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ABSTRACT
This paper revisits the problem of sorting by reversals
with tools developed in the context of detecting common
intervals. Mixing the two approaches yields new definitions
and algorithms for the reversal distance computations, that
apply directly on the original permutation.

Traditional constructions such as recasting the signed
permutation as a positive permutation, or traversing the
overlap graph to analyze its connected components, are
replaced by elementary definitions in terms of intervals of
the permutation. This yields simple linear time algorithms
that identify the essential features in a single pass over
the permutation and use only simple data structures like
arrays and stacks.
Contact: stoye@TechFak.Uni-Bielefeld.DE

INTRODUCTION
Let π be a permutation of the integers between 1 andn
which are provided with a plus or minus sign,

π = (π1 π2 . . . πn).

A reversal ρ(i, j) is an operation that reverses the block
of consecutive elements fromi to j in π , while changing
their signs. Thereversal distance d(π) is the minimum
number of reversals that transformπ into the identity
permutation,

(1 2 . . . n).

A safe reversalρ for the permutationπ is a reversal
such thatd(ρπ) = d(π) − 1. Finding a sequence ofd(π)

safe reversals is called thesorting by reversal problem.
Its solutions are far from unique (Siepel, 2002; Bergeron
et al., 2002), but elementary methods to approach this
problem are still scarce.

Permutations, and the reversal operation, are useful tools
in the comparative study of genomes (Sankoff, 1992).
The genome of a species can be thought of as a set of
ordered sequences of genes—the ordering devices being

the chromosomes—, each gene having an orientation
given by its location on the DNA double strand. Different
species often share similar genes that were inherited
from common ancestors. However, these genes have
been shuffled by mutations that modified the content
of chromosomes, the order of genes within a particular
chromosome, and/or the orientation of a gene. Comparing
two sets of similar genes appearing along a chromosome
in two different species yields a (signed) permutation.
It is widely accepted that the reversal distance of this
permutation provides a good estimate of the evolutionary
distance between the two species.

Computing the reversal distance, or deciding whether a
reversal is safe, traditionally requires to recast the signed
permutation as an unsigned permutation of 2n elements,
and to construct a graph, called theoverlap graph (Bafna
and Pevzner, 1996; Hannenhalli and Pevzner, 1999).
Connected components and cycles of this graph play a
crucial role in the sorting by reversal problem. In this
paper, we show that it is possible to bypass entirely the
construction of the overlap graph. We characterize its
essential features in terms of subsets of elements of the
signed permutation, using tools borrowed from the algebra
of common intervals (Uno and Yagiura, 2000; Heber and
Stoye, 2001).

With this approach, we were able to derive elementary
linear time algorithms to solve problems involving rever-
sal distance computations: the detection of unoriented
connected components and the reversal distance compu-
tation. All these algorithms make a single ‘pass’ on the
elements of the permutation, using stacks to record impor-
tant features. Analyzing, for example, the potential effects
of a reversalρ(i, j) on the structure of a permutation can
be done directly on the original permutationπ , without
actually performing the reversal.

These algorithms can be particularly useful in applica-
tions such as the reversal median problem (Siepel, 2002),
where huge numbers of optimal sequences of reversals sat-
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isfying secondary constraints are tested. In such applica-
tions, the detection of safe reversals turns out to be the
bottleneck of the procedures, even when using linear time
algorithms (Baderet al., 2001). Indeed, any algorithm that
operates on the overlap graph must first perform the candi-
date reversal, update the graph accordingly, and then undo
its work in order to test another candidate.

Finally, let’s mention that the relations between the
sorting problem and common intervals made a first
appearance—without explicit mention of the structure—
by Kaplan et al. (1999), and then by Bergeron (2001),
as alternate definitions of hurdles. The present paper
constitutes, to the best of our knowledge, the first complete
treatment of all connected components of the overlap
graph in terms of common intervals.

BACKGROUND
As usual, we will consider signed permutations framed by
0 andn:

π = ( 0 π1 π2 . . . πn−1 n ).

An element i of the permutation is an unsigned integer
between 0 andn, and each element has a sign,+ or −.
The positive sign+ may be omitted. Note that signs are
only used to partition the elements in two subsets, and do
not carry their usual additive properties. By convention, 0
andn are always positive.

An interval ( πk . . . π j ) of π is an ordered set of
consecutive elements ofπ . When the set of (unsigned)
elements{πk, . . . , π j } is a set of consecutive integers, the
pair of indices[k, j] is said to be acommon interval (with
the identity permutation). For example, in the permutation

π = ( 0 − 2 − 4 3 1 5),

the unsigned elements of the interval( −2 −4 3 ) can be
reordered as{2, 3, 4}, thus[1, 3] is a common interval of
π .

When elementsi and i + 1 have opposite signs, it is
always possible to create a consecutive pair

i i + 1 or − (i + 1) − i

in the permutation with a single reversal. These reversals
are the basic operations in the sorting problem.

Unfortunately, some of these reversals are not safe. For
example, the reversal of elements( −2 −4 ) in the
permutationπ = ( 0 −2 −4 3 1 5 ) creates a
positive permutation and no subsequent reversal can form
aconsecutive pair.

A characterization of safe reversals is given by the
following theorem:

THEOREM 1 (HANNENHALLI AND PEVZNER, 1999).
A reversal that creates a consecutive pair is safe if it does
not create new unoriented connected components in the
overlap graph.

The purpose of the next sections is to give an ele-
mentary definition of unoriented connected components
of the overlap graph, enabling us to detect and analyze
these components directly on the permutation, without
constructing the overlap graph, or traversing its vertices.
But, first, we present a detailed example of the process of
sorting a signed permutation.

AN INFORMAL APPROACH TO SORTING
Most permuations, especially those coming from biolog-
ical data, can be optimally sorted with simple tools. As
an illustration of this fact, we solve in this section a non-
trivial sorting problem. We also use the opportunity to
present in an informal way the structures that are formal-
ized in the following sections. The running example has
respectable size for good reason: small permutations are
often bad indicators of the behavior of large ones with re-
spect to sorting.

Consider the permutation:

0 -2 3 -4 6 5 7 -8 -9 10 1 11 16 -15 13 -14 -12 17

It is not clear, at first sight, how to optimally sort it.
However, a basic observation is that most problems,
like this one, can be decomposed into independent sub-
problems. The following diagram outlines five blocks in
the permutation.

0 -2 3 -4 6 5 7 -8 -9 10 1 11 16 -15 13 -14 -12 17

Each block contains a set of consecutive (unsigned)
elements, the smallest and greatest being at the ends of
the blocks. Both values are positive if the smallest is at the
left, and both are negative otherwise.

If two blocks are consecutive, as in

0 -2 3 -4 6 5 7 -8 -9 10 1 11 16 -15 13 -14 -12 17

then it is easy to see that sorting the left block can be done
independently of the right one. If one block is contained
in the other, as in

0 -2 3 -4 6 5 7 -8 -9 10 1 11 16 -15 13 -14 -12 17

the same remark applies, in the sense that the inner block
can be treated as a unit, here the integers from−15 to−12,
from the point of view of the outer block.

In the context of the sorting by reversal problem,
each block corresponds to a connected component of the
permutation. Aneasy-to-sort block is a block that contains
both positive and negative elements, taking each inner
block as a unit, and assigning to it the sign of its endpoints.
For example, the following sequence of two reversals,
indicated by bold underlines, sorts the block between−15
and−12 in decreasing order:
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0 -2 3 -4 6 5 7 -8 -9 10 1 11 16 -15 13 -14 -12 17

0 -2 3 -4 6 5 7 -8 -9 10 1 11 16 -15 14 -13 -12 17

0 -2 3 -4 6 5 7 -8 -9 10 1 11 16 -15 -14 -13 -12 17

Once the inner block is sorted, one can sort the outer
block, this time in ascending order. Note that reversals
applied to the outer block treat the inner block as a single
unit: there is no need to break it. Moreover, remark that the
inner block could have been sorted after the outer block.
0 -2 3 -4 6 5 7 -8 -9 10 1 11 16 -15 -14 -13 -12 17

0 -2 3 -4 6 5 7 -8 -9 10 1 11 12 13 14 15 -16 17

0 -2 3 -4 6 5 7 -8 -9 10 1 11 12 13 14 15 16 17

We now turn to the first part of the permutation, and
consider the block:
0 -2 3 -4 6 5 7 -8 -9 10 1 11 12 13 14 15 16 17

It is tempting to reverse the element−4, since it would
create the adjacency(3 4), but it would also create an
unsorted block with only positive elements, that is, a
hard-to-sort block. It is fortunately possible to avoid this
situation by considering an alternative strategy:

0 -2 3 -4 6 5 7 -8 -9 10 1 11 12 13 14 15 16 17

0 -2 3 -6 4 5 7 -8 -9 10 1 11 12 13 14 15 16 17

0 -2 3 -5 -4 6 7 -8 -9 10 1 11 12 13 14 15 16 17

0 -2 3 4 5 6 7 -8 -9 10 1 11 12 13 14 15 16 17

The next block is sorted with two simple reversals:

0 -2 3 4 5 6 7 -8 -9 10 1 11 12 13 14 15 16 17

0 -2 3 4 5 6 7 8 -9 10 1 11 12 13 14 15 16 17

0 -2 3 4 5 6 7 8 9 10 1 11 12 13 14 15 16 17

The two preceding blocks were inner blocks of a larger
one:

0 -2 3 4 5 6 7 8 9 10 1 11 12 13 14 15 16 17

which can be sorted with three reversals (left as an
exercise). The original permutation can thus be sorted in
12 reversals, and, since each of the reversals created at

least one adjacency, the theory guarantees that this number
is optimal.

CONNECTED COMPONENTS OF A SIGNED
PERMUTATION
We now formally define, among others, the termsblock
(framed common interval), easy-to-sort (oriented), and
hard-to-sort (unoriented) from the previous section.

Elementary reversals
Our first definition generalizes the notion of reversals that
create consecutive pairs to any pair of elementsi andi +1
of the permutation.

DEFINITION 1. Let π = (0 π1 π2 . . . πn−1 n) be
a signed permutation. To each element i , 0 ≤ i < n,
we associate the elementary reversalri consisting of the
interval from i to i + 1, excluding:

i if it is positive and precedes i + 1,
or negative and succeeds i + 1, and

i+1 if it is negative and precedes i ,
or positive and succeeds i .

Note that an excluded endpoint happens to be ‘well
ordered’ with respect to the other. For example, if

π = ( 0 − 6 3 − 4 5 2 − 1 7 9 8 10)

then
r0 = ( −6 3 − 4 5 2 − 1 )

in which 0 has been removed, since the endpoint 0
precedes 1, and 0 is positive. In the same way,

r1 = ( 2 )

r2 = ( 3 − 4 5 2)

etc.

When elementsi and i + 1 have opposite signs, the
reversalri is said to beoriented, otherwise it isunoriented.
An elementary reversal can also be empty, when the
corresponding pair is consecutive.

The following definition is crucial, and will provide the
link with the Hannenhalli-Pevzner theory.

DEFINITION 2. An elementary reversal ri overlapsan-
other elementary reversal r j if ri contains either j or j+1,
but not both.

For example, in

π = ( 0 − 6 3 − 4 5 2 − 1 7 9 8 10),

we have
r1 = ( 2 )

r2 = ( 3 − 4 5 2).
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The reversalr1 overlapsr2, since it contains the element 2
but not 3, andr2 overlapsr1, since it contains the element
2, but not 1.

An easy consequence of this definition is that, ifri
overlapsr j , then performingri will change the orientation
of r j , since only one endpoint ofr j will change sign. In
the above example,r2 is unoriented, but after performing
r1, it is oriented:( 3 −4 5 −2 ).

The overlap relation also turns out—conveniently—to
be symmetric:

PROPOSITION 1. ri overlaps r j if and only if r j over-
laps ri .

PROOF. Suppose thatri contains one endpoint, sayj ,
of r j . If j is different fromi andi + 1, then the intervalr j
will certainly contain one endpoint ofri .

The interesting cases occur when eitherj = i + 1 or
i = j + 1. Consider the first case; the other one can
be proved in a similar way. Suppose that we have three
elements,i , i + 1, andi + 2. If in the permutationi + 1
lies betweeni andi + 2, then, from the assumption thatri
containsi +1, it follows that alsori+1 containsi +1, thus
ri+1 contains one endpoint ofri .

If in the permutation bothi and i + 2 lie on the same
side ofi + 1, thenri containsi + 1 if and only ifri+1 does
not containi + 1. If ri containsi + 1 and noti + 2, the
elementi +2 must be farther fromi +1 thani is, thusri+1
containsi . �

DEFINITION 3. A connected componentof a permuta-
tion is a connected component of the graph of the overlap
relation.

The overlap relation of Definition 2 is similar to the arc
overlap relation of the usual Hannenhalli-Pevzner theory
(see Kaplanet al. (1999) for example), but defined on
the original intervals of the permutation and not on the
corresponding unsigned permutation on 2n points. The
two relations yield isomorphic graphs: indeed, in the arc
overlap graph each vertex corresponds to a reversal, and
two reversals are connected if and only if performing one
modifies the orientation of the other.

The advantages of defining the overlap relation on
the intervals of the original permutation will reside
in the possibility to detect and analyze the connected
components by direct inspection of the permutation.

EXAMPLE 1. In the permutation

( 0 −6 3 −4 5 2 −1 7 9 8 10)

r0r6 r8

r2 r7 r9

r5 r1

r3r4

we underlined the elementary reversals. There are four
connected components:

{r0, r6}, {r1, r2, r5}, {r3, r4}, {r7, r8, r9}.
How one finds them, apart working from scratch from the
definition, is not immediately clear. But it should be trivial
by the end of the next section.

Spans of connected components
The span of a connected componentC is the minimal
interval containing the elementary reversals ofC . In
Example 1, the span of{r1, r2, r5} is ( 3 −4 5 2 ). Note
here that the span of this component is a common interval,
in the permutation framed by its extremal elements 1
and 6. We will show that this feature characterizes the
connected components.

DEFINITION 4. A framed common interval F in a
signed permutation is an interval of the form:

( m πk . . . π j M )

or ( −M πk . . . π j −m ),

such that:

1. The values m and M are respectively the minimum
and maximum of the elements of F;

2. [k − 1, j + 1] is a common interval;

3. F is not the union of shorter intervals with the above
two properties.

The interval( πk . . . π j ) is called theinterior of the
framed common interval. We have the following theorem:

THEOREM 2. An interval is a framed common interval
if and only if its interior is the span of a connected
component.

PROOF. We first remark that any elementary reversal
included in a framed common intervalF cannot contain
the endpoints of the interval. Indeed, bothrm and rM−1
are included inF and do not containm or M , and since the
interior of F is a common interval, for any other element
i , m < i < M − 1, i + 1 is in the interior ofF . Thus, any
connected component lies completely within any framed
common interval.

Suppose thatI = ( πk . . . π j ) is the span of a
connected componentC . If the span is empty, the result
holds trivially. Otherwise, by definition, there is at least
one reversalr in C that containsπk , and one reversalr ′
that containsπ j . Moreover, no elementary reversal can
contain one element in( πk . . . π j ), and one outside, since
it would overlap eitherr or r ′.

If i is an element ofI , thenri andri−1 are also included
in this interval. Otherwise,ri , for example, would be
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disjoint from I , implying thati = πk or i = π j , and either
r or r ′ overlapsri .

Thus, bothi − 1 and i + 1 are in the intervalI ′ =
( πk−1 . . . π j+1 ), implying thatπk−1 andπ j+1 are the
extremal elements of the interval, and that[k−1, j+1] is a
common interval. Sinceπk−1 andπ j+1 are not in the span
of C , they are respectively equal to eitherm andM , or to
−M and−m. Finally, I ′ cannot be the union of shorter
framed common intervals since a connected component
must lie within any framed common interval.

On the other hand, ifF = (m . . . M) is a framed
common interval, then the span of the component ofrm is
framed by(m . . . M ′), with M ′ ≤ M . But if M ′ < M , then
the interval(M . . . M ′) is a common interval that begins
with its minimal value and ends with its maximal value,
andF = (m . . . M ′) ∪ (M ′ . . . M).

The case(−M . . . − m) is treated similarly. �

EXAMPLE 1 (CONT’ D). Consider again the permuta-
tion

π = ( 0 − 6 3 − 4 5 2 − 1 7 9 8 10).

Framed common intervals are easily identified as
(0 . . . 7), (−6 . . . − 1), (3 . . . 5), and (7 . . . 10). The
interval (0 . . . 10) is not considered because it is the union
of (0 . . . 7) and (7 . . . 10). Each of these intervals outlines
a connected component whose reversals can be readily
identified.

Oriented components
Inclusion of span induces a partial order on the non-trivial
connected components. A componentC contains a non-
empty elementary reversalr if r is included in the span of
C , but not in the span of components smaller thanC .

DEFINITION 5. A connected component with non-
empty span is orientedif it contains at least one oriented
elementary reversal, otherwise, it is unoriented.

Define theelements of a connected component as the set
of endpoints of the elementary reversals it contains. In the
permutation

π = ( 0 − 6 3 − 4 5 2 − 1 7 9 8 10),

for example, the connected component{r0, r6} has
elements 0,−6, −1, and 7. The connected component
{r7, r8, r9} has elements 7, 9, 8, and 10.

The following proposition will allow easy identification
of oriented and unoriented components.

PROPOSITION 2. A connected component is unoriented
if and only if all its elements have the same sign in the
permutation.

PROOF. Clearly, if a component is oriented, its elements
do not have the same sign. Consider the case of an
unoriented componentC with m and M as extremal
(unsigned) values. Bothm and M are elements of the
connected component sincerm and rM−1 belong to the
component. The elements ofC are all the integers fromm
to M , with ‘gaps’ corresponding to spans of components
smaller thanC . Since the two framing elements of these
smaller connected components have the same sign, any
change of sign in the ordered sequence of elements ofC
must occur within this sequence. �

A LINEAR TIME ALGORITHM TO DETECT
UNORIENTED COMPONENTS
The goal of this section is to develop a linear time algo-
rithm to identify the (un)oriented connected components
of a permutation using the characterization of Theorem 2.
Its basic principle is quite simple, but the general case re-
quires a little care. For reasons of clarity, we will begin
with the case of positive permutations.

Connected components of positive permutations
Our first algorithm identifies framed common intervals
in a positive permutation. It is based on the following
property:

LEMMA 1. If F = ( m πk . . . π j M ) is a framed
common interval of a positive permutation, then each πi ,
k ≤ i ≤ j , has either a smaller element following it in the
interior of F, or a greater element preceding it.

PROOF. If all elements smaller thanπi come be-
fore πi , and all elements greater come after, then both
(m . . . πi ) and(πi . . . M) are framed common intervals,
and(m . . . M) is the union of the two. �

In order to use Lemma 1, we need to be able to refer
to greater elements preceding a given element. Therefore
defineMi to be the nearest element of the permutation that
precedesπi and is greater thanπi (setMi to n, if such an
element does not exists). The basic algorithm to find the
span of connected components in a positive permutation
has the following structure:

Algorithm 1
S is a stack that contains the index 0. The top ofS is always
denoted bys.
For i from 1 ton do

1. While (πi < πs or πi > Ms)
Unstack the top index from S

2. Test whether the interval[s, i] is a framed common
interval.

3. Stack the indexi .

Before discussing how to perform the test in line 2, we
argue that all framed common intervals will eventually be
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tested. Indeed, if(πs . . . π j ) is a framed common interval,
then:

PROPOSITION 3. The index s will not be unstacked
before j is stacked.

PROOF. Any element betweenπs andπ j is greater than
πs , sinceπs is the minimum value of the common interval.

Any element betweenπs and π j is smaller thanMs ,
since Ms must be at least greater thanπ j (remember
that all elements betweenπs and π j follow πs in the
permutation).

Thus, no element betweenπs andπ j can unstacks. �

PROPOSITION 4. All indices between s and j are
eventually unstacked before j is stacked.

PROOF. Let i be betweens and j . By Lemma 1,πi has
either a smaller element following it, or a greater element
preceding it in the interval betweens and i . In the first
case, the first such element will unstacki . In the second
case, sinceMi is smaller thanπ j , if i stays in the stack up
to the end,π j will unstack it. �

We now turn to the problem of testing whether the
interval [s, i] is a framed common interval. The first
elementary test is to count the number of elements
between these two indices. Indeed, a necessary condition
for [s, i] to be a framed common interval is:

πi − πs = i − s.

If s is the top of the stack, then all elements in the
interval[s +1, i] are greater thanπs . One must also check
if only values smaller thanπi are in the interval. This
is done by keeping track of the maximal element that
occurred between two consecutive stacked indices. The
implementation is rather straightforward and details can
be found in the Appendix.

Finally, in order to complete the analysis of the algo-
rithm, we must show how to compute efficiently the values
Mi used in the main loop.

Algorithm 2
S is a stack that contains the valuen. The top ofS is always
denoted bys.
M0 ← n
For i from 1 ton do

If πi−1 > πi
Mi ← πi−1
Stack the valueπi−1

Else
While s < πi

Unstack the top element from S
Mi ← s

The correctness of this algorithm is based on the
following remark. If Mi = πk , then Mi is greater than
all values in the interval( πk+1 . . . πi ), implying thatMi
will be stacked when readingπk+1, and that no value in
the interval can unstackMi . But πi will unstack all values
in the interval, given the chance. The same argument holds
for Mi = n, by settingk = 0.

The results of this section are summarized by:

THEOREM 3. All framed common intervals of a positive
permutation can be found with Algorithms 1 and 2 in O(n)

time and space.

Connected components of signed permutations
Wecan now adapt the algorithms of the preceding section
to the problem of identifying connected components of
signed permutations. For components framed by positive
elements(m . . . M), a simple variant of Algorithm 1
will do. Indeed, if π is a signed permutation, andπ+
its unsigned version, any framed common interval with
positive endpoints ofπ is the union of framed common
intervals ofπ+. The idea is to use Algorithm 1 onπ+,
but avoid stacking negative elements. In order to show
that this indeed works, we first state a modified version
of Lemma 1:

LEMMA 2. If F = ( m πk . . . π j M ) is a framed
common interval of a signed permutation, then each πi ,
k ≤ i ≤ j , has either a smaller element following it in the
interior of F, or a greater element preceding it, or πi is
negative.

The proof is similar to the proof of Lemma 1 and
highlights the possible problem with signed permutations.
For example, the permutationπ = (0 2 1 −3 4) has only
one component. Its span is(0 2 1 −3 4). The unsigned
version ofπ has two connected components whose framed
spans are(0 2 1 3) and(3 4).

Using Lemma 2, it is possible to show the equivalents of
Propositions 3 and 4, remembering that negative elements
are not stacked, but that their absolute values can be used
to unstack elements.

Identifying components that are framed by−M and−m
can be done by reversingπ , except for its endpoints 0
and n, and applying the above algorithm. It can also be
done by ‘reversing’ the algorithm. This latter possibility,
implemented in the code given in the Appendix, allows
the detection of components in a single pass on the
permutation, using four stacks.

Wehave also the equivalent of Theorem 3:

THEOREM 4. All framed common intervals of a signed
permutation can be found with the modified versions of
Algorithms 1 and 2 in O(n) time and space.

S59



A.Bergeron et al.

Finally, the problem of detecting if all elements of a
component have the same sign can be done with an ap-
propriate marking of the top of the stack, without affect-
ing the running time. Here is the version for components
with span(m . . . M). In this case, the component will be
unoriented if all the negative elements in the interval are
properly ‘shielded’ by the positive frames of smaller com-
ponents. A suitable way to mark the top of the stack is
(with the notation of Algorithm 1):

1. If πi is negative, mark the top of the stack.

2. If a marked element is removed from the stack, mark
the new top of the stack.

3. If [s, i] is a connected component, unmarks, the top
of the stack.

This is also implemented in the code of the Appendix.

COMPUTING THE REVERSAL DISTANCE
Having an efficient algorithm for the detection of
unoriented components, we can now delineate the com-
plete algorithm to compute the reversal distance in linear
time.

In (Hannenhalli and Pevzner, 1999), the minimal num-
ber of reversalsd(π) necessary to sort a permutationπ =
(0 π1 π2 . . . πn−1 n) is shown to be equal to:

d(π) = n − c + h + f,

where c is the number ofcycles, h is the number of
hurdles, and f is a correction factor equal to 1 or
0 according to whetherπ is a fortress or not. We
recall the definitions of these parameters in the following
paragraphs.

Consider the set of unoriented components of a permuta-
tion that have more than two elements. These components
are partially ordered by span inclusion. Each minimal el-
ement of this order is ahurdle. In addition, the maximal
element is a hurdle if it exists, and if none of its elements
lies between two hurdles.

For example, the permutation of Figure 1, in which
all spans of unoriented components are boxed, has two
hurdles. There are three unoriented components, and two
of them are hurdles: the minimal one, whose elements
are {4, 6, 5, 7}, and the maximal one, whose elements
are {0, 2, 8, 1, 9}. The permutation of Figure 2 also has
three components and two hurdles. However, the maximal
element is not a hurdle since it has elements between the
two minimal components.

If one sorts the elements of a hurdle, it is eliminated.
A super-hurdle is a hurdle whose elimination does not di-
minish the number of hurdles in the resulting permutation.
For example, if one sorts the hurdle(4 6 5 7) in the per-
mutation of Figure 1, the resulting permutation has still
two hurdles.

0 2 4 6 5 7 3 8 1 9

Fig. 1. A permutation with two hurdles.

0 7 9 8 10 2 1 3 5 4 6 11

Fig. 2. Another permutation with two hurdles.

A fortress is a permutation that has an odd number of
hurdles, all of which are super-hurdles.

Finally, two elementary reversals arelinked if they are
consecutive, or if one is a prefix or suffix of the other. A
cycle is a closed chain of linked reversals, and they are
easily enumerable.

Applying all these definitions to the permutation of
Example 1:

( 0 −6 3 −4 5 2 −1 7 9 8 10)

r0r6 r8

r2 r7 r9

r5 r1

r3r4

we getn = 10,c = 4, h = 1, and f = 0. Thusd(π) = 7.
The main problem in computing the reversal distance

is thus the classification of unoriented components as
hurdles, super-hurdles, and non-hurdles. Identifying hur-
dles and super-hurdles that are minimal elements is easy.
Indeed, the algorithm given in the Appendix enumerates
the components from left to right, for components whose
spans are not included into one another, and from inner
components to outer components, for components whose
spans are nested.

An unoriented componentU is a hurdle if it is the first
one to be identified by the algorithm, or if its span does not
contain the span of the previous unoriented component.
If the permutation has only one minimal hurdle, then the
maximal unoriented component, if it exists, will also be a
hurdle.

For hurdles that are minimal elements, a simple way
to decide if they are super-hurdles is to test whether
their immediate ancestor in the partial order contains
only one oriented component. As noted for example by
Hannenhalli and Pevzner (1999) and Kaplanet al. (1999),
by considering the circular order on the interval[0 . . . n],
the maximal hurdle, if it exists, becomes a minimal
element if the elements of the permutation are shifted such
that the element 0 lies within any other hurdle.

Identifying hurdles as super-hurdles is relevant only
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when the permutation has at least three hurdles. A hurdle
U is a super-hurdle if the span of the following unoriented
component contains the span ofU and does not contain
the span of the hurdle precedingU .

In order to test whether the maximal component is a
hurdle or a super-hurdle, we apply the algorithm of the
Appendix to the shifted elements of the permutation, using
an element of the last minimal hurdle as the new element
0.

CONCLUSIONS
This paper focused on the detection of oriented and un-
oriented connected components of a signed permutation,
using a characterization of these components in terms of
common intervals that can be applied directly to the per-
mutation. We showed that connected components can be
identified without the usual constructions of the positive
permutation on 2n points, or the overlap graph.

Using the definition of connected components as com-
mon intervals, we were able to deduce an elementary lin-
ear time algorithm to identify the oriented and unoriented
components. This algorithm can be used to test whether a
reversal is safe without actually performing the reversal.
Indeed, since the effect of a reversal is to change the order
of a block of elements, a simple function of the indices can
simulate the reversed permutation.

Finally, we have also shown how the algorithm has to
be extended in order to compute the reversal distance of a
signed permutation in linear time.
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APPENDIX
The following algorithm uses four stacks to implement
the detection of oriented and unoriented components in
a signed permutation. Arrayspi[0..n] andsi[0..n]
are given as input and store, respectively, the elements
and the signs of the permutation. The algorithm prints
the annotated list of the positions of the connected
components of the permutation.
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EMPTYSTACK(M1); PUSH(M1,n);
EMPTYSTACK(M2); PUSH(M2,0);
EMPTYSTACK(S1); PUSH(S1,0);
EMPTYSTACK(S2); PUSH(S2,0);

M[0] = n;
m[0] = 0;
max[0] = 0;
min[0] = n;
mark1[0] = FALSE;
mark2[0] = FALSE;

for(i=1; i<=n; i++) {

//Compute the M_i
if(pi[i-1] > pi[i]) {
M[i] = pi[i-1];
PUSH(M1,pi[i-1]);

}
else {
while(TOP(M1) < pi[i])
POP(M1);

M[i] = TOP(M1);
}

//Find connected components of type (m ... M)
while(pi[i]<pi[(s=TOP(S1))] || pi[i]>M[s]) {
POP(S1);
max[TOP(S1)] = MAX(max[TOP(S1)],max[s]);
mark1[TOP(S1)] |= mark1[s];

}
if(si[i]==PLUS && pi[i]==max[(s=TOP(S1))]+1 && i-s==pi[i]-pi[s] && i-s>1) {
if(mark1[s] == FALSE)
printf("[%d,%d] (unoriented, plus)\n",s,i);

else
printf("[%d,%d] (oriented, plus)\n",s,i);

mark1[TOP(S1)] = FALSE;
}
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// And now the "reverse" algorithm

//Compute the m_i
if(pi[i-1] < pi[i]) {
m[i] = pi[i-1];
PUSH(M2,pi[i-1]);

}
else {
while(TOP(M2) > pi[i])
POP(M2);

m[i] = TOP(M2);
}

//Find connected components of type (-M ... -m)
while((pi[i]>pi[(s=TOP(S2))] || pi[i]<m[s]) && s>0) {
POP(S2);
min[TOP(S2)] = MIN(min[TOP(S2)],min[s]);
mark2[TOP(S2)] |= mark2[s];

}
if(si[i]==MINUS && pi[i]==min[(s=TOP(S2))]-1 && i-s==pi[s]-pi[i] && i-s>1) {
if(mark2[s] == FALSE)
printf("[%d,%d] (unoriented, minus)\n",s,i);

else
printf("[%d,%d] (oriented, minus)\n",s,i);

mark2[TOP(S2)] = FALSE;
}

//Update stacks and marks
if(si[i] == PLUS)
PUSH(S1,i);

else
PUSH(S2,i);

max[i] = pi[i];
min[TOP(S2)] = MIN(min[TOP(S2)],pi[i]);
min[i] = pi[i];
max[TOP(S1)] = MAX(max[TOP(S1)],pi[i]);
mark1[TOP(S1)] = si[i]==MINUS;
mark2[TOP(S2)] = si[i]==PLUS;

}
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