
Multiobjective Optimization of Echo State Networks
for multiple motor pattern learning

André Frank Krause∗, Volker Dürr†, Bettina Bläsing∗ and Thomas Schack∗
∗Faculty of Sport Science, Dept. Neurocognition & Action email: andre_frank.krause@uni-bielefeld.de

†Faculty of Biology, Dept. for Biological Cybernetics email: volker.duerr@uni-bielefeld.de
all authors: Cognitive Interaction Technology, Center of Excellence

University of Bielefeld, D-33615 Bielefeld, Germany

Abstract—Echo State Networks are a special class of re-
current neural networks, that are well-suited for attractor-
based learning of motor patterns. Using structural multi-
objective optimization, the trade-off between network size
and accuracy can be identified. This allows to choose
a feasible model capacity for a follow-up full-weight
optimization. It is shown to produce small and efficient
networks, that are capable of storing multiple motor
patterns in a single net. Especially the smaller networks
can interpolate between learned patterns using bifurcation
inputs.

I. INTRODUCTION

Neural networks are biological plausible models for
pattern generation and learning. A straight-forward way
to learn motor patterns is to store them in the dynamics
of recurrent neuronal networks. For example, Tani [1]
argued that this distributed storage of multiple patterns in
a single network gives good generalisation compared to
local, modular neural network schemes [2]. In [3] it was
shown that it is not only possible to combine previously
stored motor patterns to generate new ones, but also
to establish an implicit functional hierarchy by using
leaky integrator neurons with different time constants
in a single network. This network can then generate
and learn sequences by use of stored motor patterns
and combine them to form new, complex behaviours.
Tani [3] uses back-propagation through time (BPTT, [4]),
that is computationally complex and rather biologically
implausible. Echo State Networks (ESNs, [5]) are a
special kind of recurrent neuronal networks. They are
very easy and fast to train compared to classic, gradient-
based training methods.

The general idea behind ESNs is to have a large, fixed,
random reservoir of recurrently and sparsely connected
neurons. Only a linear readout layer that taps this reser-
voir needs to be trained.

0

0

1

u(t)
y(t)

a

b

sensor readings

W in

W out

W back

W res

Fig. 1. General structure of an echo state network. Solid arrows
indicate fixed, random connections, while dotted arrows aretrainable
readout connections. The output [α,β] sets the joint angles of a bi-
articular manipulator, e.g., a bio-inspired active tactile sensor. Joint
angles are fed back via the back-projection weight matrixW

back.

Typically, the structural parameters of ESNs, for ex-
ample the reservoir size and connectivity, are choosen
manually by experience and task demands. This may
lead to suboptimal and unnecessary large reservoir struc-
tures for a given problem. Smaller ESNs may be more
robust, show better generalisation, be faster to train and
computationally more efficient. Here, multi-objective op-
timization is used to automatically find good network
structures and explore the trade-off between network size
and network error.

II. ECHO STATE NETWORK

A basic, discrete-time ESN with a sigmoid activation
function was implemented in Matlabc©2009b. The pur-
pose of this ESN was to control the joints of a bi-articular
manipulator that could serve as a bio-inspired, active
tactile sensor. The overall goal was to use the input to
the ESN to set the tactile sampling pattern as desired.
The state update equations used are:

y(n) = Woutx(n)
x(n+ 1) = tanh(Wres

x(n) +Winu(n+ 1)+
Wbacky(n) + ν(n))

(1)

where u, x and y are the activation of the input,
reservoir and output neurons, respectively.ν(n) adds
a small amount of uniformly distributed noise to the
activation values of the reservoir neurons. This tends to
stabilize solutions, especially in models that use output
feedback for cyclic attractor learning [6].Win, Wres,
Wout and Wback are the input, reservoir, output and
back-projection weight matrices. All matrices are sparse,
randomly initialised, and stay fixed, except forWout.
The weights of this linear output layer are learned using
offline batch training. During training, the teacher data is
forced into the network via the back-projection weights
(teacher forcing), and internal reservoir activations are
collected (state harvesting). After collecting internal
states for all training data, the output weights are directly
calculated using ridge regression. Ridge regression uses
the Wiener-Hopf solutionWout = R−1P and adds a
regularization term (Tikhonov regularization):

Wout = (R+ α
2I)−1P (2)

whereα is a small number,I is the identity matrix,
R = S′S is the correlation matrix of the reservoir states
andP = S′D is the cross-correlation matrix of the states
and the desired outputs. Ridge regression leads to more
stable solutions and smaller output weights, compared to
ESN training using the Moore-Penrose pseudoinverse. A
value ofα = 0.08 was used for all simulations in this
paper.

III. M ULTI -OBJECTIVE NETWORK STRUCTURE

OPTIMIZATION

Multi-objective optimization (MO) is a tool to ex-
plore trade-offs between conflicting objectives. In the
case of ESN optimization, the size of the reservoir
versus the network performance is the main trade-off.
In MO, the concept of dominance replaces the concept
of a single optimal solution in traditional optimization.
A solution dominates another, if strictly one objective
value is superior and all other objectives are at least
equal to the corresponding objective values of another
solution. Following this definition, multiple (possibly
infinite) non-dominated solutions can exist, instead of
a single optimal solution. The set of non-dominated or
pareto-optimal solutions is called the pareto front of
the multi-objective problem. The goal of MO is to find
a good approximation of the true (best) pareto front,
but usually MO algorithms converge to a local (sub-
optimal) pareto front due to complexity of the problem
and computational constraints.

Usually, the structural parameters of an ESN are
chosen manually by experience and task demands. Here,
the full set of free network parameters was optimized
using MO. The MO was performed with the func-
tion ’gamultiobj’ from the Matlab Genetic Algorithm
and Direct Search (GADS) Toolbox, that implements a
variant of the ’Elitist Non-dominated Sorting Genetic
Algorithm version II’ (NSGA-II algorithm, [7]). The
network structure was encoded into the genotype as
a seven-dimensional vector of floating-point numbers.
The first six structural parameters were the sparsity and
weight range of the input-, reservoir- and back-projection
weights. The seventh parameter was the number of
reservoir neurons. The search range of the algorithm was
constrained to[0, 1] for the sparsity values, to[−5, 5] for
the weight values and to[1, 100] for the reservoir size
([1, 500] for the 4-pattern problem). The optimization
was started with a population size of 1000 and converged
after around 120 generations. In each iteration of the
MO, all genomes were decoded into network structures,
the networks were trained and then simulated with
random initial activations for 1000 frames per pattern. In
order to neglect the initial transient behaviour, the first 50
iterations of network output were rejected. The network
output and the training patterns are usually not in-phase.
The best match between training pattern and network
output was searched by phase-shifting both output time
courses by± 50 frames relative to the training pattern
and calculating the mean Manhattan distance across
all pairs of data points. The training error was then
defined as the smallest distance found in that range.
The acceptable error threshold (fig.2) is expressed as the
percentage of the amplitude of the training patterns, that
is 1.0 units for all patterns. The pareto front for a circular
pattern (fig.2a) reveals that even very small networks are
capable of learning and generating two sine waves with
identical frequency and 90◦ phase shift. The smallest
network found had only 3 reservoir neurons. Including
the two output neurons, the overall network size was 5.
In comparison, 7 neurons are required for this task when
using gradient-based learning methods [8]. Network size
increases with the complexity of the motor pattern, and
especially when having to store multiple patterns in a
single network. Storing 4 patterns in a single network
required 166 reservoir neurons to reach an error below
5% (fig.2d).

IV. FULL OPTIMIZATION OF THE NETWORK WEIGHTS

From the pareto front of the two-pattern task, four
candidate network structures were selected and opti-

0 100 200 300 400 500

network size

0 20 40 60 80 100
0

network size

5%

circle

eight

0 20 40 60 80 100

5%

eight

0 20 40 60 80 100
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

e
rr

o
r

1%

circle

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

5%

circle

eight

rectangle star

e
rr

o
r

a bb

dc

Fig. 2. Minimum reservoir size depends on task complexity. All
panels show a set of pareto-optimal solutions (red circles)and the
final population (blue crosses). (a) Learning a simple, circular pattern.
All networks with 3 or more neurons show an error below 1%. (b)
Pareto-front for the figure eight pattern. Learning this pattern requires
a notably larger reservoir. Please note the different scaling of the error
compared to the easier circle task. Networks with 17 or more neurons
have an error below 5%. (c) Storing two motor patterns (circle and
figure-eight) as cyclical attractors in a single networkrequires 37
or more reservoir neurons for errors below 5%. (d) Simultaneous
learning of four patterns required 166 neurons.

1 5-1-5

5

-5

w
e
ig

h
t
v
a
lu

e

genome value

Fig. 3. Threshold function
that decodes genome values
into weight values, preserv-
ing sparse weight coding.

mized further, using a single-objective genetic algorithm.
This time, all network weights except the output layer
were fully optimized. The output layer was still trained
by ridge regression. An initial random population of
200 parents was created from the network structure
information of the selected candidate solutions with 4,
14, 26 and 37 reservoir neurons. Network weights were
constrained to[−5, 5] and decoded from the genome
with a threshold function that preserves sparsity. The
threshold function sets a weight to zero, if the genome
value is between -1 and 1, see fig.3.

The Genetic Algorithm (GA) options were set to
ranked roulette wheel selection, 20 elitist solutions, 80%
crossover probability with scattered crossover and self
adaptive mutation. Other options were left at their default

20 30 40 50
network size

10

5%

0
0

0.05

0.1

0.15

0.2

0.25

e
rr

o
r

a

Fig. 4. Subsequent full-weight matrix optimization improves per-
formance. Additional optimization of the four best networks of the
two-pattern task with a reservoir size of 4, 14, 26 and 37 neurons.
Starting from the best multi-objective solution, 20 GA runswere
performed. a) Green crosses indicate the best fitness valuesof each
run. Black squares indicate the overall best solutions thatwere found.

0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

4 14 26 37 4 14 26 37 4 14 26 37

0,0

0,2

0,4

0,6

0,8

1,0

c
o

n
n

e
c
ti
v
it
y

w
e

ig
h

t
ra

n
g

e

network size

* ** ** ** ** ** **** ** ** ** ** **

a

4 14 26 37 4 14 26 37 4 14 26 37

network size

b

Fig. 5. Optimal weight range and connectivity depends on reservoir
size. Network structure after full-weight optimization ofthe selected
networks from fig.4. a) Weight range of all non-zero weights of the
reservoir (red), the back-projection weights (green) and the input
weights (blue). b) Connectivity (percentage of non-zero weights).
Boxplots show 5%, 25%, 50%, 75% and 95% quantiles of N=20
datapoints. * p < 0.05; ** p < 0.01

values (see GADS toolbox, Matlab2009b). The GA-
optimization was repeated 20 times for each network
size. Fig. 4a shows the improvement in performance
compared to the MO structure optimization run. A small
network with only 14 reservoir neurons could reproduce
the learned patterns with an error of 2.3%. Weight
range and connectivity after optimization was analysed
with an unpaired Wilcoxon rank sum test. Significant
differences in connectivity and weight range were found
(fig. 4b) with a clear trend for smaller reservoir weights
and less reservoir connectivity with increasing network
sizes. Both input- and back-projection weights tend to
increase with reservoir size (fig. 4a). Although standard
ESNs usually have full connectivity for input- and back-
projection weights, evolutionary optimization seems to
favor sparse connectivity for smaller networks, when
given the choice (fig. 4b).

n=4

n=14

n=26

n=37

Fig. 6. Dynamic behaviour of selected networks with different
reservoir sizes (blue trajectories). Shifting the dynamics of the
networks by gradually changing the two input values from 1.0to 0.0
and from 0.0 to 1.0, respectively, in 15 steps. Changing the input to
the network causes a slow morphing between the two learned patterns,
allowing the generation of new patterns that were not explicitly
trained. Especially the small networks keep stable with no chaotic
regions. Larger networks tend to converge to fixed points forinput
values other than zero or one (blue dots).

V. DYNAMIC NETWORK BEHAVIOUR

Most of the smaller networks show an unexpected
behaviour. They are able to interpolate between the
learned patterns, generating novel, not explicitly trained
outputs. Fig. 6 shows the dynamical responses from
the fittest networks of section IV. The first input value
was changed gradually in 15 steps from 1.0 to 0.0,
while the second input was changed from 0.0 to 1.0.
A gradual morphing from the circular to the figure-eight
pattern can be observed. It is surprising, that already
a small ESN with six reservoir neurons can store two
different patterns. Larger networks tend to converge to
fixed points for input values other than the trained ones.
This interpolation effect might be applied to complex
and smooth behaviour generation for neural network
controlled robots.

VI. CONCLUSIONS

Using MO, good candidate network structures can
be selected as starting points for a followup whole-
network optimization and fine-tuning using genetic al-
gorithms. The resulting pareto front helps to identify
small and sufficiently efficient networks that are able
to store multiple motor patterns in a single network.
This distributed storage of motor behaviours as attractor
states in a single net is in contrast to earlier, local
module based approaches."If sequences contain simi-
larities and overlap, however, a conflict arises in such
earlier models between generalization and segmentation,
induced by this separated modular structure."[3]. By
choosing a feasible model capacity, over-fitting and the
risk of unwanted - possibly chaotic - attractor states
is reduced. Also, with the right choice of the network

size, an interesting pattern interpolation effect can be
evoked. Instead of using a classic genetic algorithm
for fine-tuning of the network weights, new, very fast
and powerful black box optimisation algorithms [9] [10]
could further increase network performance and allow
to find even smaller networks for better generalisation.
ESNs can be used for direct control tasks (see [11])
and scale well with a high number of training patterns
and motor outputs [12]. A more complex simulation,
for example of a humanoid robot, will show if direct,
attractor-based storage of parameterized motor patterns
is flexible enough for complex behaviour generation.

REFERENCES

[1] J. Tani, M. Itob, and Y. Sugitaa, “Self-organization of distribut-
edly represented multiple behavior schemata in a mirror system:
reviews of robot experiments using rnnpb,”Neural Networks,
vol. 17, pp. 1273 – 1289, 2004.

[2] M. Haruno, D. M. Wolpert, and M. Kawato, “Mosaic model
for sensorimotor learning and control,”Neural Computation,
vol. 13(10), pp. 2201–2220, 2001.

[3] Y. Yamashita and J. Tani, “Emergence of functional hierarchy in
a multiple timescale neural network model: A humanoid robot
experiment,”PLoS Computational Biology, vol. 4 (11), pp. –,
2008.

[4] P. Werbos, “Backpropagation through time: what it does and
how to do it,” in Proceedings of the IEEE, vol. 78(10), 1990,
pp. 1550–1560.

[5] H. Jäger and H. Haas, “Harnessing nonlinearity: Predicting
chaotic systems and saving energy in wireless communication,”
Science, vol. 304, pp. 78 – 80, 2004.

[6] H. Jäger, M. Lukosevicius, D. Popovici, and U. Siewert, “Op-
timization and applications of echo state networks with leaky
integrator neurons,”Neural Networks, vol. 20(3), pp. 335–352,
2007.

[7] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast
and elitist multiobjective genetic algorithm: Nsga-ii,”IEEE
Transactions on Evolutionary Computation, vol. 6, No. 2, pp.
182–197, 2002.

[8] B. A. Pearlmutter, “Learning state space trajectories in recurrent
neural networks,”Neural Computation, vol. 1, pp. 263–269,
1989.

[9] O. Kramer, “Fast blackbox optimization: Iterated localsearch
and the strategy of powell.” inThe 2009 International Confer-
ence on Genetic and Evolutionary Methods (GEM’09), 2009,
in press.

[10] J. A. Vrugt, B. A. Robinson, and J. M. Hyman, “Self-adaptive
multimethod search for global optimization in real-parameter
spaces.”Evolutionary Computation, IEEE Transactions on, vol.
13(2), pp. 243–259, 2008.

[11] A. F. Krause, B. Bläsing, V. Dürr, and T. Schack, “Directcontrol
of an active tactile sensor using echo state networks,” inHuman
Centered Robot Systems. Cognition, Interaction, Technology,
ser. Cognitive Systems Monographs, H. Ritter, G. Sagerer,
R. Dillmann, and M. Buss, Eds., vol. 6. Berlin Heidelberg:
Springer-Verlag, 2009, pp. 11–21.

[12] H. Jäger, “Generating exponentially many periodic attractors
with linearly growing echo state networks,” IUB, technical
report 3, 2006.

