An iterative method for faster sum-of-pairs
multiple sequence alignment

Knut Reinert? Jens Stoye?* and Torsten Will®?

"Celera Genomics, Informatics Research, 45 West Gude Drive, Rockville, MD 20850,
USA, 2German Cancer Research Center (DKFZ), Theoretical Bioinformatics (H0300),
Im Neuenheimer Feld 280, 69120, Heidelberg, Germany and Research Center for
Interdisciplinary Studies on Structure Formation (FSPM), University of Bielefeld,
Postfach 100131, 33501, Bielefeld, Germany

Received on December 10, 1999; revised on March 13, 2000; accepted on May 5, 2000

Abstract specific problem. One widely used framework for such a
Motivation: Multiple sequence alignment is an important cost function is theweighted sum of pairg(W)SP) score
tool in computational biology. In order to solve the task with quasi-natural gap costs (Altschul, 1989; Gugtal.,
of computing multiple alignments in affordable time, the1995; Kececioglu and Zhang, 1998). Since the problem
most commonly used multiple alignment methods have tof computing optimal multiple alignments according to
use heuristics. Nevertheless, the computatiom@imal the SP score is NP complete (Wang and Jiang, 1994),
multiple alignments is important in its own right, and it usually in practice heuristic (tree-based) methods are
provides a means of evaluating heuristic approaches oused. Nevertheless, the computation of optimal multiple
serves as a subprocedure of heuristic alignment methodsalignments has its justification as a means of evaluating
Results: We present an algorithm that uses the divide-and-heuristic approaches or as a subprocedure of heuristic
conquer alignment approach together with recent resultsalignment methods like the recursive Divide-and-Conquer
on search space reduction to speed up the computatioAlignment algorithm (DCA; Dngeset al. (1996); Stoye
of multiple sequence alignments. The method is adaptivet al. (1997); Stoye (1998)). In fact we will show how
in that depending on the time one wants to spend omo combine an efficient procedure for computing optimal
the alignment, a better, up to optimal alignment can bemultiple alignments with this method such that the re-
obtained. To speed up the computation in the optimasulting procedure produces increasingly better alignments
alignment step, we apply thd* algorithm which leads that converge to an optimal one.
to a procedure provably more efficient than previous exact Formally, a global alignment oK > 2 sequences
algorithms. We also describe our implementation of theSy, ..., Sk over an alphabeE is aK x M matrix A =
algorithm and present results showing the effectivenes&y j), a,j € X U {—}, such that ignoring the blank
and limitations of the procedure. characters—, the ith row reproduces sequen&, and
Availability: http://bibiserv.techfak.uni-bielefeld.de/oma/ there is no column consisting only of blanks. A maximal
run of adjacent blank characters in a row is called a

Contact: j.stoye@dkfz.de gap. By A, i, . i, we denote the projection oA to the
sequences§,. S,, ..., S,.
I ntroduction For a pairwise projection of to S and Sy, letc(Ay k)

Multiple sequence alignment is an important tool in Com_be the cost of this projection which is usually defined

putational biology. Application areas include sequenc@sbtr:f[’ tsg;n gver all ts_ubstlltutlon COStISt V\;elghtedh by a
assembly, molecular modeling, protein structure—functio ubstitution score matrix, plus a penaily for each gap.

analysis, phylogenetic studies, database search, andien the overall Cosi(A) := 3y C(Ax) s called the

. : . o um of pairgSP) cost of the alignmera. If, in addition,
primer design. Depending on the application, a cosgve assign ti)(eac):h element oftﬁis sum a weight, then
function is defined that assigns a numerical value Qhe cost is called theveighted sum of pairs\NSIE’) cost

each_ pos;ible alignment, .and the hppe s that the Iowes[to simplify the discussion, however, we concentrate on
scoring alignments reveal important information about thethe SP cost function. Nevertheless, all results derived in

*To whom correspondence should be addressed. this paper hold for the WSP cost function as well.

4present address: mediaWays GmbHildtorstweg 30, 33415 Verl, Ger- The SP' mUItiple a”gnment prOb!em is qeﬁned as
many. follows. Given sequenceS, ..., &, find an alignment

808

praktikum2-ub
Rechteck

praktikum2-ub
Rechteck

An iterative method for faster sum-of-pairs multiple sequence alignment

S1 : X ---X approach in order to develop an iterative procedure for
52 : XX -XX computing multiple alignments with a nice time-versus-
S3 : X XXXX quality tradeoff. To our knowledge this novel algorithm

is the first to improve its result up to optimality—given
enough resources—while being able to quickly yield good
Fig. 1. lllustration of natural and quasi-natural gap counts. Theintermediate results.
‘natural’ number of gaps summed over each pair of sequences is
three (one gap in each pair) while tiggiasi-natural’ number is four The A* algorithm in multiple alignment

between the first and second sequence two gaps are counted). . .
(a gap) An alignment of theK sequences can be interpreted as a

A that minimizesc(A). We will denote such an optimal path in aK-d|m_enS|onaI 9?'9‘ graple = (V, E) with a
alignment byA°Pt, sources and a sink. In addition we add a dummy no@b

The gap penalty implied by the pairwise projection cost2nd an edge frond o s. A nodev = (vi, ..., vk) in
(A k) usually depends on the length of the gap. Forthe grid naturally divides e_ach sequenBgin a prdix
pairwise alignments, the class of affigap cost functions %k ‘= S[1.v] and a suffixoy := Sd(vk + 1)..Nk]
with a relatively highgap initiation cost(gapinit) for ~ Where Sli..j] denotes the substring @ starting with
the first blank character and a smaltgp extension cost the ith and ending with thejth character ofS. Each
(gapex) for each additional blank character is widely Path starting ind and ending with an edge = (u,v)
acknowledged to yield good results. Although it is alsocorresponds to one possible alignment of the pesfi
possible to use affie gap costs for multiple alignments, @1, - - -, @i - (The dummy node and edge ensure there is a
Altschul (1989) pointed out that this is impractical for path corresponding to the empty prefixes of all sequences.)
even a modest number of sequences. He proposed inste@tnilarly, each path starting with an edge= (u, v)
a simpler gap cost function, callequasi-natural gap and ending with an edgé = (p,t) corresponds to an
costs This function miscounts the true number of gaps inalignment of the sufkesoy, ..., oy .
a multiple alignment by only a small amount and hence The cost of an edge is th8 P cost of the alignment
is regarded a good approximation of thdirsd gap cost column corresponding to the edge. Let us denote the set
measure. As an example, see Figure 1 for an alignmemf all paths starting with an edgeand ending with an
where the ‘naturalnumber of gaps summed over eachedgef by e — f. We denote the shortest pathén~ f
pair of sequences is three (one gap in each pair) whilby e —* f and its cost by(e —* f).
the ‘quasi-natural’ number is four (between the first and Lete = (u,v) and f = (v, w) be two adjacent edges.
second sequence two gaps are counted). Then the cost of preceded by & ddined as

Like most alignment problems, the SP multiple align-
ment problem with quasi-natural gap costs can be solved c(f|e) :=c(d —* e) + c(f) + gapcoste, f),
by dynamic programming which yields an algorithm . .
wih tme complexityO(2 %) and space complexity 21, e GOLof (e shortest path ending itz the

O(N), whereN = [T; Ni with Ni being the length of the setting of quasi-natural gap costs that we consider, we
sequences. This is feasible only for very small problem have

instances. Gupt&t al. (1995) presented a branch-and- gapcoste.)

bound algorithm whose implementation—called MSA i _ _

: .) 0 if (wg = vk andwy = vy)

in what follows—can optimally align some examples of or (wx = vk + 1 andwy = v + 1)

six sequences of length 250 in a few minutes. Larger =) { gapext if (wk = vk +1= Uk +2anduy = v = Uy)

examples, however, require excessive space. k<k’ gapinit ?nf a(ﬁ”gt;:lé;:slf andwy = v + 1= Uy +2)
In this paper we apply the so-called* algorithm to

multiple alignment. Similar to the algorithm used in MSA, Whereu = (u1,...,Uk), v = (v1,...,vk), andw =

it computes a shortest path in the dynamic programming®1, - - -, WK).

graph, but with redefined edge weights, which reduces the Of course it is not feasible to compute a shortest path
search space considerably (see Horton (1997); Shibuy& the full grid graph whose size i©(N), where, as
and Imai (1997); Lermen and Reinert (to appear)). Ougbove,N = []; Ni. Guptaet al. (1995) applied Dijkstra’s
two main contributions are (1) to provide an efficient algorithm together with a bounding procedure that reduces
implementation of the4* algorithm for exactly solving the number of edges that have to be visited. The algorithm
the SP alignment problem with quasi-natural gap costgyses a priority queu& in which new edges are only
which can be shown to be superior to the Carrillo—inserted if potentially an optimal path can pass through
Lipman bounding (Carrillo and Lipman, 1988) applied in them. Given an edgé = (v, w) adjacent to the current
MSA, and (2) to combine this algorithm with the DCA edgee = (u, v), this can be determined by using an upper

809

K.Reinert et al.

boundU on the cost of an optimal alignment (obtained by lter ative improvement using DCA

a heuristic alignment) and a lower bound As described above, thé* algorithm uses an upper bound
opt, w _w U for the alignment cost to speed up the computation

L(w) = ZC(A (0 oy)) D of an optimal alignment. For the computation of the
k<k upper bound we use the Divide-and-Conquer Alignment

@lgorithm (DCA; Tongeset al. (1996); Stoyeet al. (1997),
Stoye (1998)). We first describe the basic DCA algorithm,
and then we describe how the interchangeable use of DCA
and the optimal alignment procedure applied to parts of
the sequences can be used to successively improve an
. : initial heuristic alignment, up to optimality. Alternatively,

Is already greater than an upper bolhdhen no optimal the algorithm can be stopped after a predetermined time,

alignment can go througf. Additionally, their approach .~ e S
employs the so-called Carrillo-Lipman bounding (Carrilloy'eldmg a heuristic alignment which is provably nearer to
the optimum the more time was spent.

and Lipman, 1988) which further excludes edges from
consideration based on the following theorem: The basic DCA method

on the cost of an optimal alignment of the suffixes that ar
induced byw. The edgef = (v, w) is only inserted inta
if c(fle) + L(w) < U. That means, if the sum of the cost
of the optimal path starting witt and ending witte plus
the cost off, the gap penalty, and the lower boubhd¢w),

The DCA method allows to quickly compute heuris-
tic multiple sequence alignments. In contrast to other,
tree-based, multiple alignment heuristics, DCA aims at
optimizing the SP alignment score with quasi-natural
gap costs, which makes it a logical choice to use in
combination with the A*-based optimal alignment
algorithm.

A sketch of the DCA method is shown in Figure 2.
N . . . The sequences (denoted by the horizontal bars) are cut
The.A* algorithm employs basically the same boundmgat certain positions near to their center, in the sequel

procedure as in Guptet al. (1995), however with rede- dialled cut positions(denoted by the small vertical tics).

THEOREM 1 (Carrillo, Lipman). Let A°P' be an opti-
mal alignment of the K strings;S.. ., Sk, L := L(s) the
lower bound defined in Equation (1) and & c(Aneur
an upper bound for @A°PY). Then the following inequality
holds for every projection on a pair S5; of sequences:

(AT < c(A(S.) +U — L.

fined edge costs. Thereby it speeds up computations by di-_. . - o
recting the search of a shortest path more towards the si Jis divides the problem of aligning (long) sequences

nodet. (The_refo_re this technique is also call€al Di- and K suffix sequences. Assuming that it is possible to
rected Unidirectional SearcfGDUS) (Lengauer, 1990).) ,mpyte optimal alignments of these two sets of shorter
It redetlnes the costs of all edges= (u,v) € E asfol- geqiences, an alignment of the complete sequences is
lows: c'(e) := c(e) — I (u) +1(v), wherel(u) is a lower ,piained by just concatenating the prefix alignment and
bound for the cost of a shortest path starting with SOomgye syffix alignment. On the other hand, if the prefix resp.
edge adjacent to nodeand ending with an edge incident g fix sequences are still too long to be aligned optimally,
tot. If 1() fulfills the consistencgonditionc(e) +1(v) = the procedure is applied recursively until the sequences
I(w), ve = (u,v) € E, thenitis easy to show that the are of a length short enough to be tractable for the exact
redefinition of the edge costs does not change the optlm%j“gnmem procedure. To this end, DCA has a parameter
path and the edge costs are still positive, so Dijksted 7 “the stop length such that the recursion stops if the
gorithm with the simple bounding procedure can be useghaximal length of a sequence in a block drops belw
as before. We can choobe) := L (u), because. fulfills Certainly the choice of the cut positions is critical for
the consistency condition. Generally, the better the lowethe success of the DCA procedure, and inadequate cut
boundl is in the redefinition of the edge costs, the bettemositions in an early division step can deteriorate the
the GDUS works. whole alignment. It has been shown that the heuristics
It is worthwile noting that it can be shown (Horton, of minimal additional costsjields very good, in many
1997; Lermen and Reinert, to appear) that the aboveases optimal cut positions. Minimal additional cost cut
redefinition of edge costs implies the Carrillo-Lipman positions are defined by means of forward/backward
bound from Theorem 1 using as lower bound. matrices (which are well known from the study of local
We used this result to implement an exact multiplesequence similarities and suboptimal alignments) for all
sequence alignment algorithm that provably explores apairs of sequences. These matrices allow for any pair of
most as many nodes as any algorithm using Carrillo-eut positions to quickly assess the overhead of cutting
Lipman bounding. In the next section we describe howand combining the best possible alignment of the resulting
we make use of this algorithm in our newly proposedprefixes and suffixes, as opposed to an optimal alignment
heuristics. of the complete (un-cut) sequences, called the additional

NKto the two problems of aligning the (shortdf) prefix

810

An iterative method for faster sum-of-pairs multiple sequence alignment

‘fusing’ two short alignments, because with quasi-natural
gap costs the alignment score is not additive. The problem
becomes apparent if one focuses on a gap that runs
through a cut point. In the final alignment, of course, the
gap initiation cost will be imposed only once on this gap.
During the construction, however, when the parts on the
divide \ / divide \ left and right hand side of the cut position are aligned in-
dependently, it is not clear, if such a gap will be continued
on the other side of the cut position. Hence, in order to use
l a valid upper bound, the gap initiation cost must be added
on either side of the cut. This way, the sum of the costs
for the small alignments will be higher than the cost of the
alignment obtained by concatenating all small alignments.

divide

Il
I

~

l l alignoptimallyl

N \eomaenae)

Implementation

We have implemented the algorithms described in the pre-
vious sections as a C++ library of classes for the alignment
of sequences callgdMA (which is short folOptimal Mul-
Fig. 2. The basic Divide-and-Conquer Alignment method. tiple Alignmeny}, built upon theLibrary of Efficient Data
stuctures and Algorithm§LEDA; Mehlhorn and Nher
(1999)). Note that using the library approach and the use
cost imposed by the cut positions. TKecut positions are of C++. classe;s, one has to expect a fairly large constant
aiactor in running time and memory usage. Nevertheless,

then selected, so that the sum of all pairwise addition : . .
) N X _our main emphasis was to create an open library that eas-
costs is minimized. For more details on the definition.

and computation of cut positions, a number of variationsIIy can be modified and/or extended. We have compiled an
P P ’ executable calledmawhich is freely available from the

and efficient speed-up techniques, see (Stoye, 1998) andoss nitp://bibiserv.techfak.uni-bielefeld.defomal. It is

references therein. the basis for the computations of the Results section.
lterative improvement of the upper bound To speed up the computation or to improve the result,
we have included immasome additional techniques from
the literature which we briefly review next. Most of these
features are optional and can be switched off by the user.

DCA called with a small value o allows to quickly
compute an upper bound for the A*-based optimal
alignment procedure. However, not only tdé algorithm

can use DCA, but both programs can benefit from eaclace pounding If one does not insist on a provably
other: DCA adheres a time versus quality tradeoff; theyptimal alignment, one can use a simple heuristic to
larger one chooses the parameZgithe (provably) better speed up the procedure considerably. This so-called
is the alignment one gets, while the computation timeface houndingGuptaet al, 1995; Lermen and Reinert,
increases due to the Iarger Optlmal alignments to b% appear) is emp|oyed by deﬁning for each pair of
computed. This motivates an iterative combination of bothsequencegk, k') a non-negative constariPS x, and
DCA and the optimal alignment procedure: Successivelyjhen making the (not always true) assumption that any
we call DCA with increasing values & where, at each alignment cannot be optimal that passes a node the
step, we can use the values of the corresponding parti@lrid graph with c(AOPt(af(’, al)) + c(AOPt(olf, o) >
alignments from the prfevious step Fo com_pute an Uppeg(A°PY(S,, S¢)) + EPS k. This way the exploration of
bound for the computation of an optimal alignment usingthe grid graph is artificially bounded to a banded region
the A* algorithm. Moreover, we can stop at any point of ground the best paths, similar to two-dimensional banded
this procedure and have a heuristic alignment. The longeslignments (Myers, 1986). The impact of this effect can
we wait, the better is the alignment—up to optimal. To ourpe controlled by a parameter, and it can be switched off
knowledge this is the first iterative alignment algorithm completely so that an optimal alignment is guaranteed, at
that provably converges to an optimal alignment. the expense of considerably higher resource requirements.
Note that for iteratively computing better DCA align-
ments with largerZ-values one only has to compute the Gray code enumeration Both Guptaet al. (1995) and
cut positions once for the smallest values&f Larger Lermen and Reinert (to appear) point out that the iteration
Z-values are obtained by ‘ignoring’ intermediate cutover all outgoing edges of a node can be efficiently
positions. However, one has to be careful when this waperfomed by enumerating the neighbours of a node in

811

K.Reinert et al.

Gray codesuccession. The2— 1 edges outgoing from Results

a given node are numbered in binary, usikg bits. = We have runomaon a number of alignment problems

When evaluating the node, the Gray code enumeratiofrom the Benchmark Alignments Database (BAIIBASE;
guarantees that from one outgoing edge to the othedhompsonet al. (1999a)). All runs were performed on

only one bit in the binary representation changes and tha Sun Ultra Enterprise 450 with 400 MHz processors.

overall enumeration take®(K) time. This allows an Jobs were limited to 2 GB of memory and 12 h of
efficient computation in many internal loops. CPU time. We used a distance version of DayloRAM

250 matrix with quasi-natural gap costs as the alignment
d cost function, sequence weighting was switched off and

Re-alignment at cut positions It has been observe . SO
end-gaps were penalized like internal gaps. The general

(Stoye et al, 1997) that alignments created by DCA
sometimes contain obvious errors in the neighbourhood o

user to specify avindow size W= 0. After the final step 55 tation time and memory. If we stop the computation
of the divide-and-conquer procedure, the concatenation ofer 1 min, we get a (sub-optimal) alignment in all test

the short alignments, a window of si¥¢ is placed across ¢ases from theeferencelsubset of BAIIBASE. A few
each cut position, and inside this window the sequencegetailed results follow.
are re-aligned optimally. Re-alignment usually leads to Figure 3 shows for increasing valuesdthe behaviour
small local improvements of the alignment. This featureof oma on the test set 1cpt fromeferencelof BAIi-
is included inomaas well, but, of course, it makes sense BASE, containing four cytochrome p450 sequences. The
only for iterations where is larger than the window size. sequence lengths range from 378 to 434 amino acids, and

the average sequence identity is 20%. One can see the
Sequence weighting To avoid overweighting redundant monotonically decreasing alignment cost, and how the
information that can arise, e.g. from some identical orcOSt of the heuristic alignment upper-bounds the score
highly similar sequences in the sequence eetg like O the omaalignment. As noted above, we have two
DCA, aims at optimizing aveightedsum-of-pairs score of UPP€r bound values: the lower one, which is just the
the formc(A) := 3y . wi k C(Ay k). The weight factors ahgnmerz]r_lthcpst hof 'Ifhe previous |terat|%n,band tlh_ellargedr
wg are computed from the pairwise distances betweef o' WHiCh 15 the lower one increased by multiple en
he Hiah ht . o th ap costs Whene\{er a gap runs through a cut point. A
t.e.seque.nces. Igher weights are given 1o the morg, . close-to-optimal alignment is obtained already after
similar pairs, as having them aligned optimally shouldy e,y jterations. However, the many very short alignments
be more important than aligning two fairly unrelated compyted in the beginning take longer time than the fewer
sequences optimally at the expense of worsening a goq@ut still relatively short) alignments aroundl = 32.
alignment of closely related sequences. The strength atven though the upper bound is already very close to the
weighting can be controlled by a parametetheweight optimal alignment score, the last step & 512) which
intensity which can be adjusted by the user to any valueyields the optimal alignment takes by far the longest time
betweenr = 0 (no weighting) and. = 1 (maximum to compute.
weighting). Alternatively, arbitrary user-defined weights For comparison reasons, we have also run this example
can be provided. without the A* strategy. Here the computation f@r =

512 could not be performed within the 2 GB of available

Paralldization We have considered parallelizing the memory. The number of edges explored in the search

algorithms included iOMA. Obviously, the subproblems Phase of the last alignment step which could be run, for
= 256, increases from4 x 10° (with 4*) to 2.2 x 10°

obtained after cutting the sequences can be handleav.th A%, Th tation time i f 180
independently, and hence can be computed in parallel on |54(s);us)- The computation time increases from S

different processors with distributed memory. During the
program development we have kept this in mind, and We,
have compiled a multi-threaded versionaoha However, s givided in distantly related, closer, and closely related
this does not help in the final optimal alignment step Ofsequences (see the coluramg.id). The alignment cost
the complete sequences. Introducing parallelization hergng, in parentheses, the running time and memory usage
would mean to parallelize the priority queue using e.g.of omais shown at two differenZ-values. The firstz-
methods described in Brodal (1999), which needed shareghjue (calledZmax) was chosen such that the program
memory. This, however, is out of the scope of the currentlid not use more than 2 GB of memory and did not run
implementation. longer than 12 h, whereas the secoddvalue is half

Table 1 shows some more results on short (top), medium
ngth (middle), and long (bottom) sequences. Each block

812

An iterative method for faster sum-of-pairs multiple sequence alignment

Table 1. SP alignment cost, computation time and memory usagenaf MSA and DCA for selected test sets fraaferencelof BAIIBASE. The best score

in each line is printed in bold face

Testset K Length avg.id. Zmax omaat Zmax omaat Zmax/2 MSA DCA
1ubi 4 76-94 18 128 8631 (37.9s5,21MB) 8631 (6.0s,2MB) 8639 (0.65,3MB) 8685 (0.4s,3MB)
wit 5 89-106 17 12816517 (2.0min, 36 MB) 16523 (4.0s,2MB) 16533 (2.15,3MB) 16610 (0.4s,3 MB)
3cyr 4 95-109 31 128 9888 (43s,2MB) 9888 (4.6s,2MB) 9888 (0.4s,3MB) 9888 (0.3s,3MB)
1pfc 5 108-117 28 12817708 (20.0s,2MB) 17708 (5.7s,2MB) 17710 (1.0s,3MB) 17771 (0.4, 3 MB)
fmb 4 98-104 49 128 8304 (3.3s,2MB) 8804 (3.0s,2MB) 8804 (0.2s5,2MB) 8804 (0.5s,2MB)
1fkj 5 98-110 44 128 15809 (43s,2MB) 15815 (3.65,2MB) 15815 (0.3s,3MB) 15815 (0.65s,2MB)
3grs 4 201-237 14 12823478 (22.05,2MB) 23491 (9.9s5,2MB) 23489 (2.2min, 14 MB) 23590 (0.8, 2 MB)
1sbp 5 224263 19 12843115 (62.9 min, 668 MB) 43188 (2.1 min, 70 MB) - >(12 h) 43581 (1.1s,2MB)
lad2 4 203-213 30 25619714 (14.7s,2MB) 19714 (9.6s,2MB) 19726 (0.6s5,3MB) 19716 (0.5s,3MB)
2cba 5 237-259 26 12840281 (15.4 min, 183 MB) 40295 (17.9s,2 MB)40281 (63.0 min, 69 MB) 40496 (0.9s, 3 MB)
1zin 4 206-216 42 25619110 (8.0s,2MB) 19110 (6.8s,2MB) 19110 (0.5s5,2MB) 19110 (0.7s,2MB)
lamk 5 242-254 49 12836659 (11.0s,2MB) 36659 (10.8s5,2MB) 36659 (0.95,2MB) 36659 (0.9s,2MB)
2myr 4 340-474 16 12843541 (2.1min, 53 MB) 43629 (21.8s,2 MB) - >(12 h) 43834 (1.6s,2MB)
lpamA 5 435-572 18 6486357 (7.6 min, 62 MB) 86482 (27.2s, 2 MB) - >(2GB) 86923 (2.7s,2MB)
lacs 4 421-483 29 128 43341 (34.5s,16 MB) 43380 (18.3s,2 MEB25 (22.2min, 32 MB) 43513 (155, 2 MB)
2ack 5 452-482 28 12877139 (24.9 min, 234 MB) 77161 (67.55, 31 MB) - >(12h) 77422 (2.2's,2 MB)
lad3 4 424-447 47 256 39218 (15.8s5,2MB) 39218 (13.25,2ME209 (1.75,2MB) 39225 (1.0s,2MB)
ithA 5 526-541 42 25680352 (36.3s,15MB) 80352 (26.85,2MB) 80358 (4.75,2MB) 80449 (2.1s,2MB)
41000 e i mertased By mttore S g 100000 Note that the running time and memory usage of
soano } “PP‘”b"“":mvg“g.?g“n‘;gﬂﬁt;fg """" omanot only depends on the number and length of the
T] v input sequences but—like for many multiple alignment
a0600 | programs—it also depends on the similarity of the se-
- ! guences (although there are counter examples). This is
g wmor 13 due to a more effective reduction of the search space
5 oo | Y @n branch-and-bound type algorithms for easy problem
5 £ instances.
© 40000 We have also investigated the biological quality of the
som00 1 (sub-) optimal alignments computed byna To this end
: we have used the test progrdmali_scorethat comes with
30600 | o BAIIBASE The authors of BAIIBASE have defined core
ey P VT —— blocks of their alignments, anbali_score computes a

DCA stop length Z percentage of correctly aligned residue pairs within these

core regions (see Thompseh al. (1999b) for a detailed
description of the evaluation procedure). Averaged over
all test sets fromeferencelof BAIIBASE, we obtain the

of the first one. This shows the tremendous decrease ifr%)IIOWIng results: For the alignments of the group with

runnning time by only going back one step in the iteration.<2'.5% average identityymacorrectly aligns 60% of the
For corr?parison){ weyhgavegcomputed aligpnments with théesldues In th? core blocks. In.the group between 20
programs MSA and DCA. These results are shown irgnd 40% identity, 92% of the' residues in the core blocks
Table 1 as well. Only in few cases thenaalignment has a &ré successfully aligned, and in the group above 35%, 94%
higher cost than the MSA alignment, while in several case8f the residues in core blocks are aligned correctly. These
MSA computes worse alignments or is unable to comput¥@lues are almost exactly the values achieved by the best
any alignment with the given resources. DCA usually isPerforming alignment programs in the study of Thompson
the fastest method, but most of the alignments are worset al. (1999b).

than those computed bymaor MSA. For the complete In a final experiment, we have investigated the maximal
results on all test sets fromeferencelof BAIIBASE, see number of sequences that we can align optimally with
http://bibiserv.techfak.uni-bielefeld.de/oma/. our method. Therefore,we have selected a large family

Fig. 3. The successive improvement of the alignment cost.

813

K.Reinert et al.

Table 2. Computation time and memory usageoofiafor different numbers ous support of this project. We would also like to thank the
K of cytochrome C sequences Max-Planck-Institut (MP!) @ir Informatik in Saarhiicken
for generously making their computer facilities available

K Time [s] Memory [MB] to us.
1 2.0 6.7 References
2 2.3 6.7 . .
3 28 6.7 Altschul,S.F. (1989) Gap costs for multiple sequence alignnient.
4 37 77 Theor. Biol, 138, 297-309.
Brodal,G.S. (1999) Priority queues on parallel machifesallel
5 5.2 8.8 Comput, 25(8), 987-1011.
6 5.3 9.1 carrillo,H. and Lipman,D. (1988) The multiple sequence alignment
; 57;; igg problem in biology SIAM J. Appl. Math.48(5), 1073-1082.

Gupta,S.K., Kececioglu,J.D. and Sdfer,A.A. (1995) Improving
the practical space and time efficiency of the shortest-paths

1?) ig'i 13’615 approach to sum-of-pairs multiple sequence alignmkr@omp.

11 795 31.4 BIO'., 2(3), 459-472.

12 197.8 45.8 Horton,P. (1997) String Algorithms and Machine Learning Applica-
tions for Computational BiologyP?hD dissertation University

13 883.0 84.2 of California, Berkeley, CA.

14 4305.5 149.5 Kececioglu,J.D. and Zhang,W. (1998) Aligning alignments. In

15 22197.6 298.8 Farach,M. (ed.), Proceedings of CPM 199Becture Notes in

16 72856.9 1051.1

Computer Science 1448, Springer Verlag, Berlin, pp. 189-208.

Lengauer,T. (1990Combinatorial Algorithms for Integrated Cir-
o . cuit Layout Wiley-Teubner, Chichester.

of very similar protein sequences, cytochrome C. Du€ tqQ grmen, M. and ReinertK. (to appear) The practical use of the
the high similarity of cytochrome C, the correct multiple 4+ aigorithm for exact multiple sequence alignmehtComp.
alignment is not a great challenge. It is easily obtained Biol., Accepted for publication. (See al3echnical Report 97-
by hand, and most automatic methods produce quite 1-028 MPI furlnformatik, Saarkiicken, Germany, 1997.)
successfully almost the same alignment. However, fofenlhorn,K. and Mher,S. (1999)EDA: A Platform for Combina-
theoretical reasons we wanted to find out wherea torial and Geometric ComputingCambridge University Press,
reaches its limits. The results are presented in Table 2. One Cambridge, UK.
observes rather moderate resource requirements for up tyers,E.W. (1986) AnO(N D) difference algorithm and its varia-
12 sequences. Above this value, the exponential increase tions.Algorithmica 1, 251-266.
becomes very apparent. Note that these values only holhibuya, T. and Imai,H. (1997) New flexible approaches for multiple
for the very similar sequences used in this experiment. In sequence alignment. Comp. Biol. 4(3), 385-413.
a realistic setting, one has to expect much higher resourcgoye,J. (1998) Multiple sequence alignment with the divide-and-

requirements, see the results presented above. conquer methodseneg 211, GC45-GC56.
Stoye,J., Moulton,V. and Dress,A.W.M. (1997) DCA: an efficient
Conclusion implementation of the divide-and-conquer approach to simulta-

We have presented a new iterative alignment algorithm "e°uS Multiple sequence alignme@ABIOS 13(6), 625-626.
that combines an improved algorithm for the optimal Thompson.J.D., Plewniak,F. and Poch,O. (1999a) BAIBASE: a
alignment of multiple biological sequences based on benchmark alignment database for the evaluation of multi-
the A* algorithm with the recursive Divide-and-Conquer ple alignment program$ioinformatics 15(1), 87-88. See http:
Al % thod. Alth h sill t Ve f Iq IIwww-igbmec.u-strasbg.fr/Biolnfo/BAIIBASE/.
t I%nmten m% I(')) th (t)ugth?hl' 00 eXpe?]Slve or airg(_:‘rt'l'hompson,.].D.,PIewniak,F. and Poch,0O. (1999b) A comprehensive
hes sfe S, We believe ‘?hw'_ IIS approac V_Ve eiire CIO,S? 0 comparison of multiple sequence alignment prograNgcleic

ow far one can get with simultaneous, optimal multiple Acids Res.27(13), 2682—2690.

sequence alignment. Tonges,U., Perrey,S.W., Stoye,J. and Dress,A.W.M. (1996) A

general method for fast multiple sequence alignm@ene 172,
Acknowledgements GC33-GC41.
We would like to thank Andreas Dress and Robertwang,L. and Jiang,T. (1994) On the complexity of multiple
Giegerich for helpful conversations as well as for continu- sequence alignment. Comp. Biol. 1(4), 337-348.

814

