Common intervals and sorting by reversals: a
marriage of necessity

A. Bergeron' 2 S. Heber?® and J. Stoye*

"LaCIM, Université du Québec a Montréal, Canada, ©Institut Gaspard-Monge,
Université Marne-la-Vallée, France, 3Department of Computer Science and
Engineering, University of California, San Diego, USA and *AG Genominformatik,
Technische Fakultét, Universitét Bielefeld, Postfach 100131, 33501 Bielefeld,
Germany

Received on April 8, 2002; accepted on June 15, 2002

ABSTRACT the chromosomes—, each gene having an orientation
This paper revisits the problem of sorting by reversals given by its location on the DNA double strand. Different
with tools developed in the context of detecting common species often share similar genes that were inherited
intervals. Mixing the two approaches yields new definitions from common ancestors. However, these genes have
and algorithms for the reversal distance computations, that ~ been shuffled by mutations that modified the content
apply directly on the original permutation. of chromosomes, the order of genes within a particular

Traditional constructions such as recasting the signed =~ chromosome, and/or the orientation of a gene. Comparing
permutation as a positive permutation, or traversing the two sets of similar genes appearing along a chromosome
overlap graph to analyze its connected components, are in two different species yields a (signed) permutation.
replaced by elementary definitions in terms of intervals of It is widely accepted that the reversal distance of this
the permutation. This yields simple linear time algorithms ~ permutation provides a good estimate of the evolutionary
that identify the essential features in a single pass over distance between the two species.

the permutation and use only simple data structures like Computing the reversal distance, or deciding whether a
arrays and stacks. reversal is safe, traditionally requires to recast the signed
Contact: stoye@TechFak.Uni-Bielefeld.DE permutation as an unsigned permutation nfe2ements,
and to construct a graph, called thverlap graph (Bafna
INTRODUCTION and Pevzner, 1996; Hannenhalli and Pevzner, 1999).
Let = be a permutation of the integers between 1 and Connected components and cycles of this graph play a
which are provided with a plus or minus sign, crucial role in the sorting by reversal problem. _In this
paper, we show that it is possible to bypass entirely the
T = (T 72...7Tn). construction of the overlap graph. We characterize its

sl o D) i . h he bl I(essential features in terms of subsets of elements of the
A reversal p(i, |) Is an operation that reverses the block igneq permutation, using tools borrowed from the algebra

of consecutive elements frommo j in «r, while changing ¢ common intervals (Uno and Yagiura, 2000; Heber and
their signs. Theeversal distance d(;r) is the minimum Stoye, 2001).

number of reversals that transform into the identity

permutation With this approach, we were able to derive elementary

linear time algorithms to solve problems involving rever-
12..n. sal distance computations: the detection of unoriented
A safe reversalp for the permutationr is a reversal connected components and the reversal distance compu-
such thad(px) =d(w) — 1. Finding a sequence dfixr) tation. All these algorithms make a single ‘pass’ on the
safe reversals is called ttserting by reversal problem. elements of the permutation, using stacks to record impor-
Its solutions are far from unique (Siepel, 2002; Bergerortant features. Analyzing, for example, the potential effects
et al., 2002), but elementary methods to approach thiof a reversap(i, j) on the structure of a permutation can
problem are still scarce. be done directly on the original permutatien without
Permutations, and the reversal operation, are useful tooksctually performing the reversal.
in the comparative study of genomes (Sankoff, 1992). These algorithms can be particularly useful in applica-
The genome of a species can be thought of as a set @ibns such as the reversal median problem (Siepel, 2002),
ordered sequences of genes—the ordering devices beimghere huge numbers of optimal sequences of reversals sat-

S54

praktikum2-ub
Rechteck

praktikum2-ub
Rechteck

praktikum2-ub
Rechteck

Common intervals and sorting by reversals: a marriage of necessity

isfying secondary constraints are tested. In such applica- The purpose of the next sections is to give an ele-
tions, the detection of safe reversals turns out to be thmentary definition of unoriented connected components
bottleneck of the procedures, even when using linear timef the overlap graph, enabling us to detect and analyze
algorithms (Badeet al., 2001). Indeed, any algorithm that these components directly on the permutation, without
operates on the overlap graph must first perform the candeonstructing the overlap graph, or traversing its vertices.
date reversal, update the graph accordingly, and then und8ut, first, we present a detailed example of the process of
its work in order to test another candidate. sorting a signed permutation.
Finally, let's mention that the relations between the
sorting problem and common intervals made a firstaAN INEORMAL APPROACH TO SORTING
S}F/)plg:;?gncgt aJW't(q%%tgt)elerﬂt trr?ee:tg)yn Igértgsrc?rt:%ggj(;i) Most permuations, especially those coming from biolog-
CaT) ' ical data, can be optimally sorted with simple tools. As
as alternate definitions of hurdles. The present paper

constitutes, to the best of our knowledge, the first completfn lllustration of this fact, we solve in this section a non-

treatment of all connected components of the overla rivial sorting .problem. We also use the opportunity to
raph in terms of common intervals present in an informal way the structures that are formal-
grap ' ized in the following sections. The running example has
BACKGROUND respectab!e size for good reason: small permutations are
)))) often bad indicators of the behavior of large ones with re-
As usual, we will consider signed permutations framed byspect to sorting.

0 andn: (0) Consider the permutation:
T = TLT2...Tn—1 N).

An element i of the permutation is an unsigned integer

between 0 anah, and each element has a sign,or —.

The positive Signt may be omltted._ Note that signs are However, a basic observation is that most problems,

only used to partition the elements in two subsets, and d e this one, can be decomposed into independent sub-

gﬁgﬁa;g gﬁ;;:;i;ﬁﬁgtwe properties. By convention, 0problems. The following diagram outlines five blocks in

An interval (mg...wj) of m is an ordered set of ihe permutation.

consecutive elements af. When the set of (unsigned)
elementyny, ..., j} is a set of consecutive integers, the |° ~2 ! ‘11 16 1 ‘
pair of indicegk, j] is said to be @ommon interval (with

the identity permutation). For example, in the permutation Each block contains a set of consecutive (unsigned)
elements, the smallest and greatest being at the ends of

m=(0-2-4315), the blocks. Both values are positive if the smallest is at the

the unsigned elements of the interyat2 —4 3)canbe [€ft, and both are negative otherwise.
reordered a$2, 3, 4}, thus[1, 3] is a common interval of |f two blocks are consecutive, as in

TT. 0 -2|3-465 E -8 -9 10|1 11 16 -15 13 -14 -12 17
When elements andi + 1 have opposite signs, it is

always possible to create a consecutive pair then it is easy to see that sorting the left block can be done
i i+1 or —(i+1) —i !ndependently c_Jf the right one. If one block is contained
in the other, asin
in the permutation with a single reversal. These reversals

:) ;) 0 -23-4657-8-910 1|11 16[-15 13 -14 -12]17
are the basic operations in the sorting problem.

Unfortunately, some of these reversals are not safe. F

example,.the reversal of elements—2 4) in the can be treated as a unit, here the integers frdiG to—12,
permutationr = (0 -2 —4 3 1 5) creates a . .
. . from the point of view of the outer block.
positive permutation and no subsequent reversal can form .
In the context of the sorting by reversal problem,

aconsecutive pair.
L . each block corresponds to a connected component of the
A characterization of safe reversals is given by the : . i
:) permutation. Areasy-to-sort block is a block that contains
following theorem: o . . .
both positive and negative elements, taking each inner
THEOREM1 (HANNENHALLI AND PEVZNER, 1999). block as a unit, and assigning to it the sign of its endpoints.
A reversal that creates a consecutive pair issafeif it does For example, the following sequence of two reversals,
not create new unoriented connected components in the indicated by bold underlines, sorts the block betwed®

overlap graph. and—12 in decreasing order:

0-23-4657-8-9101 11 16 -15 13 -14 -12 17

It is not clear, at first sight, how to optimally sort it.

e same remark applies, in the sense that the inner block

S55

A.Bergeron et al.

--------------------- least one adjacency, the theory guarantees that this number

0-23-4657-8-910 1'11 16|-15 13 -14 -12|17 ! . .
! ! is optimal.

0-23-4657-8-910111 16[-16 14 -13 -12]17 | CONNECTED COMPONENTS OF A SIGNED

. PERMUTATION

—————————————————————

0-23-4657-6-9101,11 16 17 We now formally define, among others, the terisisck

_____________________ (framed common interval), easy-to-sort (oriented), and

Once the inner block is sorted, one can sort the outehard-to-sort (unoriented) from the previous section.
block, this time in ascending order. Note that reversals

applied to the outer block treat the inner block as a singlé&elementary reversals

unit: there is no need to break it. Moreover, remark that theyyr first definition generalizes the notion of reversals that
inner block could have been sorted after the outer block. create consecutive pairs to any pair of elemémtsdi + 1

——————————————

0-23-4657-8-910 1|11 16 -15 -14 -13 -12,17 of the permutation.

---------- DEFINITION 1. Let 7w = (0 7y mo...mn_1 N) be
0-23-4657-8-9101|11,12 13 14 15 -16 17
—————————— a signed permutation. To each element i, 0 < i < n,

we associate the elementary reversal consisting of the

0-23-4657-8-910 111,12 13 14 15,16 17 interval fromi toi + 1, excluding:
We now turn to the first part of the permutation, and [if it ispositive and precedesi + 1,
consider the block: or negative and succeedsi + 1, and

i+1 ifitisnegative and precedesi
0-2|3-4657|-8-9101 11 12 13 14 15 16 17 ’
or positive and succeedsi.
It is tempting to reverse the element, since it would
create the adjacenc§8 4), but it would also create an
unsorted block with only positive elements, that is, a

hard-to-sort block. It is fortunately possible to avoid this 7=(0-63-452-179 8 10
situation by considering an alternative strategy:

Note that an excluded endpoint happens to be ‘well
ordered’ with respect to the other. For example, if

then
0-2(3-4657|-8-9101 11 12 13 14 15 16 17
— ro = (-63-452-1)
0-2|3 64578 -9 10 1 11 12 13 14 15 16 17 in which 0 has b_een r_e_moved, since the endpoint O
precedes 1, and 0 is positive. In the same way,
0-2|3-5-467|-8-9101 11 12 13 14 15 16 17 r — (2)
ro = (3-452)

0-2|134567|-8-9101 11 12 13 14 15 16 17 etc.

The next block is sorted with two simple reversals: When e]emt_anti and.i + 1 hawe o_ppo's.ite signs, bl
_________ reversat; is said to beoriented, otherwise it isunoriented.

0-23 _4_?_6_1 11 12 13 14 15 16 17 An elementary reversal can also be empty, when the
_________ - corresponding pair is consecutive.

0-213456[7;8 -9 10|1 11 12 13 14 15 16 17 The following definition is crucial, and will provide the
""""" — link with the Hannenhalli-Pevzner theory.

0-2!3456(|7!89 101 11 12 13 14 15 16 17
L DEFINITION 2. An elementary reversal r; overlapsan-

. . other elementary reversal r ifrj containseither j or j+1,
The two preceding blocks were inner blocks of a Iargerbut not both y 1o Jory+

one:

_________ For example, in

————————

0-2345 617:8 9 1011 11 (12 13 14 15 16 17
“““““ 7=(0-63-452-179 8 10),

which can be sorted with three reversals (left as an

exercise). The original permutation can thus be sorted ifve have

12 reversals, and, since each of the reversals created at = (2)
ro (3 -45 2).

S56

Common intervals and sorting by reversals: a marriage of necessity

The reversats overlapsry, since it contains the element 2 we underlined the elementary reversals. There are four
butnot 3, and, overlapsr1, since it contains the element connected components:
2, but not 1.

An easy consequence of this definition is thaty;if {ro.re}. {r1. r2. rs}, {rs, ra}, {r7. rs. ro}.
overlapsrj, then performing; will change the orientation
of rj, snce only one endpoint afj will change sign. In
the above example; is unoriented, but after performing
ri, itis aiented:(3 —4 5 —-2).

The overlap relation also turns out—conveniently—togpans of connected components
be symmetric:

How one finds them, apart working from scratch from the
definition, is not immediately clear. But it should betrivial
by the end of the next section.

The span of a connected compone@ is the minimal

PROPGSITION 1. r; overlapsrj if and only if rj over- interval containing the elementary reversals @©f In
lapsr;. Example 1, the span ¢fy,r2,r5}is(3 —4 5 2). Note
here that the span of this component is a common interval,
in the permutation framed by its extremal elements 1
and 6. We will show that this feature characterizes the
connected components.

PROOF Suppose thatj contains one endpoint, sgy
ofrj. If j is different fromi andi + 1, then the interval;
will certainly contain one endpoint of.

The interesting cases occur when eitliee= i + 1 or
i = | + 1. Consider the first case; the other one can DErINITION 4. A framed common interval F in a

be proved in a similar way. Suppose that we have thregigned permutation is an interval of the form:
elementsj, i + 1, andi + 2. If in the permutation + 1

lies between andi + 2, then, from the assumption that (m K .- TTj M)
containg + 1, it follows that alsaj ;1 containg + 1, thus oo (-M gng...m; —m),
ri+1 contains one endpoint of.)

If in the permutation both andi + 2 lie on the same Such that:
side ofi +1, thenr; contains + 1 if and only ifri ;1 does 1. The valuesm and M are respectively the minimum
not containi + 1. If rj containsi + 1 and noti + 2, the and maximum of the elements of F:
eleme_ni_—|-2 must be farther from+ 1 thani is, thusrj 1 2. [k =1, j + 1] isa common interval:
contains . O _ ' _ '

3. F isnot theunion of shorter intervalswith the above

. DEFINITION 3. A connected componenf a permuta- two properties.
tion is a connected component of the graph of the overlap
relation. The interval(mk...wj) is called theinterior of the

. L fram mmon interval. We have the following theorem:
The overlap relation of Definition 2 is similar to the arc amed common interval. We have the following theore

overlap relation of the usual Hannenhalli-Pevzner theory THEOREM 2. An interval is a framed common interval
(see Kaplaret al. (1999) for example), but defined on if and only if its interior is the span of a connected
the original intervals of the permutation and not on thecomponent.
corresponding unsigned permutation om [2oints. The
two relations yield isomorphic graphs: indeed, in the arc PROOF We first remark that any elementary reversal
overlap graph each vertex corresponds to a reversal, arlgcluded in a framed common intervél cannot contain
two reversals are connected if and only if performing onethe endpoints of the interval. Indeed, bath andru -1
modifies the orientation of the other. are included ir- and do not contaim or M, and since the
The advantages of defining the overlap relation orinterior of F is a common interval, for any other element
the intervals of the original permutation will reside i. M <i <M —1,i + 1lisinthe interior ofF. Thus, any
in the possibility to detect and analyze the connecte@onnected component lies completely within any framed

components by direct inspection of the permutation. common interval. .
) Suppose thal = (7x...7;) is the span of a
EXAMPLE 1. In the permutation connected compone. If the span is empty, the result
(0 -6 3 -4 52 -17 9 8 10) holds trivially. Otherwise, by definition, there is at least

one reversal in C that containstk, and one reversal’
that containsrj. Moreover, no elementary reversal can
2 r7 o contain one elementifry . .. j), and one outside, since
e e it wqu_ld overlap either orr’. _
- = If i is an element of, thenr; andrj_; are also included
rarga in this interval. Otherwiser, for example, would be

fofe rg

S57

A.Bergeron et al.

disjoint from1, implying thati = mx ori = mj, and either PrRooF Clearly, if acomponent is oriented, its elements

r orr’ overlapsr;. do not have the same sign. Consider the case of an
Thus, bothi — 1 andi + 1 are in the intervall’ = unoriented componen€ with m and M as extremal

(mk—1...7j41), implying thatmy_1 andrj,q are the (unsigned) values. Botm and M are elements of the

extremal elements of the interval, and thlet-1, j+1]isa connected component sincg andry_1 belong to the

common interval. Sincey_; andrj 1 are notin the span component. The elements Gfare all the integers frorm

of C, they are respectively equal to eitharandM, orto to M, with ‘gaps’ corresponding to spans of components

—M and —m. Finally, I” cannot be the union of shorter smaller thanC. Since the two framing elements of these

framed common intervals since a connected componergmaller connected components have the same sign, any

must lie within any framed common interval. change of sign in the ordered sequence of elemen& of
On the other hand, if = (m...M) is a framed must occur within this sequence. Il

common interval, then the span of the componemt;pis

framed by(m... M’),with M" < M. Butif M’ < M,then A LINEAR TIME ALGORITHM TO DETECT

the interval(M ... M’) is a common interval that begins UNORIENTED COMPONENTS

with its minimal value and ends with its maximal value, The goal of this section is to develop a linear time algo-

andF = (m...MH)UM"...M). rithm to identify the (un)oriented connected components

The cas¢—M ... —m) is treated similarly. D' of a permutation using the characterization of Theorem 2.
Its basic principle is quite simple, but the general case re-
quires a little care. For reasons of clarity, we will begin
with the case of positive permutations.

EXAMPLE 1 (CONT' D). Consider again the permuta-
tion

7=(0-63-452-1709810. Connected components of paositive permutations

Framed common intervals are easly identified as Our first algorithm identifies framed common intervals
(©...7), (=6... — 1), (3...5), and (7...10). The in a positive permutation. It is based on the following

interval (0. ..10) isnot considered becauseit istheunion ~ Property:
of (0...7)and (7...10). Each of these intervals outlines LEMMA 1. If F = (m m...7; M)isa framed

a connected component whose reversals can be readily common interval of a positive permutation, then each i,

identified. k <i < |j, haseither a smaller element following it in the

Oriented components interior of F, or a greater element preceding it.

Inclusion of span induces a partial order on the non-trivial PROOF. If all elements smaller thamrj come be-
connected components. A compon€htontains a non- fore mj, and all elements greater come after, then both
empty elementary reversalf r is included in the span of (M...7) and(z; ... M) are framed common intervals,
C, but not in the span of components smaller tiZan and(m... M) is the union of the two. O

In order to use Lemma 1, we need to be able to refer
to greater elements preceding a given element. Therefore
defineM; to be the nearest element of the permutation that
precedesr; and is greater tham; (setM; to n, if such an

of endpoints of the elementary reversals it contains. In théPan of connected components in a positive permutation

DEFINITION 5. A connected component with non-
empty span is orientedif it contains at least one oriented
elementary reversal, otherwise, it is unoriented

permutation has the following structure:
Algorithm 1
T=(0-63-452-1798 10, Sis a stack that contains the index 0. The tofséf always
denoted bys.

for example, the connected componefrp,rg} has
elements 0,—6, —1, and 7. The connected componen
{r7,rg, ro} has elements 7, 9, 8, and 10.

The following proposition will allow easy identification
of oriented and unoriented components.

tFori from 1 ton do
1. While (z; < 75 orm > Ms)
Unstack the top index from S
2. Test whether the intervgd, i] is a framed common

interval.
PROPGSITION 2. A connected component is unoriented 3. Stack the indek.
if and only if all its elements have the same sign in the Before discussing how to perform the test in line 2, we
permutation. argue that all framed common intervals will eventually be

S58

Common intervals and sorting by reversals: a marriage of necessity

tested. Indeed, ifrs . ..) is a framed common interval, The correctness of this algorithm is based on the
then: following remark. If Mj = =y, then M; is greater than
all values in the interval gy ... 7), implying thatM;
PrRoPGCsITION 3. The index s will not be unstacked will be stacked when readingy. 1, and that no value in
before j is stacked. the interval can unstadw; . But rj will unstack all values

_ in the interval, given the chance. The same argument holds
PROOF Any element betweents andxj is greater than for M; = n, by settingk = 0

s, Sincers is the minimum value of the common interval. The results of this section are summarized by
Any element betweems and rj is smaller thanMs,
since Ms must be at least greater thar) (remember THEOREM 3. All framed common intervals of a positive
that all elements betweenms and rj follow s in the permutation can befound with Algorithms1and 2in O(n)
permutation). time and space.
Thus, no element betweeny andxj can unstacls. [
Connected components of signed per mutations

PROPGSITION 4. All indices between s and | are \wecan now adapt the algorithms of the preceding section
eventually unstacked before | is stacked. to the problem of identifying connected components of

i i signed permutations. For components framed by positive
PROOF. Leti be betweesandj. By Lemma lzi has gjements(m... M), a simple variant of Algorithm 1

either a smaller element following it, or a greater element i qo. Indeed, if = is a signed permutation, and*

preceding it in the interval betweenandi. In the first i ynsigned version, any framed common interval with
case, the first such element will unstackn the second positive endpoints ofr is the union of framed common

case, sincé; is smaller thamxj, if i stays inthe stack Up i tervals ofz+. The idea is to use Algorithm 1 om*,

to the endyrj will unstack it. L' but awid stacking negative elements. In order to show
that this indeed works, we first state a modified version

We now turn to the problem of testing whether the of Lemma 1:

interval [s,i] is a framed common interval. The first
elementary test is to count the number of elements
between these two indices. Indeed, a necessary condition
for [s, i] to be a framed common interval is:

LEMMA 2. If F = (m mx...m; M) isa framed
common interval of a signed permutatlon then each 7,

k <i < j, haseither a smaller element following it in the
interior of F, or a greater element preceding it, or 7 is
negative.

If s is the top of the stack, then all elements in the

interval[s+ 1, i] are greater thans. One must also check ~ The proof is similar to the proof of Lemma 1 and
if only values smaller thamr; are in the interval. This highlights the possible problem with signed permutations.
is done by keeping track of the maximal element that-or example, the permutation = (0 2 1 —3 4) has only
occurred between two consecutive stacked indices. Thene component. Its span@ 2 1 —3 4). The unsigned
implementation is rather straightforward and details carversion ofr has two connected components whose framed
be found in the Appendix. spansar¢0 2 1 3 and(3 4).

Finally, in order to complete the analysis of the algo- Using Lemma 2, itis possible to show the equivalents of
rithm, we must show how to compute efficiently the valuesPropositions 3 and 4, remembering that negative elements
M; used in the main loop. are not stacked, but that their absolute values can be used

to unstack elements.

T —7s =1 —8S.

Algorithm 2 _ _ Identifying components that are framed-b and—m
Sis a stack that contains the valueThe top ofSis always .51 pe done by reversing, except for its endpoints 0
denoted bys. andn, and applying the above algorithm. It can also be
Mo «<—n done by ‘reversing’ the algorithm. This latter possibility,
Fori from 1 ton do implemented in the code given in the Appendix, allows
If i1 > m the detection of components in a single pass on the
Mj < mi—1 permutation, using four stacks.
. Stack the valuer; _1 We have also the equivalent of Theorem 3:
se
While s < 7 THEOREMA4. All framed common intervals of a signed
Unstack the top element from S permutation can be found with the modified versions of
Mj < s Algorithms 1 and 2 in O(n) time and space.

S59

A.Bergeron et al.

Finally, the problem of detecting if all elements of a
component have the same sign can be done with an ap- 0 ‘2 3 8‘ 19
propriate marking of the top of the stack, without affect-
ing the running time. Here is the version for componentsig. 1. A permutation with two hurdles.
with span(m... M). In this case, the component will be
unoriented if all the negative elements in the interval are

properly ‘shielded’ by the positive frames of smaller com- 0 |7 9 8 10| 2 1|3 5 4 6| 11
ponents. A suitable way to mark the top of the stack is
(with the notation of Algorithm 1): Fig. 2. Another permutation with two hurdles.

1. If ; is negative, mark the top of the stack.
2. If amarked element is removed from the stack, mark A fortress is a permutation that has an odd number of

the new top of the stack. hurdles, all of which are super-hurdles.
3. If [s, i]is a connected component, unmarkhe top Finally, two elementary reversals dieked if they are
of the stack. consecutive, or if one is a prefix or suffix of the other. A

cycle is a closed chain of linked reversals, and they are
easily enumerable.
Applying all these definitions to the permutation of

COMPUTING THE REVERSAL DISTANCE Example 1:

Having an efficient algorithm for the detection of (0 -6 3 -4 52 -17 9 8 10)
unoriented components, we can now delineate the com-

This is also implemented in the code of the Appendix.

. . L lore s
plete algorithm to compute the reversal distance in linear
time. . - r2 r7 o
In (Hannenhalli and Pevzner, 1999), the minimal num- - -
ber of reversalsl(;r) necessary to sort a permutation= rs ry
(0 w1 m2...mn—1 N)is shown to be equal to: I —
d(x) =n—-c+h+ f, K

where ¢ is the number ofcycles, h is the number of we geth=10,c=4,h=1,andf =0. Thusd(x) = 7.
hurdles, and f is a correction factor equal to 1 or The main problem in computing the reversal distance
0 according to whetherr is a fortress or not. We is thus the classification of unoriented components as
recall the definitions of these parameters in the followinghurdles, super-hurdles, and non-hurdles. Identifying hur-
paragraphs. dles and super-hurdles that are minimal elements is easy.
Consider the set of unoriented components of a permutdndeed, the algorithm given in the Appendix enumerates
tion that have more than two elements. These componentse components from left to right, for components whose
are partially ordered by span inclusion. Each minimal el-spans are not included into one another, and from inner
ement of this order is aurdle. In addition, the maximal components to outer components, for components whose
element is a hurdle if it exists, and if none of its elementsspans are nested.
lies between two hurdles. An unoriented componemd is a hurdle if it is the first
For example, the permutation of Figure 1, in which one to be identified by the algorithm, or if its span does not
all spans of unoriented components are boxed, has twoontain the span of the previous unoriented component.
hurdles. There are three unoriented components, and twbthe permutation has only one minimal hurdle, then the
of them are hurdles: the minimal one, whose elementsnaximal unoriented component, if it exists, will also be a
are {4, 6,5, 7}, and the maximal one, whose elementshurdle.
are {0, 2, 8,1, 9}. The permutation of Figure 2 also has For hurdles that are minimal elements, a simple way
three components and two hurdles. However, the maximab decide if they are super-hurdles is to test whether
element is not a hurdle since it has elements between thibeir immediate ancestor in the partial order contains
two minimal components. only one oriented component. As noted for example by
If one sorts the elements of a hurdle, it is eliminated.Hannenhalli and Pevzner (1999) and Kapétal. (1999),
A super-hurdlieis a hurdle whose elimination does not di- by considering the circular order on the interf@l . . n],
minish the number of hurdles in the resulting permutationthe maximal hurdle, if it exists, becomes a minimal
For example, if one sorts the hurdid 6 5 7) in the per- element if the elements of the permutation are shifted such
mutation of Figure 1, the resulting permutation has stillthat the element 0 lies within any other hurdle.
two hurdles. Identifying hurdles as super-hurdles is relevant only

S60

Common intervals and sorting by reversals: a marriage of necessity

when the permutation has at least three hurdles. A hurdle an experimental study. IRroceedings of WADS 2001. pp. 365—
U is a super-hurdle if the span of the following unoriented 376.
Component Contalns the Span Lofand does not Contaln Bafna,V. and Pevzner,P. (1996) Genome rearrangements and Sorting
the span of the hurdle precedibg by reversalsSIAM J. Comput., 25, 272—-289. ‘

In order to test whether the maximal component is a¢'9€70nA. (2001) A very elementary presentation of
hurdle or a super-hurdle, we apply the algorithm of the tztz)%lHannenha”"Pevzner theory. - 1Rroceedings of CPM

. . ; : . pp. 106-117.

Appendix to the shifted elements of the permutation, using,

. rgeron,A., Chauve,C., Hartman,T. and St-Onge,K. (2002) Enu-
an element of the last minimal hurdle as the new element \erating optimal sequences of reversals: Tools and experiments.

0. (work in progress)
Hannenhalli,S. and Pevzner,P. (1999) Transforming cabbage into
CONCLUSIONS turnip: Polynomial algorithm for sorting signed permutations by

This paper focused on the detection of oriented and un- reversalsJ. ACM, 46, 1-27. .
Orlented Connected Components of a Slgned permutatloﬁ',eber,s and Stoye,J. (2001) F|nd|ng all common intervalk of

using a characterization of these components in terms Oéagg?ﬂtatgﬁasfmlﬁpéocﬁir?jrgnchéggg)pﬂ' égjﬁd simpler
common intervals that can be applied directly to the per- algorithm for sorting signed permutations by reversalaM J.

mutation. We showed that connected components can be Co .

. o mput., 29, 880-892.

'dent'f'ed_ without th? usual constructions of the pOSItIVeSankoff,D. (1992) Edit distances for genome comparisons based on

permutation on & points, or the overlap graph. non-local operations. liProceedings of CPM 1992. pp. 121
Using the definition of connected components as com- 135,

mon intervals, we were able to deduce an elementary linsiepel,A. (2002) An algorithm to find all sorting reversals. In

ear time algorithm to identify the oriented and unoriented Proceedings of RECOMB 2002. pp. 281-290.

components. This algorithm can be used to test whetherano,T. and Yagiura,M. (2000) Fast algorithms to enumerate all

reversal is safe without actually performing the reversal. common intervals of two permutationélgorithmica, 26, 290

Indeed, since the effect of a reversal is to change the order 309

of a block of elements, a simple function of the indices can

simulate the reversed permutation. APPENDIX
Finally, we have also shown how the algorithm has toThe following algorithm uses four stacks to implement

be extended in order to compute the reversal distance ofthe detection of oriented and unoriented components in

signed permutation in linear time. a signed permutation. Arraysi[0..n] andsi[0. .n]
are given as input and store, respectively, the elements
REFERENCES and the signs of the permutation. The algorithm prints

Bader,D., Moret,B. and Yan,M. (2001) A linear-time algorithm for the annotated list of the _pOSitionS of the connected
computing inversion distance between signed permutations witgomponents of the permutation.

S61

A.Bergeron et al.

EMPTYSTACK (M1) ; PUSH(M1,n);
EMPTYSTACK (M2) ; PUSH(M2,0);
EMPTYSTACK(S1); PUSH(S1,0);
EMPTYSTACK (S2); PUSH(S2,0);

M[0] =
m[0] =
max [0] 0;
min[0] n;
mark1[0] = FALSE;
mark2[0] FALSE;

3
I

nmnos

for(i=1; i<=n; i++) {

//Compute the M_i

if (pili-11 > pilil) {
M[i] = pili-1];
PUSH(M1,pi[i-1]);

}
else {
while(TOP(M1) < pil[il)
POP(M1);
M[i] = TOP(M1);
}
//Find connected components of type (m ... M)
while(pi[il<pi[(s=TOP(S1))] || pil[il>M[s]) {
POP(S1);
max[TOP(S1)] = MAX(max[TOP(S1)],max[s]);
markl [TOP(S1)] |= marki[s];
}

if (si[i]==PLUS && pil[il==max[(s=TOP(S1))]1+1 && i-s==pili]-pils] && i-s>1) {
if (marki[s] == FALSE)
printf (" [%d,%d] (unoriented, plus)\n",s,i);
else
printf (" [%d,%d] (oriented, plus)\n",s,i);
mark1 [TOP(S1)] = FALSE;
}

S62

Common intervals and sorting by reversals: a marriage of necessity

// And now the "reverse" algorithm

//Compute the m_i

if (pili-1] < pili]) {
m[i] = pili-1];
PUSH(M2,pil[i-1]1);

}
else {
while (TOP(M2) > pilil)
POP (M2) ;
m[i] = TOP(M2);
}
//Find connected components of type (-M ... -m)

while ((pi[i]l>pi[(s=TOP(S2))]

POP(82) ;

Il pilil<m[s]) && s>0) {

min[TOP(S2)] = MIN(min[TOP(S2)],min[s]);

mark2 [TOP(S2)] |= mark2[s];

}

if (si[i]==MINUS && pil[il==min[(s=TOP(S2))]1-1 && i-s==pil[s]-pili] && i-s>1) {

if (mark2[s] == FALSE)

printf (" [%d,%d] (unoriented, minus)\n",s,i);

else

printf (" [%d,%d] (oriented, minus)\n",s,i);

mark2 [TOP(S2)] = FALSE;
}

//Update stacks and marks
if(si[i] == PLUS)
PUSH(S1,1i);
else
PUSH(S2,1);
max[i] = pilil;

min[TOP(S2)] = MIN(min[TOP(S2)],pil[il);

min[i] = pilil;

max [TOP(S1)] = MAX(max[TOP(S1)],pilil);

mark1[TOP(S1)] = sil[i]==MINUS;
mark2 [TOP(S2)] = sil[i]==PLUS;

S63

