
P e r g a m o n
Appl. Math. Lett. Vol. 10, No. 2, pp. 67-73, 1997

Copyright©1997 Elsevier Science Ltd
Printed in Great Britain. All rights reserved

0893-9659/97 $17.00 + 0.00
PII: S0893-9659(97)00013-X

Improving the Divide-and-Conquer
Approach to Sum-of-Pairs

Multiple Sequence Alignment

J . S T O Y E
Research Center for Interdisciplinary Studies on Structure Formation (FSPM)

University of Bielefeld
Postfach 10 01 31, D-33501 Bielefeld, Germany

stoye~mathematik, uni-bielefeld, de

S. W. PERREY
Department of Mathematics, Massey University

Palmerston North, New Zealand
S. W. Perrey©massey. ac. nz

A. W. M. DRESS
Research Center for Interdisciplinary Studies on Structure Formation (FSPM)

University of Bielefeld
Postfach 10 01 31, D-33501 Bielefeld, Germany

dress~mathematik, uni-bielefeld, de

(Received May 1996; accepted August 1996)

A b s t r a c t - - W e consider the problem of multiple sequence alignment: given k sequences of length
at most n and a certain scoring function, find an alignment that minimizes the corresponding "sum
of pairs" distance score.

We generalize the divide-and-conquer technique described in [1,2], and present new ideas on how
to use efficient search strategies for saving computer memory and accelerating the procedure for three
or more sequences. Resulting running times and memory usage are shown for several test cases.

Keywords - - -Mul t ip l e sequence alignment, Dynamic programming, Divide-and-conquer.

1. I N T R O D U C T I O N

Mult ip le sequence a l ignment is an impor t an t problem in computa t iona l molecular biology, and

m a n y algor i thms have been presented in this area of research (for a recent compar ison see [3]).

Since the problem of comput ing opt imal a l ignments with respect to the "sum-of-pairs" cr i ter ion

and most of its var iants are NP-hard [4], m a n y approximat ive a lgori thms have been proposed

(e.g., [5-8]), Unfor tunate ly , a lmost all of these methods ei ther exhibi t a prohibi t ive computa t iona l

complexi ty or yield biologically unplaus ib le results. Wi th our algori thm, we t ry to con t r ibu te

towards improving this s i tuat ion.

The authors wish to thank R. Giegerich and U. T6nges for helpful comments on an earlier version of this paper.
Part of this work is supported by the German Ministry for Education, Science, Research, and Technology (BMBF)
under Grant Number 01 IB 301 B4.

Typeset by ~4A/~-TEX

67

praktikum2-ub
Rechteck

praktikum2-ub
Rechteck

68 J. STOYE et al.

2. T H E P R O B L E M

Let us consider a finite alphabet ,4, k sequences $1, s2 , . . . , 8k over ,4 of length nl , n2 , nk,
respectively, and an additional letter, say ' - ' , not contained in ,4, which symbolizes gaps. An
alignment of sl, s 2 , . . . , sk is given by a k x N matrix M = (mij)l<_i<_k,l<_j<_N for some N <

k ~-~i=1 ni, with entries mij E ,4 (.J { - } subject to the following constraints: it does not contain
any column consisting of gaps only, and for each i = 1 ,2 , . . . , k, the row (mi l ,m i2 , . . . , miN)
reproduces the sequence si upon eliminating all of its gap letters.

The weighted sum of pairs multiple sequence alignment problem can now be described as follows
(cf. [9]): given 81, S 2 , . . . , Sk, and given a scoring function D : (,4 tA {_})2 __, R, defined on all
possible pairs of letters, find an optimal alignment M, i.e., an alignment that minimizes

w(M) := ~ ~P,q" Z D(mpj,mqj) ,
l<p<q<k j = l

where the Otp,q are sequence dependent (nonnegative) weight factors reflecting, e.g., phylogenetic
relationship. The resulting score is also denoted by Wop(Sl,... , sk).

It is well known that the multiple sequence alignment problem can be solved optimally by
dynamic programming [10,11] with running time proportional to 2 k k • I-Ii=l ni, searching for a

k shortest alignment path in a directed graph with I-L=1 ni vertices. Faster variants and a number
of speedups of dynamic programming have, therefore, been proposed (e.g., [9,12]). Unfortunately,
most of these approaches still need exceedingly large computing time and computer memory when
applied to more than, say, six protein sequences of average length 300.

3. T H E B A S I C A L G O R I T H M

Our algorithm, previously described in [1,2] for the restricted case of three sequences, works
according to the well-known divide-and-conquer principle: each of the given k sequences is being
cut at an appropriately chosen site somewhere near to its midpoint, this way reducing the original
alignment problem to the two subproblems of aligning the two resulting groups of prefix and suffix
subsequences, respectively. These will be handled by the same procedure in a recursive manner.
The recursion stops when the remaining subsequences are short enough (e.g., shorter than a
pregiven threshold L) to be aligned by a standard procedure--in our implementation, we use
SSA [13,1a].

The main problem is to find a tuple of ideal slicing sites (cl,c2,...,ck) so that the simple

concatenation of the two optimal alignments of the prefixes z Sl(< ci), s2(< c2),..., sk(< ck)

and the suffixes Sl(> Cl), 82(> C2),.-., 8k(~ > Ck) forms an optimal alignment of the original
sequences.

Obviously, for any fixed site Cl (1 < cl _< nl) , there exists a (k - 1)-tuple (c2(~1),... ,ck(~l)),
such that (51,c2(~x),...,ck(~l)) forms a k-tuple of ideal slicing sites. Unfortunately, finding
these points requires searching the whole k-dimensional hypercube, requiring as much time as
the standard dynamic programming procedure. So, of course, this is not the method of choice.

Instead, our algorithm tries to find so-called C-optimal slicing sites that are based on pairwise
sequence comparisons, only. More precisely, we use the dynamic programming procedure which
we apply to all pairs of sequences (sp, sq). The resulting score matrices for pairwise alignment
give rise to additional cost matrices

Csp,Sq lap, Cq] "= Wop (Sp(~ Cp), 8q(~ Cq)) + Wop (8p(> Cp), 8q(> Cq)) - Wop (Sp, 8q),

IHere, sp (<_ cp) denotes the prefix subsequence of sp with indices running from 1 to cp, and s n (> cp) denotes the
suffix subsequence of sp with indices running from cp + 1 to np, i _< p _< k.

Divide-and-Conquer Approach 69

which contain the additional charge imposed by forcing the alignment path to run through a
particular vertex (Cp, Cq) (1 <_ p < q <_ k). The calculation of C~,,s~ can be performed by
computing forward and reverse matrices in a similar way as it is described in [15,16], respectively.

Note that there exists, for every fixed 5p, at least one slicing site Cq(Sp) with Cs,,sq[Sp,
cq(~p)] = 0. This follows from the facts that the vertices on an optimal pairwise alignment
path are precisely those with no additional cost, and that every alignment path meets at least
once every position of the two sequences.

To search for a good k-tuple of slicing sites, we t ry to estimate the multiple additional cost
imposed by forcing the multiple alignment path of the sequences through the particular vertex
(cl, c 2 , . . . , ck) in the whole (k-dimensional) hypercube associated with the corresponding align-
ment problem. To this end, we use a weighted sum of additional costs over all projections (Cp, cq)
as such an estimate: we put

C(C1,C2,'",Ck) :---- ~ °lp,q'Csp,sq[Cp, Cq],
l<p<q<_k

where the Olp,q a r e the same sequence dependent weight factors as above.
Our proposition, is now that C-optimal slicing sites, i.e., (Cl, c2 , . . . , ck) that minimize C(Cl, c2,

. . . . ck), result in very good, if not optimal multiple alignments. In conclusion, this leads to the
following general procedure.

A l g o r i t h m d ~ c-.align (81, S 2 , . . . , 8k, L)

I f m a x { n l , n 2 , . . . , n k } ~_ L,
t h e n return the optimal alignment of sl, s 2 , . . . , sk (using, e.g., HSh);
e l s e return the concatenation of

d Sic-align (s i (< Cl), s2(_ < c~) , . . . , sk(_< ca), L),
and d ~ c-align (sl (> C1), 82 (> C2) , 8k(> Ck) , L),

where (Cl, c2 , . . . , Ck) := calc-cut(sl, s 2 , . . . , sk).

In the following section, we describe how to realize calc-cut, which computes a k-tuple of
C-optimal slicing sites.

4 . E F F I C I E N T L Y C A L C U L A T I N G T H E S L I C I N G S I T E S

In a naive implementation, the search calc-cut for C-optimal slicing sites (Cl, c2 , . . . , ck) needs
time O(k2n 2 +nk-1) , where n := max{n1, n 2 , . . . , nk}: the computation of all pairwise additional
cost matrices takes O(k2n 2) time and, for given cl, all possible combinations of c2 , . . . , ck have
to be checked to find the tuple that minimizes C in (..0(nk-1).

We reduce this running time and the required memory (@(k2n 2) for the naive version) by
the following approach: we precalculate an estimation C for C(cl, c2 , . . . , ck), which allows us to
prune the search space enormously. Because the multiple additional cost C(cl, c2 ,ck) is a
sum of nonnegative numbers ap,q. Csp,sq [%, Cq], it is possible to exclude a tuple of slicing sites

(Cl, c 2 , . . . , ck), whenever one of the summands O~p,q • Csp , s q [Cp, Cq] is larger than the minimum

found so far. In particular, for fixed Cl, any Cp with C~l,q • Cs~,s, [cl, cp] > C can never lead to a
smaller sum C.

With this in mind, a tuple of C-optimal slicing sites can be calculated as follows.

F u n c t i o n calc-cut (sl , s2, . . . , Sk)

1. Fix cx := [(n1/2)].
^

2. Calculate and save columns col~q[j] := Csl,sq[~l,j] (2 < q < k, 1 < j < nq).
3. Locate slicing sites c2, , gk such that col el . . . 1,q[~q] = 0 (2 < q < k).

70 J . STOYE et al.

4. Calculate the estimate

a:=
l<_p<q<k 2<p<q<k

where to calculate the entries Csp,Sq[Sp, 5q] (2 < p < q < k) only the memory for one

column col ep~q of order O(n) is needed at a time, since no part of the matrices C~p,sq has
to be saved.

Cl " 5. Calculate lower and upper bounds lq and Uq such that ~l,q • col 1,q~] >- C, for all j < lq,

and for all j > Uq (2 _< q < k). The intermediate segment eol~l,q[lq],... ,col~lq[Ua] forms

the relevant part of each column col ~l,q.
6. Given these bounds, compute and save the relevant parts of the matrices Cs.,sq, defined

by Csp,sq[i,j] with lp < i < up and lq < j <_ uq.
7. Search for better slicing sites (~l,C2(~z),...,ck(Ol)) within the relevant parts of the

columns col ~l,q and of the matrices Cs~,sq. Thereby, the sum C can be computed step

by step and the search can be stopped, if an intermediate result is larger than C. Dur-
ing this search, with decreasing values of C, the relevant part of the columns col ~l,q can
possibly be further reduced, decreasing the search space even more.

Obviously, the worst case time and space complexity of this approach still remain O(k2n2-{ - n k- 1)
and (9(k2n2), respectively, for the (very improbable) case where the bounds lp and Up can never be
increased or decreased, respectively. But for biological sequence families, the effect is enormous:
for calculating the first tuple of slicing sites in the recursion, which takes far the longest time of
all cut-site computations, the reduction from n to the length r := maXp=2 k{Up -- Ip + 1} of the
longest of the remaining relevant parts of the columns, is usually greater than 100 : 1 for small k,
yielding memory savings for the matrices of at least four orders of magnitude, and reducing the
expected time and space complexity to O(k2n 2 + r k- l) and O(kn + k2r2), respectively. More
detailed results concerning exact running times and memory usage are presented in Section 6.

5. F U R T H E R I M P R O V E M E N T S

In the actual implementation of d~c-align, the program MSA is called for every single group
of subsequences containing at least one subsequence of length at most L. It would be more
elegant to calculate all the slicing sites first (which is possible without the knowledge of any of
the subalignments) and then call MSA only once with the extra information concerning the slicing
sites. Although HSh is able to handle fixed parts of the alignment of length one or longer, it still
needs to be extended so as to accept fixed slicing sites, which from this point of view, can be
seen as fixing an alignment of zero length. Upon our request, the authors of MSA are working on
such an extension [17].

Another advantage expected from this approach, is that, with such a feature, MSh's ability of
dealing with biologically more reasonable quasinatural gap costs [18] and with a score function,
which does not penalize gaps at the beginning and the end of the alignment, will be carried over
automatically to our procedure.

To improve the quality of the alignments further, we propose a windowing approach to correct
the obtained alignments in the proximity of division sites. We suggest to choose a window
width W depending on the threshold L. Laying such a window across each slicing site, one may
search for an optimal realignment of the corresponding subsequences, again using for instance MSh.

6. R E S U L T S

To determine exact time and memory usage, our algorithm has been applied to several sets of
sequences obtained by a stochastical mutation process on random sequences of different lengths n
and alphabet size 20 denoting the set of amino acids. The sequences have a palrwise identity

D i v i d e - a n d - C o n q u e r A p p r o a c h 7 1

between 15 and 25 percent. All results shown are averages over ten different sequence sets. As
scoring function D, we used the PAM-250 distance matr ix [19] with positive entries between 0

and 25, and gap penalty 15.
From earlier measurements [2], we obtained a value of L := 40 for the stopping criterion to

guarantee near-to-optimal results: the score of the alignments calculated in these tests differs by
at most 1 percent from the score of the optimal alignment (in cases where we were able to check
this with HSh). The values of the weight factors O~p,q are calculated from the pairwise optimal
alignment scores Wop(Sp, Sq), according to the formula given in [2].

Figures 1 and 2 show plots of running time and memory usage, respectively, for sets of k =
3 , . . . , 9, sequences with different average length n on a Silicon Graphics workstation with a MIPS

R4000 CPU.

225

200

175

150

125

E
100

Q .

75

5 0

2 5

I

k=9 - -
k=8
k=7
k=6
k=5
k=4
k=3

/

i I
t

i
i S,, ..o..

. j t , : l - . , , " ' . . o
I

4
m

250 500 750 1000 1250 1500 1750 2000
n

F i g u r e 1. R u n n i n g t i m e s o f d #~ c-align.

5 i i I I I I I

k=9 - -
4.5] k=8 / k=7

k=6
4 k=5

k=4 ~ 3 . 5 k=3

==g 2.5 i ~ 2 .

1

0 . 5

0 i i , l
0 250 500 750 1000 1250 1500 1750 2000

n

F i g u r e 2. M e m o r y usage o f d ~ c-align.

As can be seen from these results, very fast calculation of high-quality alignments with rather
modera te memory usage is possible with d ~ c-align for up to seven sequences. In particular, the
near-to-linear growth of running t ime for sets with three and four sequences allows us to align

72 J. STOYE et al.

three sequences of length up to 9000, and four sequences of length up to 6000 wi th in 10 minutes ,

as fur ther measurement s have shown. In contrast , the compara t ive ly long r u n n i n g t ime for eight

and more sequences depends (in addi t ion to longer MSh-runs) on the smaller reduct ion (r / n) in

these cases (see Table 1), since the mult iple addi t ional cost C is a sum of (k2) summands , of

which only one is tes ted against 0 when de te rmin ing the bounds of the relevant regions.

Table 1. Ratio of relevant part to original size of columns col el averaged over 100 1 , q '
sets of k -- 3 , . . . , 9, sequences.

k 3 4 5 6 7 8 9
r

average - 0 . 0 0 9 0 . 0 2 3 0 . 0 7 3 0 . 1 7 0 0 . 2 4 2 0 . 3 8 9 0.608
n

Finally, we have invest igated whether the a l ignment scores improve upon using the windowing

approach ment ioned in Section 5. Table 2 shows the relative error of our score for four sets of

r a n d o m sequences wi th different k and n (i.e., the percentage of the opt imal score by which the

score ob ta ined by our a lgor i thm exceeds the opt imal one), for different values of L and W.

Table 2. Effect of windowing

k n L W - - 0 W = I L
4

60 0.00% 0.00%

3 I00 40 0.12% 0.00%

20 0.47% 0.35%

60 0.21% 0.18%

3 300 40 0.21% 0.18%

20 0.36% 0.35%

60 0.28% 0.12%

4 100 40 0.28% 0.18%

20 0.34% 0.18%

60 0.41% 0.41%

5 100 40 0.46% 0.42%

20 0.69% 0.69%

on alignments obtained with d ~4 c-align.

w = !L
2

o.0o%

0.0o%

0.25%

0.18%

0.18%

0.32%

0.12%

0.17%

0.18%

0.41%

0.42%

0.50%

W = L

0.00%

O.00%

0.25%

0.08%

0.17%

0.17%

0.00%

0.09%

0.17%

0.41%

0.42%

0.50%

R E F E R E N C E S
1. A.W.M. Dress, G. Fiillen and S.W. Perrey, A divide and conquer approach to multiple alignment, In Proc. of

the Third Conference on Intelligent Systems for Molecular Biology, ISMB 95, Menlo Park, CA, pp. 107-113,
AAAI Press, (1995).

2. U. T6nges, S.W. Perrey, J. Stoye and A.W.M. Dress, A general method for fast multiple sequence alignment,
Gent 172 (GC33-GC41), (1996).

3. M.A. McClure, T.K. Vasi and W.M. Fitch, Comparative analysis of multiple protein-sequence alignment
methods, Mol. Biol. Evol. 11 (4), 571-592, (1994).

4. L. Wang and T. Jiang, On the complexity of multiple sequence alignment, J. Comp. Biol. 1 (4), 337-348,
(1994).

5. D. Gusfield, Efficient methods for multiple sequence alignment with guaranteed error bounds, Bull. Math.
Biol. 55 (i), 141-154, (1993).

6. J. Kececioglu, The maximum weight trace problem in multiple sequence alignment, In Proc. of the ~ th Syrup.
on Combinatorial Pattern Matching, LNCS 684, pp. 106-119, (1993).

7. J.D. Thompson, D.C. Higgins and T.J. Gibson, CLUSTAL W: Improving the sensitivity of progressive
multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix
choice, Nucl. Acids Res. 22 (22), 4673-4680, (1994).

8. V. Bafna, E.L. Lawler and P.A. Pevzner, Approximation algorithms for multiple sequence alignment, In Proc.
of the 5 th Syrup. on Combinatorial Pattern Matching, LNCS 807, pp. 43-53, (1994).

9. H. Carillo and D. Lipman, The multiple sequence alignment problem in biology, S I A M J. Appl. Math. 48
(5), 1073-1082, (1988).

10. S.B. Needleman and C.D. Wunsch, A general method applicable to the search for similarities in the amino
acid sequence of two proteins, J. Mol. Biol. 48, 443-453, (1970).

Divide-and-Conquer Approach 73

11. M.S. Waterman, Introduction to computational biology, In Maps Sequences and Genomes, Chapman • Hall,
London, UK, (1995).

12. M. Murata, J.S. Richardson and J.L. Sussman, Simultaneous comparison of three protein sequences, Proc.
Natl. Acad. Sci. USA 82, 3073-3077, (1985).

13. D.J. Lipman, S.F. Altschul and J.D. Kececioglu, A tool for multiple sequence alignment, Proc. Natl. Aead.
Sci. USA 86, 4412-4415, (1989).

14. S.K. Gupta, J.D. Kececioglu and A.A. Sch~ffer, Improving the practical space and time efficiency of the
shortest-paths approach to sum-of-pairs multiple sequence alignment, J. Comp. Biol. 2 (3), 459-472, (1995).

15. E.W. Myers and W. Miller, Optimal alignments in linear space, CABIOS 4 (1), 11-17, (1988).
16. D. Naor and D.L. Brutlag, On near-optimal alignments of biological sequences, J. Comp. Biol. 1 (4), 349-366,

(1994).
17. A.A. Sch~ffer, Personal communication.
18. S.F. Altschul, Gap costs for multiple sequence alignment, J. Theor. Biol. 138, 297-309, (1989).
19. M.O. Dayhoff, R.M. Schwartz and B.C. Orcutt, A model of evolutionary change in proteins, In Atlas of

Protein Sequences and Structure, (Edited by M.O. Dayhoff), Volume 5, Suppl. 3, pp. 345-352, National
Biomedical Research Foundation, Washington, DC, (1978).

