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Abstract—Echo State Networks are a special class of re- /—Sénsorvr\e’:;:;
current neural networks, that are well-suited for attractor-
based learning of motor patterns. Using structural multi- wout
objective optimization, the trade-off between networksie || ~ [ [ Y/ \ Q%+ O (7
and accuracy can be identified. This allows to choose || = (OO~ H_/ - O
a feasible model capacity for a follow-up full-weight y(t) !

optimization. It is shown to produce small and efficient u(t)
networks, that are capable of storing multiple motor
patterns in a single net. Especially the smaller networks

can interpolate between learned patterns using bifurcatin  Fig- 1. General structure of an echo state network. Solidvesr
inputs. indicate fixed, random connections, while dotted arrowsti@ieable

readout connections. The output,p] sets the joint angles of a bi-
articular manipulator, e.g., a bio-inspired active tacgknsor. Joint
|. INTRODUCTION angles are fed back via the back-projection weight maaike<®.

Neural networks are biological plausible models for
pattern generation and learning. A straight-forward way Typically, the structural parameters of ESNs, for ex-
to learn motor patterns is to store them in the dynamiesple the reservoir size and connectivity, are choosen
of recurrent neuronal networks. For example, Tani [Ihanually by experience and task demands. This may
argued that this distributed storage of multiple pattenmnsliead to suboptimal and unnecessary large reservoir struc-
a single network gives good generalisation comparedttoes for a given problem. Smaller ESNs may be more
local, modular neural network schemes [2]. In [3] it wasobust, show better generalisation, be faster to train and
shown that it is not only possible to combine previouslgomputationally more efficient. Here, multi-objective op-
stored motor patterns to generate new ones, but atsoization is used to automatically find good network
to establish an implicit functional hierarchy by usingtructures and explore the trade-off between network size
leaky integrator neurons with different time constan@nd network error.
in a single network. This network can then generate
and learn sequences by use of stored motor patterns
and combine them to form new, Comp|ex behaviourslA baSiC, discrete-time ESN with a SlngId activation
Tani [3] uses back-propagation through time (BPTT, [4]function was implemented in Matl&h2009b. The pur-
that is computationally complex and rather biologicallpose of this ESN was to control the joints of a bi-articular
implausible. Echo State Networks (ESNs, [5]) are @anipulator that could serve as a bio-inspired, active
special kind of recurrent neuronal networks. They afactile sensor. The overall goal was to use the input to
very easy and fast to train compared to classic, gradieite ESN to set the tactile sampling pattern as desired.
based training methods. The state update equations used are:

The general idea behind ESNs is to have a large, fixed,
random reservoir of recurrently and sparsely connectedy(n) = W°4x(n)
neurons. Only a linear readout layer that taps this reser-x(n + 1) = tanh(W"z(n) + Wu(n + 1)+ (1)
voir needs to be trained. Whacky (n) + v(n))

II. EcCHO STATE NETWORK



where u, x and y are the activation of the input, Usually, the structural parameters of an ESN are
reservoir and output neurons, respectivelyn) adds chosen manually by experience and task demands. Here,
a small amount of uniformly distributed noise to théhe full set of free network parameters was optimized
activation values of the reservoir neurons. This tendsusing MO. The MO was performed with the func-
stabilize solutions, especially in models that use outptitn 'gamultiobj’ from the Matlab Genetic Algorithm
feedback for cyclic attractor learning [6W*, W"¢, and Direct Search (GADS) Toolbpthat implements a
Weut and Wbk are the input, reservoir, output and/ariant of the ’Elitist Non-dominated Sorting Genetic
back-projection weight matrices. All matrices are sparsglgorithm version I’ (NSGA-II algorithm, [7]). The
randomly initialised, and stay fixed, except f8¥°“!. network structure was encoded into the genotype as
The weights of this linear output layer are learned usireg seven-dimensional vector of floating-point numbers.
offline batch training. During training, the teacher data iBhe first six structural parameters were the sparsity and
forced into the network via the back-projection weightaeight range of the input-, reservoir- and back-projection
(teacher forcing), and internal reservoir activations aweeights. The seventh parameter was the number of
collected (state harvesting). After collecting internakservoir neurons. The search range of the algorithm was
states for all training data, the output weights are diyecttonstrained td0, 1] for the sparsity values, to-5, 5] for
calculated using ridge regression. Ridge regression usies weight values and tfl, 100] for the reservoir size
the Wiener-Hopf solutiontWw** = R~'P and adds a ([1,500] for the 4-pattern problem). The optimization

regularization term (Tikhonov regularization): was started with a population size of 1000 and converged
after around 120 generations. In each iteration of the
W — (R + *T)" P (2) MO, all genomes were decoded into network structures,

the networks were trained and then simulated with

wherea is a small number] is the identity matrix, random initial activations for 1000 frames per pattern. In
R = S'S is the correlation matrix of the reservoir stategrder to neglect the initial transient behaviour, the fitst 5
andP = S'D is the cross-correlation matrix of the stategerations of network output were rejected. The network
and the desired outputs. Ridge regression leads to mg(gput and the training patterns are usually not in-phase.
stable solutions and smaller output weights, compareditie best match between training pattern and network
ESN training using the Moore-Penrose pseudoinverse ofitput was searched by phase-shifting both output time
value of @ = 0.08 was used for all simulations in thiscourses byt 50 frames relative to the training pattern
paper. and calculating the mean Manhattan distance across
all pairs of data points. The training error was then
defined as the smallest distance found in that range.
The acceptable error threshold (fig.2) is expressed as the

Multi-objective optimization (MO) is a tool to ex- percentage of the amplitude of the training patterns, that
plore trade-offs between conflicting objectives. In this 1.0 units for all patterns. The pareto front for a circular
case of ESN optimization, the size of the reservonattern (fig.2a) reveals that even very small networks are
versus the network performance is the main trade-offapable of learning and generating two sine waves with
In MO, the concept of dominance replaces the conceageéntical frequency and 90phase shift. The smallest
of a single optimal solution in traditional optimizationnetwork found had only 3 reservoir neurons. Including
A solution dominates another, if strictly one objectivéhe two output neurons, the overall network size was 5.
value is superior and all other objectives are at ledstcomparison, 7 neurons are required for this task when
equal to the corresponding objective values of anothgsing gradient-based learning methods [8]. Network size
solution. Following this definition, multiple (possiblyincreases with the complexity of the motor pattern, and
infinite) non-dominated solutions can exist, instead efkpecially when having to store multiple patterns in a
a single optimal solution. The set of non-dominated @ingle network. Storing 4 patterns in a single network
pareto-optimal solutions is called the pareto front okquired 166 reservoir neurons to reach an error below
the multi-objective problem. The goal of MO is to findc% (fig.2d).
a good approximation of the true (best) pareto front
but usually MO algorithms converge to a local (sub'—v' FULL OPTIMIZATION OF THE NETWORK WEIGHTS
optimal) pareto front due to complexity of the problem From the pareto front of the two-pattern task, four
and computational constraints. candidate network structures were selected and opti-

I11. M ULTI-OBJECTIVE NETWORK STRUCTURE
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Fig. 4. Subsequent full-weight matrix optimization impesvper-
formance. Additional optimization of the four best networlf the
two-pattern task with a reservoir size of 4, 14, 26 and 37 owur

Starting from the best multi-objective solution, 20 GA runere
performed. a) Green crosses indicate the best fitness vafuesch
Fig. 2. Minimum reservoir size depends on task complexity. Arun. Black squares indicate the overall best solutionsweaé found.
panels show a set of pareto-optimal solutions (red circes) the

final population (blue crosses). (a) Learning a simple uténcpattern.

All networks with 3 or more neurons show an error below 1%. (b):.]
Pareto-front for the figure eight pattern. Learning thiggrat requires -] .
a notably larger reservoir. Please note the differentsgalf the error ]

compared to the easier circle task. Networks with 17 or mereans 7 Eﬁ
have an error below 5%. (c) Storing two motor patterns (eirxhd é 04 - %
figure-eight) as cyclical attractors in a single networkiiegs 37 =]

or more reservoir neurons for errors below 5%. (d) Simulbaise ] e °
learning of four patterns required 166 neurons. PR IS - 0
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Fig. 5. Optimal weight range and connectivity depends oarxesr
size. Network structure after full-weight optimization thie selected
networks from fig.4. a) Weight range of all non-zero weightshe
reservoir (red), the back-projection weights (green) amel input
. weights (blue). b) Connectivity (percentage of non-zerdghs).
Boxplots show 5%, 25%, 50%, 75% and 95% quantiles of N=20
datapoints. * p < 0.05; ** p < 0.01
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&

1 5
oereme¥a® Fig. 3. Threshold function
that decodes genome values
into weight values, preserv-

N ing sparse weight coding.

values (see GADS toolbox, Matlab2009b). The GA-
optimization was repeated 20 times for each network
mized further, using a single-objective genetic algorithrgjze. Fig. 4a shows the improvement in performance
This time, all network weights except the output layefompared to the MO structure optimization run. A small
were fully optimized. The output layer was still traineghetwork with only 14 reservoir neurons could reproduce
by ridge regression. An initial random population ofhe learned patterns with an error of 2.3%. Weight
200 parents was created from the network structuignge and connectivity after optimization was analysed
information of the selected candidate solutions with 4yith an unpaired Wilcoxon rank sum test. Significant
14, 26 and 37 reservoir neurons. Network weights weggfferences in connectivity and weight range were found
constrained to[—5,5] and decoded from the genomefig. 4b) with a clear trend for smaller reservoir weights
with a threshold function that preserves sparsity. Thed less reservoir connectivity with increasing network
threshold function sets a weight to zero, if the genomgzes. Both input- and back-projection weights tend to
value is between -1 and 1, see fig.3. increase with reservoir size (fig. 4a). Although standard
The Genetic Algorithm (GA) options were set td&=2SNs usually have full connectivity for input- and back-
ranked roulette wheel selection, 20 elitist solutions, 80@60ojection weights, evolutionary optimization seems to
crossover probability with scattered crossover and sédivor sparse connectivity for smaller networks, when
adaptive mutation. Other options were left at their defawgiven the choice (fig. 4b).



=~ size, an interesting pattern interpolation effect can be
AN size, an mresing patern nerpoltion efect cn |
. evoked. Instead of using a classic genetic algorithm
OOOOOOQ@@Q ' %850004 for fine-tuning of the network weights, new, very fast
OOOOOOOOOOQQK}D@O@ and powerful black box optimisation algorithms [9] [10]

could further increase network performance and allow

OQQ o ﬂ /MWOOOS to find even smaller networks for better generalisation.
ESNs can be used for direct control tasks ( see [11])
Fig. 6. Dynamic behaviour of selected networks with differe @nd scale well with a high number of tralnlng patt(_ems
reservoir sizes (blue trajectories). Shifting the dynamif the and motor outputs [12]. A more complex simulation,
networks by gradually changing the two input values fromt.0.0 for example of a humanoid robot, will show if direct,

and from 0.0 to 1.0, respectively, in 15 steps. Changing rtpetito _ .
the network causes a slow morphing between the two learrttetp attractor-based storage of parameterized motor patterns

allowing the generation of new patterns that were not eitplic IS flexible enough for complex behaviour generation.
trained. Especially the small networks keep stable with haotic
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