADS toolbox, Mat-
lab2009b). The GA-optimization was repeated 20 times for each network size. Fig.
4a shows the improvement in performance compared to the MO structure optimiza-
tion run. A small network with only 14 reservoir neurons could reproduce the learned
patterns with an error of 2.3%. Weight range and connectivity after optimization was
analysed with an unpaired Wilcoxon rank sum test. Significant differences in connec-
tivity and weight range were found (Fig. 4b) with a clear trend for smaller reservoir
weights and less reservoir connectivity with increasing network sizes. Both input- and
backprojection weights tend to increase with reservoir size (Fig. 4a). Although standard
ESNs usually have full connectivity for input- and backprojection weights, evolutionary
optimization seems to favor sparse connectivity for smaller networks, when given the
choice (Fig. 4b).

4.1 Hierarchical evolutionary optimization

In the previous section, individual solutions of the MO structural evolution were se-
lected and optimized further on the weight level, using a GA.Both steps can be com-
bined by performing a full-weight GA optimization for each iteration of the MO. This

0 100 200 300 400 500

network size

0 20 40 60 80 100
0

network size

5%

circle

eight

0 20 40 60 80 100

5%

eight

0 20 40 60 80 100
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

e
rr

o
r

1%

circle

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

5%

circle

eight

rectangle star

e
rr

o
r

a bb

dc

Fig. 2. Minimum reservoir size depends on task complexity. All panels show a setof pareto-
optimal solutions (red circles) and the final population (blue crosses). (a) Learning a simple,
circular pattern. All networks with 3 or more neurons show an error below 1%. (b) Pareto-front
for the figure eight pattern. Learning this pattern requires a notably larger reservoir. Please note
the different scaling of the error compared to the easier circle task. Networks with 17 or more
neurons have an error below 5%. (c) Storing two motor patterns (circle and figure-eight) as cycli-
cal attractors in a single networkrequires 37 or more reservoir neurons for errors below 5%. (d)
Simultaneous learning of four patterns required 166 neurons.

1 5-1-5

5

-5

w
e

ig
h

t
v
a

lu
e

genome value

Fig. 3. Threshold function that
decodes genome values into
weight values, preserving sparse
weight coding.

20 30 40 50
network size

10

5%

0
0

0.05

0.1

0.15

0.2

0.25

e
rr

o
r

a

Fig. 4. Subsequent full-weight matrix optimization improves performance. Additional optimiza-
tion of the four best networks of the two-pattern task with a reservoir size of 4, 14, 26 and 37
neurons. Starting from the best multi-objective solution, 20 GA runs wereperformed. a) Green
crosses indicate the best fitness values of each run. Black squares indicate the overall best solu-
tions that were found.

0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

4 14 26 37 4 14 26 37 4 14 26 37

0,0

0,2

0,4

0,6

0,8

1,0

c
o

n
n

e
c
ti
v
it
y

w
e

ig
h

t
ra

n
g

e

network size

* ** ** ** ** ** **** ** ** ** ** **

a

4 14 26 37 4 14 26 37 4 14 26 37

network size

b

Fig. 5. Optimal weight range and connectivity depends on reservoir size. Network structure after
full-weight optimization of the selected networks from fig.4. a) Weight range of all non-zero
weights of the reservoir (red), the backprojection weights (green) andthe input weights (blue).
b) Connectivity (percentage of non-zero weights). Boxplots show 5%,25%, 50%, 75% and 95%
quantiles of N=20 datapoints. * p < 0.05; ** p < 0.01

0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

0.25

network size

er
ro

r

0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

0.25

network size

er
ro

r

Fig. 6. Left graph: Average pareto front from N=30 repetitions of the strucural MO. Blue crosses
show the final populations, red crosses show the pareto fronts, and thered circles show the mean
and standard deviation of the pareto-optimal solutions for each network size. Right graph: Hier-
archically nesting a full-weight GA optimization into the MO optimization gives a more accurate
approximation of the true pareto front, as compared to structural MO alone. The plot shows a sin-
gle run of the nested MO-GA optimization over 25 generations. Crosses show the population at
each generation in grey levels ranging from light grey (first generation) to black (last generation).
A single run outperforms the best solutions found in 30 runs of the structural MO, see Fig.7.

way, the pareto front improves by moving closer towards the origin of both optimiza-
tion objectives. This nested, hierarchical optimization is computationally demanding.
To speed up the convergence of the MO, good solutions of the full-weight GA are stored
in an archive, keeping each iteration of the MO accessible. In subsequent iterations, the
archived genome having the closest structure is injected into the new population of the
full-weight GA. Good networks can emerge faster by facilitating cross-over with the
archived solutions. This way, the full-weight optimization does not need to start from
scratch in each iteration. See Fig.6 for hierarchical optimization of the two-pattern task.
The MO had a population size of 200, running - at each iteration - a full-weight opti-
mization with a population size of 20 individuals for 50 generations. Fig. 7 compares
the pareto fronts of the different optimization strategies. A single run of the nested op-
timization algorithm achieves almost the same result as thecombination of structural
and subsequent full-weight optimization.

5 Dynamic network behaviour

Most of the smaller networks show an unexpected behaviour. They are able to interpo-
late between the learned patterns, generating novel, not explicitly trained outputs. Fig.
8 shows the dynamical responses from the fittest networks of section 4.1. The first in-
put value was changed gradually in 15 steps from 1.0 to 0.0, while the second input
was changed from 0.0 to 1.0. A gradual morphing from the circular to the figure-eight
pattern can be observed. It is surprising, that already a small ESN with six reservoir neu-
rons can store two different patterns. Larger networks tendto converge to fixed points

0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

0.25

network size

er
ro

r

0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

0.25

network size

er
ro

r

Fig. 7. Comparison of the different optimization runs. The structural MO is shown in red (cir-
cles), full-weight optimization of selected solutions from the structural MO ingreen (diamonds),
and the hierarchical optimization in magenta (squares). A single run of thenested, hierarchical
optimization shows almost the same performance as the full-weight optimization from section 4.

for input values other than the trained ones. This interpolation effect might be applied
to complex and smooth behaviour generation for neural network controlled robots.

6 Conclusions

Using MO, good candidate network structures can be selectedas starting points for a
followup whole-network optimization and fine-tuning usinggenetic algorithms. Both
steps can be combined into a nested, hierarchical multi-objective optimization. The re-
sulting pareto front helps to identify small and sufficiently efficient networks that are
able to store multiple motor patterns in a single network. This distributed storage of
motor behaviours as attractor states in a single net is in contrast to earlier, local module
based approaches."If sequences contain similarities and overlap, however, aconflict
arises in such earlier models between generalization and segmentation, induced by
this separated modular structure."(3). By choosing a feasible model capacity, over-
fitting and the risk of unwanted - possibly chaotic - attractor states is reduced. Also,
with the right choice of the network size, an interesting pattern interpolation effect can
be evoked. Instead of using a classic genetic algorithm for fine-tuning of the network
weights, new, very fast and powerful black box optimisationalgorithms (11) (12) could
further increase network performance and allow to find even smaller networks for bet-
ter generalisation. ESNs can be used for direct control tasks (see (13)) and scale well
with a high number of training patterns and motor outputs (14). A more complex simu-
lation, for example of a humanoid robot, will show if direct,attractor-based storage of
parameterized motor patterns is flexible enough for complexbehaviour generation.

N=2

N=6

N=12

N=33

0 2 4 6 8 10 12 14
0

0.5

1

Fig. 8. Dynamic behaviour of selected networks with different reservoir sizes(blue trajectories).
Shifting the dynamics of the networks by gradually changing the first inputvalue (red) from 1.0
to 0.0 and the second input (green) from 0.0 to 1.0 in 15 steps. Changing the input to the network
causes a slow morphing between the two learned patterns, allowing to generate new patterns that
were not explicitly trained. Especially the small networks keep stable with no chaotic regions.
Larger networks tend to converge to fixed points for input values other than zero or one.

Bibliography

[1] Tani, J., Itob, M., Sugitaa, Y.: Self-organization of distributedly represented mul-
tiple behavior schemata in a mirror system: reviews of robotexperiments using
rnnpb. Neural Networks17 (2004) 1273 – 1289

[2] Haruno, M., Wolpert, D.M., Kawato, M.: Mosaic model for sensorimotor learning
and control. Neural Computation13(10) (2001) 2201–2220

[3] Yamashita, Y., Tani, J.: Emergence of functional hierarchy in a multiple timescale
neural network model: A humanoid robot experiment. PLoS Computational Biol-
ogy 4 (11) (2008) –

[4] Werbos, P.: Backpropagation through time: what it does and how to do it. In:
Proceedings of the IEEE. Volume 78(10). (1990) 1550–1560

[5] Jäger, H., Haas, H.: Harnessing nonlinearity: Predicting chaotic systems and sav-
ing energy in wireless communication. Science304 (2004) 78 – 80

[6] Jaeger, H.: Tutorial on training recurrent neural networks, covering bppt, rtrl, ekf
and the "‘echo state network"‘ approach. Technical Report GMD Report 159,
German National Research Center for Information Technology (2002)

[7] Hochreiter, S., Bengio, Y., Frasconi, P., Schmidhuber,J.: Gradient flow in re-
current nets: the difficulty of learning long-term dependencies. In S. C. Kremer,
J.F.K., ed.: A Field Guide to Dynamical Recurrent Neural Networks. IEEE Press
(2001)

[8] Jaeger, H., Lukosevicius, M., Popovici, D., Siewert, U.: Optimization and appli-
cations of echo state networks with leaky integrator neurons. Neural Networks
20(3) (2007) 335–352

[9] Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: Nsga-ii. IEEE Transactions on Evolutionary Computation6,
No. 2 (2002) 182–197

[10] Pearlmutter, B.A.: Learning state space trajectoriesin recurrent neural networks.
Neural Computation1 (1989) 263–269

[11] Kramer, O.: Fast blackbox optimization: Iterated local search and the strategy
of powell. In: The 2009 International Conference on Geneticand Evolutionary
Methods (GEM’09). (2009) in press.

[12] Vrugt, J.A., Robinson, B.A., Hyman, J.M.: Self-adaptive multimethod search for
global optimization in real-parameter spaces. Evolutionary Computation, IEEE
Transactions on13(2) (2008) 243–259

[13] Krause, A.F., Bläsing, B., Dürr, V., Schack, T.: DirectControl of an Active Tactile
Sensor Using Echo State Networks. In: Human Centered Robot Systems. Cogni-
tion, Interaction, Technology. Volume 6 of Cognitive Systems Monographs. Berlin
Heidelberg: Springer-Verlag (2009) 11–21

[14] Jäger, H.: Generating exponentially many periodic attractors with linearly growing
echo state networks. technical report 3, IUB (2006)

