
BIOINFORMATICS Vol. 16 no. 9 2000

Pages 808–814

An iterative method for faster sum-of-pairs
multiple sequence alignment

Knut Reinert 1, Jens Stoye 2,∗ and Torsten Will 3,4

1Celera Genomics, Informatics Research, 45 West Gude Drive, Rockville, MD 20850,

USA, 2German Cancer Research Center (DKFZ), Theoretical Bioinformatics (H0300),

Im Neuenheimer Feld 280, 69120, Heidelberg, Germany and 3Research Center for

Interdisciplinary Studies on Structure Formation (FSPM), University of Bielefeld,

Postfach 100131, 33501, Bielefeld, Germany

Received on December 10, 1999; revised on March 13, 2000; accepted on May 5, 2000

Abstract
Motivation: Multiple sequence alignment is an important
tool in computational biology. In order to solve the task
of computing multiple alignments in affordable time, the
most commonly used multiple alignment methods have to
use heuristics. Nevertheless, the computation ofoptimal
multiple alignments is important in its own right, and it
provides a means of evaluating heuristic approaches or
serves as a subprocedure of heuristic alignment methods.
Results: We present an algorithm that uses the divide-and-
conquer alignment approach together with recent results
on search space reduction to speed up the computation
of multiple sequence alignments. The method is adaptive
in that depending on the time one wants to spend on
the alignment, a better, up to optimal alignment can be
obtained. To speed up the computation in the optimal
alignment step, we apply theA∗ algorithm which leads
to a procedure provably more efficient than previous exact
algorithms. We also describe our implementation of the
algorithm and present results showing the effectiveness
and limitations of the procedure.
Availability: http://bibiserv.techfak.uni-bielefeld.de/oma/

Contact: j.stoye@dkfz.de

Introduction
Multiple sequence alignment is an important tool in com-
putational biology. Application areas include sequence
assembly, molecular modeling, protein structure–function
analysis, phylogenetic studies, database search, and
primer design. Depending on the application, a cost
function is defined that assigns a numerical value to
each possible alignment, and the hope is that the lowest
scoring alignments reveal important information about the

∗To whom correspondence should be addressed.
4Present address: mediaWays GmbH, Hülshorstweg 30, 33415 Verl, Ger-
many.

specific problem. One widely used framework for such a
cost function is the (weighted) sum of pairs((W)SP) score
with quasi-natural gap costs (Altschul, 1989; Guptaet al.,
1995; Kececioglu and Zhang, 1998). Since the problem
of computing optimal multiple alignments according to
the SP score is NP complete (Wang and Jiang, 1994),
usually in practice heuristic (tree-based) methods are
used. Nevertheless, the computation of optimal multiple
alignments has its justification as a means of evaluating
heuristic approaches or as a subprocedure of heuristic
alignment methods like the recursive Divide-and-Conquer
Alignment algorithm (DCA; T̈ongeset al. (1996); Stoye
et al. (1997); Stoye (1998)). In fact we will show how
to combine an efficient procedure for computing optimal
multiple alignments with this method such that the re-
sulting procedure produces increasingly better alignments
that converge to an optimal one.

Formally, a global alignment ofK > 2 sequences
S1, . . . , SK over an alphabet� is a K × M matrix A =

(ai, j), ai, j ∈ � ∪ {−}, such that ignoring the blank
characters−, the i th row reproduces sequenceSi , and
there is no column consisting only of blanks. A maximal
run of adjacent blank characters in a row is called a
gap. By Ai1,i2,...,in we denote the projection ofA to the
sequencesSi1, Si2, . . . , Sin .

For a pairwise projection ofA to Sk andSk′ , let c(Ak,k′)

be the cost of this projection which is usually defined
as the sum over all substitution costs weighted by a
substitution score matrix, plus a penalty for each gap.
Then the overall costc(A) :=

∑

k<k′ c(Ak,k′) is called the
sum of pairs(SP) cost of the alignmentA. If, in addition,
we assign to each element of this sum a weightwk,k′ then
the cost is called theweighted sum of pairs(WSP) cost.
To simplify the discussion, however, we concentrate on
the SP cost function. Nevertheless, all results derived in
this paper hold for the WSP cost function as well.

The SP multiple alignment problem is defined as
follows. Given sequencesS1, . . . , SK , find an alignment

808 c© Oxford University Press 2000

praktikum2-ub
Rechteck

praktikum2-ub
Rechteck

An iterative method for faster sum-of-pairs multiple sequence alignment

S1 : X - - - X

S2 : X X - X X

S3 : X X X X X

Fig. 1. Illustration of natural and quasi-natural gap counts. The
‘natural’ number of gaps summed over each pair of sequences is
three (one gap in each pair) while the‘quasi-natural’ number is four
(between the first and second sequence two gaps are counted).

A that minimizesc(A). We will denote such an optimal
alignment byAopt.

The gap penalty implied by the pairwise projection cost
c(Ak,k′) usually depends on the length of the gap. For
pairwise alignments, the class of affine gap cost functions
with a relatively highgap initiation cost (gapinit) for
the first blank character and a smallergap extension cost
(gapext) for each additional blank character is widely
acknowledged to yield good results. Although it is also
possible to use affine gap costs for multiple alignments,
Altschul (1989) pointed out that this is impractical for
even a modest number of sequences. He proposed instead
a simpler gap cost function, calledquasi-natural gap
costs. This function miscounts the true number of gaps in
a multiple alignment by only a small amount and hence
is regarded a good approximation of the affine gap cost
measure. As an example, see Figure 1 for an alignment
where the ‘natural’number of gaps summed over each
pair of sequences is three (one gap in each pair) while
the ‘quasi-natural’ number is four (between the first and
second sequence two gaps are counted).

Like most alignment problems, the SP multiple align-
ment problem with quasi-natural gap costs can be solved
by dynamic programming which yields an algorithm
with time complexityO(2(2K)N) and space complexity
O(N), where N =

∏

i Ni with Ni being the length of
sequenceSi . This is feasible only for very small problem
instances. Guptaet al. (1995) presented a branch-and-
bound algorithm whose implementation—called MSA
in what follows—can optimally align some examples of
six sequences of length 250 in a few minutes. Larger
examples, however, require excessive space.

In this paper we apply the so-calledA∗ algorithm to
multiple alignment. Similar to the algorithm used in MSA,
it computes a shortest path in the dynamic programming
graph, but with redefined edge weights, which reduces the
search space considerably (see Horton (1997); Shibuya
and Imai (1997); Lermen and Reinert (to appear)). Our
two main contributions are (1) to provide an efficient
implementation of theA∗ algorithm for exactly solving
the SP alignment problem with quasi-natural gap costs,
which can be shown to be superior to the Carrillo–
Lipman bounding (Carrillo and Lipman, 1988) applied in
MSA, and (2) to combine this algorithm with the DCA

approach in order to develop an iterative procedure for
computing multiple alignments with a nice time-versus-
quality tradeoff. To our knowledge this novel algorithm
is the first to improve its result up to optimality—given
enough resources—while being able to quickly yield good
intermediate results.

The A∗ algorithm in multiple alignment
An alignment of theK sequences can be interpreted as a
path in aK -dimensional grid graphG = (V, E) with a
sources and a sinkt . In addition we add a dummy noded
and an edge fromd to s. A nodev = (v1, . . . , vK) in
the grid naturally divides each sequenceSk in a prefix
αv

k := Sk[1..vk] and a suffixσ v
k := Sk[(vk + 1)..Nk]

where S[i .. j] denotes the substring ofS starting with
the i th and ending with thej th character ofS. Each
path starting ind and ending with an edgee = (u, v)

corresponds to one possible alignment of the prefixes
αv

1, . . . , αv
K . (The dummy node and edge ensure there is a

path corresponding to the empty prefixes of all sequences.)
Similarly, each path starting with an edgee = (u, v)

and ending with an edgef = (p, t) corresponds to an
alignment of the suffixesσ v

1 , . . . , σ v
K .

The cost of an edge is theSP cost of the alignment
column corresponding to the edge. Let us denote the set
of all paths starting with an edgee and ending with an
edge f by e → f . We denote the shortest path ine → f
by e →∗ f and its cost byc(e →∗ f).

Let e = (u, v) and f = (v, w) be two adjacent edges.
Then the cost off preceded by eis defined as

c(f |e) := c(d →∗ e) + c(f) + gapcost(e, f),

and the cost of the shortest path ending withf is the
minimum of c(f |e) over all edgese incident to f . In
the setting of quasi-natural gap costs that we consider, we
have

gapcost(e, f)

:=
∑

k<k′



















0 if (wk = vk andwk′ = vk′)

or (wk = vk + 1 andwk′ = vk′ + 1)

gapext if (wk = vk + 1 = uk + 2 andwk′ = vk′ = uk′)

or (wk = vk = uk andwk′ = vk′ + 1 = uk′ + 2)

gapinit in all other cases

whereu = (u1, . . . , uK), v = (v1, . . . , vK), andw =

(w1, . . . , wK).
Of course it is not feasible to compute a shortest path

in the full grid graph whose size isO(N), where, as
above,N =

∏

i Ni . Guptaet al. (1995) applied Dijkstra’s
algorithm together with a bounding procedure that reduces
the number of edges that have to be visited. The algorithm
uses a priority queueQ in which new edges are only
inserted if potentially an optimal path can pass through
them. Given an edgef = (v, w) adjacent to the current
edgee = (u, v), this can be determined by using an upper

809

K.Reinert et al.

boundU on the cost of an optimal alignment (obtained by
a heuristic alignment) and a lower bound

L(w) :=
∑

k<k′

c(Aopt(σw
k , σw

k′)) (1)

on the cost of an optimal alignment of the suffixes that are
induced byw. The edgef = (v, w) is only inserted intoQ
if c(f |e) + L(w) ≤ U . That means, if the sum of the cost
of the optimal path starting withd and ending withe plus
the cost of f , the gap penalty, and the lower boundL(w),
is already greater than an upper boundU , then no optimal
alignment can go throughf . Additionally, their approach
employs the so-called Carrillo–Lipman bounding (Carrillo
and Lipman, 1988) which further excludes edges from
consideration based on the following theorem:

THEOREM 1 (Carrillo, Lipman). Let Aopt be an opti-
mal alignment of the K strings S1, . . . , SK , L := L(s) the
lower bound defined in Equation (1) and U= c(Aheur)

an upper bound for c(Aopt). Then the following inequality
holds for every projection on a pair Si , Sj of sequences:

c(Aopt
i, j) ≤ c(Aopt(Si , Sj)) + U − L .

TheA∗ algorithm employs basically the same bounding
procedure as in Guptaet al. (1995), however with rede-
fined edge costs. Thereby it speeds up computations by di-
recting the search of a shortest path more towards the sink
nodet . (Therefore this technique is also calledGoal Di-
rected Unidirectional Search(GDUS) (Lengauer, 1990).)
It redefines the costs of all edgese = (u, v) ∈ E as fol-
lows: c′(e) := c(e) − l (u) + l (v), wherel (u) is a lower
bound for the cost of a shortest path starting with some
edge adjacent to nodeu and ending with an edge incident
to t . If l () fulfills the consistencyconditionc(e) + l (v) ≥

l (u), ∀e = (u, v) ∈ E, then it is easy to show that the
redefinition of the edge costs does not change the optimal
path and the edge costs are still positive, so Dijkstra’s al-
gorithm with the simple bounding procedure can be used
as before. We can choosel (u) := L(u), becauseL fulfills
the consistency condition. Generally, the better the lower
boundl is in the redefinition of the edge costs, the better
the GDUS works.

It is worthwile noting that it can be shown (Horton,
1997; Lermen and Reinert, to appear) that the above
redefinition of edge costs implies the Carrillo–Lipman
bound from Theorem 1 usingL as lower bound.

We used this result to implement an exact multiple
sequence alignment algorithm that provably explores at
most as many nodes as any algorithm using Carrillo–
Lipman bounding. In the next section we describe how
we make use of this algorithm in our newly proposed
heuristics.

Iterative improvement using DCA
As described above, theA∗ algorithm uses an upper bound
U for the alignment cost to speed up the computation
of an optimal alignment. For the computation of the
upper bound we use the Divide-and-Conquer Alignment
algorithm (DCA; T̈ongeset al.(1996); Stoyeet al.(1997),
Stoye (1998)). We first describe the basic DCA algorithm,
and then we describe how the interchangeable use of DCA
and the optimal alignment procedure applied to parts of
the sequences can be used to successively improve an
initial heuristic alignment, up to optimality. Alternatively,
the algorithm can be stopped after a predetermined time,
yielding a heuristic alignment which is provably nearer to
the optimum the more time was spent.

The basic DCA method
The DCA method allows to quickly compute heuris-
tic multiple sequence alignments. In contrast to other,
tree-based, multiple alignment heuristics, DCA aims at
optimizing the SP alignment score with quasi-natural
gap costs, which makes it a logical choice to use in
combination with the A∗-based optimal alignment
algorithm.

A sketch of the DCA method is shown in Figure 2.
The sequences (denoted by the horizontal bars) are cut
at certain positions near to their center, in the sequel
called cut positions(denoted by the small vertical tics).
This divides the problem of aligningK (long) sequences
into the two problems of aligning the (shorter)K prefix
and K suffix sequences. Assuming that it is possible to
compute optimal alignments of these two sets of shorter
sequences, an alignment of the complete sequences is
obtained by just concatenating the prefix alignment and
the suffix alignment. On the other hand, if the prefix resp.
suffix sequences are still too long to be aligned optimally,
the procedure is applied recursively until the sequences
are of a length short enough to be tractable for the exact
alignment procedure. To this end, DCA has a parameter
Z, the stop length, such that the recursion stops if the
maximal length of a sequence in a block drops belowZ.

Certainly the choice of the cut positions is critical for
the success of the DCA procedure, and inadequate cut
positions in an early division step can deteriorate the
whole alignment. It has been shown that the heuristics
of minimal additional costsyields very good, in many
cases optimal cut positions. Minimal additional cost cut
positions are defined by means of forward/backward
matrices (which are well known from the study of local
sequence similarities and suboptimal alignments) for all
pairs of sequences. These matrices allow for any pair of
cut positions to quickly assess the overhead of cutting
and combining the best possible alignment of the resulting
prefixes and suffixes, as opposed to an optimal alignment
of the complete (un-cut) sequences, called the additional

810

An iterative method for faster sum-of-pairs multiple sequence alignment

divide

align optimally

dividedivide

concatenate

Fig. 2. The basic Divide-and-Conquer Alignment method.

cost imposed by the cut positions. TheK cut positions are
then selected, so that the sum of all pairwise additional
costs is minimized. For more details on the definition
and computation of cut positions, a number of variations,
and efficient speed-up techniques, see (Stoye, 1998) and
references therein.

Iterative improvement of the upper bound

DCA called with a small value ofZ allows to quickly
compute an upper boundU for the A∗-based optimal
alignment procedure. However, not only theA∗ algorithm
can use DCA, but both programs can benefit from each
other: DCA adheres a time versus quality tradeoff; the
larger one chooses the parameterZ, the (provably) better
is the alignment one gets, while the computation time
increases due to the larger optimal alignments to be
computed. This motivates an iterative combination of both
DCA and the optimal alignment procedure: Successively,
we call DCA with increasing values ofZ where, at each
step, we can use the values of the corresponding partial
alignments from the previous step to compute an upper
bound for the computation of an optimal alignment using
theA∗ algorithm. Moreover, we can stop at any point of
this procedure and have a heuristic alignment. The longer
we wait, the better is the alignment—up to optimal. To our
knowledge this is the first iterative alignment algorithm
that provably converges to an optimal alignment.

Note that for iteratively computing better DCA align-
ments with largerZ-values one only has to compute the
cut positions once for the smallest values ofZ. Larger
Z-values are obtained by ‘ignoring’ intermediate cut
positions. However, one has to be careful when this way

‘fusing’ two short alignments, because with quasi-natural
gap costs the alignment score is not additive. The problem
becomes apparent if one focuses on a gap that runs
through a cut point. In the final alignment, of course, the
gap initiation cost will be imposed only once on this gap.
During the construction, however, when the parts on the
left and right hand side of the cut position are aligned in-
dependently, it is not clear, if such a gap will be continued
on the other side of the cut position. Hence, in order to use
a valid upper bound, the gap initiation cost must be added
on either side of the cut. This way, the sum of the costs
for the small alignments will be higher than the cost of the
alignment obtained by concatenating all small alignments.

Implementation
We have implemented the algorithms described in the pre-
vious sections as a C++ library of classes for the alignment
of sequences calledOMA(which is short forOptimal Mul-
tiple Alignment), built upon theLibrary of Efficient Data
stuctures and Algorithms(LEDA; Mehlhorn and N̈aher
(1999)). Note that using the library approach and the use
of C++ classes, one has to expect a fairly large constant
factor in running time and memory usage. Nevertheless,
our main emphasis was to create an open library that eas-
ily can be modified and/or extended. We have compiled an
executable calledomawhich is freely available from the
address http://bibiserv.techfak.uni-bielefeld.de/oma/. It is
the basis for the computations of the Results section.

To speed up the computation or to improve the result,
we have included inomasome additional techniques from
the literature which we briefly review next. Most of these
features are optional and can be switched off by the user.

Face bounding If one does not insist on a provably
optimal alignment, one can use a simple heuristic to
speed up the procedure considerably. This so-called
face bounding(Guptaet al., 1995; Lermen and Reinert,
to appear) is employed by defining for each pair of
sequences(k, k′) a non-negative constantEPSk,k′ , and
then making the (not always true) assumption that any
alignment cannot be optimal that passes a nodev in the
grid graph with c(Aopt(αv

k , αv
k′)) + c(Aopt(σ v

k , σ v
k′)) >

c(Aopt(Sk, Sk′)) + EPSk,k′ . This way the exploration of
the grid graph is artificially bounded to a banded region
around the best paths, similar to two-dimensional banded
alignments (Myers, 1986). The impact of this effect can
be controlled by a parameter, and it can be switched off
completely so that an optimal alignment is guaranteed, at
the expense of considerably higher resource requirements.

Gray code enumeration Both Guptaet al. (1995) and
Lermen and Reinert (to appear) point out that the iteration
over all outgoing edges of a node can be efficiently
perfomed by enumerating the neighbours of a node in

811

K.Reinert et al.

Gray codesuccession. The 2K − 1 edges outgoing from
a given node are numbered in binary, usingK bits.
When evaluating the node, the Gray code enumeration
guarantees that from one outgoing edge to the other,
only one bit in the binary representation changes and the
overall enumeration takesO(K) time. This allows an
efficient computation in many internal loops.

Re-alignment at cut positions It has been observed
(Stoye et al., 1997) that alignments created by DCA
sometimes contain obvious errors in the neighbourhood of
cut positions. To correct for these errors, DCA allows the
user to specify awindow size W≥ 0. After the final step
of the divide-and-conquer procedure, the concatenation of
the short alignments, a window of sizeW is placed across
each cut position, and inside this window the sequences
are re-aligned optimally. Re-alignment usually leads to
small local improvements of the alignment. This feature
is included inomaas well, but, of course, it makes sense
only for iterations whereZ is larger than the window size.

Sequence weighting To avoid overweighting redundant
information that can arise, e.g. from some identical or
highly similar sequences in the sequence set,oma, like
DCA, aims at optimizing aweightedsum-of-pairs score of
the formc(A) :=

∑

k<k′ wk,k′c(Ak,k′). The weight factors
wk,k′ are computed from the pairwise distances between
the sequences. Higher weights are given to the more
similar pairs, as having them aligned optimally should
be more important than aligning two fairly unrelated
sequences optimally at the expense of worsening a good
alignment of closely related sequences. The strength of
weighting can be controlled by a parameterλ, theweight
intensity, which can be adjusted by the user to any value
betweenλ = 0 (no weighting) andλ = 1 (maximum
weighting). Alternatively, arbitrary user-defined weights
can be provided.

Parallelization We have considered parallelizing the
algorithms included inOMA. Obviously, the subproblems
obtained after cutting the sequences can be handled
independently, and hence can be computed in parallel on
different processors with distributed memory. During the
program development we have kept this in mind, and we
have compiled a multi-threaded version ofoma. However,
this does not help in the final optimal alignment step of
the complete sequences. Introducing parallelization here
would mean to parallelize the priority queue using e.g.
methods described in Brodal (1999), which needed shared
memory. This, however, is out of the scope of the current
implementation.

Results
We have runoma on a number of alignment problems
from the Benchmark Alignments Database (BAliBASE;
Thompsonet al. (1999a)). All runs were performed on
a Sun Ultra Enterprise 450 with 400 MHz processors.
Jobs were limited to 2 GB of memory and 12 h of
CPU time. We used a distance version of Dayhoff’s PAM
250 matrix with quasi-natural gap costs as the alignment
cost function, sequence weighting was switched off and
end-gaps were penalized like internal gaps. The general
result is that we can align a typical set of 4 to 6 protein
sequences to optimality within 10 s up to a few minutes.
Some more difficult examples, however, require excessive
computation time and memory. If we stop the computation
after 1 min, we get a (sub-optimal) alignment in all test
cases from thereference1subset of BAliBASE. A few
detailed results follow.

Figure 3 shows for increasing values ofZ the behaviour
of oma on the test set 1cpt fromreference1of BAli-
BASE, containing four cytochrome p450 sequences. The
sequence lengths range from 378 to 434 amino acids, and
the average sequence identity is 20%. One can see the
monotonically decreasing alignment cost, and how the
cost of the heuristic alignment upper-bounds the score
of the oma alignment. As noted above, we have two
upper bound values: the lower one, which is just the
alignment cost of the previous iteration, and the larger
one, which is the lower one increased by multiple end
gap costs whenever a gap runs through a cut point. A
rather close-to-optimal alignment is obtained already after
a few iterations. However, the many very short alignments
computed in the beginning take longer time than the fewer
(but still relatively short) alignments aroundZ = 32.
Even though the upper bound is already very close to the
optimal alignment score, the last step (Z = 512) which
yields the optimal alignment takes by far the longest time
to compute.

For comparison reasons, we have also run this example
without theA∗ strategy. Here the computation forZ =

512 could not be performed within the 2 GB of available
memory. The number of edges explored in the search
phase of the last alignment step which could be run, for
Z = 256, increases from 1.4× 106 (with A∗) to 2.2× 106

(withoutA∗). The computation time increases from 180 s
to 549 s.

Table 1 shows some more results on short (top), medium
length (middle), and long (bottom) sequences. Each block
is divided in distantly related, closer, and closely related
sequences (see the columnavg.id.). The alignment cost
and, in parentheses, the running time and memory usage
of oma is shown at two differentZ-values. The firstZ-
value (calledZmax) was chosen such that the program
did not use more than 2 GB of memory and did not run
longer than 12 h, whereas the secondZ-value is half

812

An iterative method for faster sum-of-pairs multiple sequence alignment

Table 1. SP alignment cost, computation time and memory usage ofoma, MSA and DCA for selected test sets fromreference1of BAliBASE. The best score
in each line is printed in bold face

Test set K Length avg.id. Zmax omaat Zmax omaat Zmax/2 MSA DCA

1ubi 4 76–94 18 128 8631 (37.9 s, 21 MB) 8631 (6.0 s, 2 MB) 8639 (0.6 s, 3 MB) 8685 (0.4 s, 3 MB)
1wit 5 89–106 17 128 16517 (2.0 min, 36 MB) 16523 (4.0 s, 2 MB) 16533 (2.1 s, 3 MB) 16610 (0.4 s, 3 MB)

3cyr 4 95–109 31 128 9888 (4.3 s, 2 MB) 9888 (4.6 s, 2 MB) 9888 (0.4 s, 3 MB) 9888 (0.3 s, 3 MB)
1pfc 5 108–117 28 12817708 (20.0 s, 2 MB) 17708 (5.7 s, 2 MB) 17710 (1.0 s, 3 MB) 17771 (0.4 s, 3 MB)

1fmb 4 98–104 49 128 8804 (3.3 s, 2 MB) 8804 (3.0 s, 2 MB) 8804 (0.2 s, 2 MB) 8804 (0.5 s, 2 MB)
1fkj 5 98–110 44 128 15809 (4.3 s, 2 MB) 15815 (3.6 s, 2 MB) 15815 (0.3 s, 3 MB) 15815 (0.6 s, 2 MB)

3grs 4 201–237 14 12823478 (22.0 s, 2 MB) 23491 (9.9 s, 2 MB) 23489 (2.2 min, 14 MB) 23590 (0.8 s, 2 MB)
1sbp 5 224–263 19 12843115 (62.9 min, 668 MB) 43188 (2.1 min, 70 MB) – (> 12 h) 43581 (1.1 s, 2 MB)

1ad2 4 203–213 30 25619714 (14.7 s, 2 MB) 19714 (9.6 s, 2 MB) 19726 (0.6 s, 3 MB) 19716 (0.5 s, 3 MB)
2cba 5 237–259 26 12840281 (15.4 min, 183 MB) 40295 (17.9 s, 2 MB) 40281 (63.0 min, 69 MB) 40496 (0.9 s, 3 MB)

1zin 4 206–216 42 25619110 (8.0 s, 2 MB) 19110 (6.8 s, 2 MB) 19110 (0.5 s, 2 MB) 19110 (0.7 s, 2 MB)
1amk 5 242–254 49 12836659 (11.0 s, 2 MB) 36659 (10.8 s, 2 MB) 36659 (0.9 s, 2 MB) 36659 (0.9 s, 2 MB)

2myr 4 340–474 16 12843541 (2.1 min, 53 MB) 43629 (21.8 s, 2 MB) – (> 12 h) 43834 (1.6 s, 2 MB)
1pamA 5 435–572 18 64 86357 (7.6 min, 62 MB) 86482 (27.2 s, 2 MB) – (> 2 GB) 86923 (2.7 s, 2 MB)

1ac5 4 421–483 29 128 43341 (34.5 s, 16 MB) 43380 (18.3 s, 2 MB)43325 (22.2 min, 32 MB) 43513 (1.5 s, 2 MB)
2ack 5 452–482 28 12877139 (24.9 min, 234 MB) 77161 (67.5 s, 31 MB) – (> 12 h) 77422 (2.2 s, 2 MB)

1ad3 4 424–447 47 256 39218 (15.8 s, 2 MB) 39218 (13.2 s, 2 MB)39209 (1.7 s, 2 MB) 39225 (1.0 s, 2 MB)
1rthA 5 526–541 42 256 80352 (36.3 s, 15 MB) 80352 (26.8 s, 2 MB) 80358 (4.7 s, 2 MB) 80449 (2.1 s, 2 MB)

39600

39800

40000

40200

40400

40600

40800

41000

2 4 8 16 32 64 128 256 512
1

10

100

1000

10000

100000

al
ig

n
m

en
t

co
st

ti
m

e
(s

ec
.)

DCA stop length Z

upper bound increased by multiple end gaps
upper bound without end gaps

oma alignment cost
time

Fig. 3. The successive improvement of the alignment cost.

of the first one. This shows the tremendous decrease in
runnning time by only going back one step in the iteration.
For comparison, we have computed alignments with the
programs MSA and DCA. These results are shown in
Table 1 as well. Only in few cases theomaalignment has a
higher cost than the MSA alignment, while in several cases
MSA computes worse alignments or is unable to compute
any alignment with the given resources. DCA usually is
the fastest method, but most of the alignments are worse
than those computed byomaor MSA. For the complete
results on all test sets fromreference1of BAliBASE, see
http://bibiserv.techfak.uni-bielefeld.de/oma/.

Note that the running time and memory usage of
oma not only depends on the number and length of the
input sequences but—like for many multiple alignment
programs—it also depends on the similarity of the se-
quences (although there are counter examples). This is
due to a more effective reduction of the search space
in branch-and-bound type algorithms for easy problem
instances.

We have also investigated the biological quality of the
(sub-) optimal alignments computed byoma. To this end
we have used the test programbali scorethat comes with
BAliBASE. The authors of BAliBASE have defined core
blocks of their alignments, andbali score computes a
percentage of correctly aligned residue pairs within these
core regions (see Thompsonet al. (1999b) for a detailed
description of the evaluation procedure). Averaged over
all test sets fromreference1of BAliBASE, we obtain the
following results: For the alignments of the group with
<25% average identity,omacorrectly aligns 60% of the
residues in the core blocks. In the group between 20
and 40% identity, 92% of the residues in the core blocks
are successfully aligned, and in the group above 35%, 94%
of the residues in core blocks are aligned correctly. These
values are almost exactly the values achieved by the best
performing alignment programs in the study of Thompson
et al. (1999b).

In a final experiment, we have investigated the maximal
number of sequences that we can align optimally with
our method. Therefore,we have selected a large family

813

K.Reinert et al.

Table 2. Computation time and memory usage ofomafor different numbers
K of cytochrome C sequences

K Time [s] Memory [MB]

1 2.0 6.7
2 2.3 6.7
3 2.8 6.7
4 3.7 7.7

5 5.2 8.8
6 5.3 9.1
7 7.1 10.5
8 9.2 12.2

9 15.2 14.6
10 18.4 19.1
11 79.5 31.4
12 197.8 45.8

13 883.0 84.2
14 4305.5 149.5
15 22197.6 298.8
16 72856.9 1051.1

of very similar protein sequences, cytochrome C. Due to
the high similarity of cytochrome C, the correct multiple
alignment is not a great challenge. It is easily obtained
by hand, and most automatic methods produce quite
successfully almost the same alignment. However, for
theoretical reasons we wanted to find out whereoma
reaches its limits. The results are presented in Table 2. One
observes rather moderate resource requirements for up to
12 sequences. Above this value, the exponential increase
becomes very apparent. Note that these values only hold
for the very similar sequences used in this experiment. In
a realistic setting, one has to expect much higher resource
requirements, see the results presented above.

Conclusion
We have presented a new iterative alignment algorithm
that combines an improved algorithm for the optimal
alignment of multiple biological sequences based on
theA∗ algorithm with the recursive Divide-and-Conquer
Alignment method. Although still too expensive for larger
test sets, we believe that with this approach we are close to
how far one can get with simultaneous, optimal multiple
sequence alignment.

Acknowledgements
We would like to thank Andreas Dress and Robert
Giegerich for helpful conversations as well as for continu-

ous support of this project. We would also like to thank the
Max-Planck-Institut (MPI) f̈ur Informatik in Saarbr̈ucken
for generously making their computer facilities available
to us.

References
Altschul,S.F. (1989) Gap costs for multiple sequence alignment.J.

Theor. Biol., 138, 297–309.

Brodal,G.S. (1999) Priority queues on parallel machines.Parallel
Comput., 25(8), 987–1011.

Carrillo,H. and Lipman,D. (1988) The multiple sequence alignment
problem in biology.SIAM J. Appl. Math., 48(5), 1073–1082.

Gupta,S.K., Kececioglu,J.D. and Schäffer,A.A. (1995) Improving
the practical space and time efficiency of the shortest-paths
approach to sum-of-pairs multiple sequence alignment.J. Comp.
Biol., 2(3), 459–472.

Horton,P. (1997) String Algorithms and Machine Learning Applica-
tions for Computational Biology,PhD dissertation, University
of California, Berkeley, CA.

Kececioglu,J.D. and Zhang,W. (1998) Aligning alignments. In
Farach,M. (ed.), Proceedings of CPM 1998Lecture Notes in
Computer Science 1448, Springer Verlag, Berlin, pp. 189–208.

Lengauer,T. (1990)Combinatorial Algorithms for Integrated Cir-
cuit Layout. Wiley-Teubner, Chichester.

Lermen,M. and Reinert,K. (to appear) The practical use of the
A∗ algorithm for exact multiple sequence alignment.J. Comp.
Biol., Accepted for publication. (See alsoTechnical Report 97-
1-028, MPI fürInformatik, Saarbr̈ucken, Germany, 1997.)

Mehlhorn,K. and N̈aher,S. (1999)LEDA: A Platform for Combina-
torial and Geometric Computing. Cambridge University Press,
Cambridge, UK.

Myers,E.W. (1986) AnO(N D) difference algorithm and its varia-
tions.Algorithmica, 1, 251–266.

Shibuya,T. and Imai,H. (1997) New flexible approaches for multiple
sequence alignment.J. Comp. Biol., 4(3), 385–413.

Stoye,J. (1998) Multiple sequence alignment with the divide-and-
conquer method.Gene, 211, GC45–GC56.

Stoye,J., Moulton,V. and Dress,A.W.M. (1997) DCA: an efficient
implementation of the divide-and-conquer approach to simulta-
neous multiple sequence alignment.CABIOS, 13(6), 625–626.

Thompson,J.D., Plewniak,F. and Poch,O. (1999a) BAliBASE: a
benchmark alignment database for the evaluation of multi-
ple alignment programs.Bioinformatics, 15(1), 87–88. See http:
//www-igbmc.u-strasbg.fr/BioInfo/BAliBASE/.

Thompson,J.D., Plewniak,F. and Poch,O. (1999b) A comprehensive
comparison of multiple sequence alignment programs.Nucleic
Acids Res., 27(13), 2682–2690.

Tönges,U., Perrey,S.W., Stoye,J. and Dress,A.W.M. (1996) A
general method for fast multiple sequence alignment.Gene, 172,
GC33–GC41.

Wang,L. and Jiang,T. (1994) On the complexity of multiple
sequence alignment.J. Comp. Biol., 1(4), 337–348.

814

