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A b s t r a c t - - W e  consider the problem of multiple sequence alignment: given k sequences of length 
at most n and a certain scoring function, find an alignment that minimizes the corresponding "sum 
of pairs" distance score. 

We generalize the divide-and-conquer technique described in [1,2], and present new ideas on how 
to use efficient search strategies for saving computer memory and accelerating the procedure for three 
or more sequences. Resulting running times and memory usage are shown for several test cases. 

Keywords - - -Mul t ip l e  sequence alignment, Dynamic programming, Divide-and-conquer. 

1. I N T R O D U C T I O N  

Mult ip le  sequence a l ignment  is an  impor t an t  problem in computa t iona l  molecular  biology, and  

m a n y  algor i thms have been presented in this area of research (for a recent compar ison see [3]). 

Since the  problem of comput ing  opt imal  a l ignments  with respect to the  "sum-of-pairs" cr i ter ion 

and  most  of its var iants  are NP-hard  [4], m a n y  approximat ive  a lgori thms have been proposed 

(e.g., [5-8]), Unfor tunate ly ,  a lmost  all of these methods  ei ther  exhibi t  a prohibi t ive  computa t iona l  

complexi ty  or yield biologically unplaus ib le  results. Wi th  our  algori thm, we t ry  to con t r ibu te  

towards improving  this s i tuat ion.  

The authors wish to thank R. Giegerich and U. T6nges for helpful comments on an earlier version of this paper. 
Part of this work is supported by the German Ministry for Education, Science, Research, and Technology (BMBF) 
under Grant Number 01 IB 301 B4. 

Typeset by ~4A/~-TEX 

67 

praktikum2-ub
Rechteck

praktikum2-ub
Rechteck



68 J. STOYE et al. 

2. T H E  P R O B L E M  

Let us consider a finite alphabet ,4, k sequences $1, s2 , . . . ,  8k over ,4 of length nl ,  n2 . . . .  , nk, 
respectively, and an additional letter, say ' - ' ,  not contained in ,4, which symbolizes gaps. An 
alignment of sl, s 2 , . . . ,  sk is given by a k x N matrix M = (mij)l<_i<_k,l<_j<_N for some N < 

k ~-~i=1 ni, with entries mij E ,4 (.J { - }  subject to the following constraints: it does not contain 
any column consisting of gaps only, and for each i = 1 ,2 , . . . ,  k, the row (mi l ,m i2 , . . . ,  miN) 
reproduces the sequence si upon eliminating all of its gap letters. 

The weighted sum of pairs multiple sequence alignment problem can now be described as follows 
(cf. [9]): given 81, S 2 , . . . ,  Sk, and given a scoring function D : (,4 tA {_})2 __, R, defined on all 
possible pairs of letters, find an optimal alignment M, i.e., an alignment that  minimizes 

w(M) := ~ ~P,q" Z D(mpj,mqj)  , 
l<p<q<k j = l  

where the Otp,q are sequence dependent (nonnegative) weight factors reflecting, e.g., phylogenetic 
relationship. The resulting score is also denoted by Wop(Sl,... ,  sk). 

It is well known that  the multiple sequence alignment problem can be solved optimally by 
dynamic programming [10,11] with running time proportional to 2 k k • I-Ii=l ni, searching for a 

k shortest alignment path in a directed graph with I-L=1 ni vertices. Faster variants and a number 
of speedups of dynamic programming have, therefore, been proposed (e.g., [9,12]). Unfortunately, 
most of these approaches still need exceedingly large computing time and computer memory when 
applied to more than, say, six protein sequences of average length 300. 

3. T H E  B A S I C  A L G O R I T H M  

Our algorithm, previously described in [1,2] for the restricted case of three sequences, works 
according to the well-known divide-and-conquer principle: each of the given k sequences is being 
cut at an appropriately chosen site somewhere near to its midpoint, this way reducing the original 
alignment problem to the two subproblems of aligning the two resulting groups of prefix and suffix 
subsequences, respectively. These will be handled by the same procedure in a recursive manner. 
The recursion stops when the remaining subsequences are short enough (e.g., shorter than a 
pregiven threshold L) to be aligned by a standard procedure--in our implementation, we use 
SSA [13,1a]. 

The main problem is to find a tuple of ideal slicing sites (cl,c2,...,ck) so that the simple 

concatenation of the two optimal alignments of the prefixes z Sl(< ci), s2(< c2),..., sk(< ck) 

and the suffixes Sl(> Cl), 82(> C2),.-., 8k(~ > Ck) forms an optimal alignment of the original 
sequences. 

Obviously, for any fixed site Cl (1 < cl _< nl) ,  there exists a ( k -  1)-tuple (c2(~1),... ,ck(~l)), 
such that  (51,c2(~x),...,ck(~l)) forms a k-tuple of ideal slicing sites. Unfortunately, finding 
these points requires searching the whole k-dimensional hypercube, requiring as much time as 
the standard dynamic programming procedure. So, of course, this is not the method of choice. 

Instead, our algorithm tries to find so-called C-optimal slicing sites that  are based on pairwise 
sequence comparisons, only. More precisely, we use the dynamic programming procedure which 
we apply to all pairs of sequences (sp, sq). The resulting score matrices for pairwise alignment 
give rise to additional cost matrices 

Csp,Sq lap, Cq] "= Wop (Sp(~ Cp), 8q(~ Cq)) + Wop (8p(> Cp), 8q(> Cq)) - Wop (Sp, 8q), 

IHere, sp (<_ cp) denotes the prefix subsequence of sp with indices running from 1 to cp, and s n (> cp) denotes the 
suffix subsequence of sp with indices running from cp + 1 to np, i _< p _< k. 
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which contain the additional charge imposed by forcing the alignment path to run through a 
particular vertex (Cp, Cq) (1 <_ p < q <_ k). The calculation of C~,,s~ can be performed by 
computing forward and reverse matrices in a similar way as it is described in [15,16], respectively. 

Note that  there exists, for every fixed 5p, at least one slicing site Cq(Sp) with Cs,,sq[Sp, 
cq(~p)] = 0. This follows from the facts that  the vertices on an optimal pairwise alignment 
path are precisely those with no additional cost, and that  every alignment path meets at least 
once every position of the two sequences. 

To search for a good k-tuple of slicing sites, we t ry  to estimate the multiple additional cost 
imposed by forcing the multiple alignment path of the sequences through the particular vertex 
(cl, c 2 , . . . ,  ck) in the whole (k-dimensional) hypercube associated with the corresponding align- 
ment problem. To this end, we use a weighted sum of additional costs over all projections (Cp, cq) 
as such an estimate: we put  

C(C1,C2,'",Ck) :---- ~ °lp,q'Csp,sq[Cp, Cq], 
l<p<q<_k 

where the Olp,q a r e  the same sequence dependent weight factors as above. 
Our proposition, is now that  C-optimal slicing sites, i.e., (Cl, c2 , . . . ,  ck) that  minimize C(Cl, c2, 

. . . .  ck), result in very good, if not optimal multiple alignments. In conclusion, this leads to the 
following general procedure. 

A l g o r i t h m  d ~ c-.align (81, S 2 , . . .  , 8k,  L) 

I f  m a x { n l , n 2 , . . . , n k }  ~_ L, 
t h e n  return the optimal alignment of sl, s 2 , . . . ,  sk (using, e.g., HSh); 
e l s e  return the concatenation of 

d Sic-align ( s i (<  Cl), s2(_ < c~) , . . . ,  sk(_< ca), L), 
and d ~ c-align (sl (> C1 ), 82 ( >  C2) . . . .  , 8k(> Ck) , L),  

where (Cl, c2 , . . . ,  Ck) := calc-cut(sl, s 2 , . . . ,  sk). 

In the following section, we describe how to realize calc-cut, which computes a k-tuple of 
C-optimal slicing sites. 

4 .  E F F I C I E N T L Y  C A L C U L A T I N G  T H E  S L I C I N G  S I T E S  

In a naive implementation, the search calc-cut for C-optimal slicing sites (Cl, c2 , . . . ,  ck) needs 
time O(k2n 2 +nk-1 ) ,  where n := max{n1, n 2 , . . . ,  nk}: the computation of all pairwise additional 
cost matrices takes O(k2n 2) time and, for given cl, all possible combinations of c2 , . . . ,  ck have 
to be checked to find the tuple that  minimizes C in (..0(nk-1). 

We reduce this running time and the required memory (@(k2n 2) for the naive version) by 
the following approach: we precalculate an estimation C for C(cl,  c2 , . . . ,  ck), which allows us to 
prune the search space enormously. Because the multiple additional cost C(cl,  c2 . . . .  ,ck) is a 
sum of nonnegative numbers ap,q. Csp,sq [%, Cq], it is possible to exclude a tuple of slicing sites 

(Cl, c 2 , . . . ,  ck), whenever one of the summands O~p,q • Csp , s  q [Cp, Cq] is larger than the minimum 

found so far. In particular, for fixed Cl, any Cp with C~l,q • Cs~,s, [cl, cp] > C can never lead to a 
smaller sum C. 

With this in mind, a tuple of C-optimal slicing sites can be calculated as follows. 

F u n c t i o n  calc-cut ( sl , s2, . . . , Sk ) 

1. Fix cx := [(n1/2)]. 
^ 

2. Calculate and save columns col~q[j] := Csl,sq[~l,j] (2 < q < k, 1 < j < nq). 
3. Locate slicing sites c2, , gk such that  col el . . .  1,q[~q] = 0 (2 < q < k). 
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4. Calculate the estimate 

a:= 
l<_p<q<k 2<p<q<k 

where to calculate the entries Csp,Sq[Sp, 5q] (2 < p < q < k) only the memory for one 

column col ep~q of order O(n) is needed at a time, since no part of the matrices C~p,sq has 
to be saved. 

Cl " 5. Calculate lower and upper bounds lq and Uq such that  ~l,q • col 1,q~] >- C, for all j < lq, 

and for all j > Uq (2 _< q < k). The intermediate segment eol~l,q[lq],... ,col~lq[Ua] forms 

the relevant part of each column col ~l,q. 
6. Given these bounds, compute and save the relevant parts of the matrices Cs.,sq, defined 

by Csp,sq[i,j] with lp < i < up and lq < j <_ uq. 
7. Search for better slicing sites (~l,C2(~z),...,ck(Ol)) within the relevant parts of the 

columns col ~l,q and of the matrices Cs~,sq. Thereby, the sum C can be computed step 

by step and the search can be stopped, if an intermediate result is larger than C. Dur- 
ing this search, with decreasing values of C, the relevant part of the columns col ~l,q can 
possibly be further reduced, decreasing the search space even more. 

Obviously, the worst case time and space complexity of this approach still remain O(k2n2-{ - n k- 1) 
and (9(k2n2), respectively, for the (very improbable) case where the bounds lp and Up can never be 
increased or decreased, respectively. But for biological sequence families, the effect is enormous: 
for calculating the first tuple of slicing sites in the recursion, which takes far the longest time of 
all cut-site computations, the reduction from n to the length r := maXp=2 . . . . .  k{Up -- Ip + 1} of the 
longest of the remaining relevant parts of the columns, is usually greater than 100 : 1 for small k, 
yielding memory savings for the matrices of at least four orders of magnitude, and reducing the 
expected time and space complexity to O(k2n 2 + r k- l )  and O(kn + k2r2), respectively. More 
detailed results concerning exact running times and memory usage are presented in Section 6. 

5.  F U R T H E R  I M P R O V E M E N T S  

In the actual implementation of d~c-align, the program MSA is called for every single group 
of subsequences containing at least one subsequence of length at most L. It would be more 
elegant to calculate all the slicing sites first (which is possible without the knowledge of any of 
the subalignments) and then call MSA only once with the extra information concerning the slicing 
sites. Although HSh is able to handle fixed parts of the alignment of length one or longer, it still 
needs to be extended so as to accept fixed slicing sites, which from this point of view, can be 
seen as fixing an alignment of zero length. Upon our request, the authors of MSA are working on 
such an extension [17]. 

Another advantage expected from this approach, is that,  with such a feature, MSh's ability of 
dealing with biologically more reasonable quasinatural gap costs [18] and with a score function, 
which does not penalize gaps at the beginning and the end of the alignment, will be carried over 
automatically to our procedure. 

To improve the quality of the alignments further, we propose a windowing approach to correct 
the obtained alignments in the proximity of division sites. We suggest to choose a window 
width W depending on the threshold L. Laying such a window across each slicing site, one may 
search for an optimal realignment of the corresponding subsequences, again using for instance MSh. 

6.  R E S U L T S  

To determine exact time and memory usage, our algorithm has been applied to several sets of 
sequences obtained by a stochastical mutation process on random sequences of different lengths n 
and alphabet size 20 denoting the set of amino acids. The sequences have a palrwise identity 
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between 15 and 25 percent. All results shown are averages over ten different sequence sets. As 
scoring function D, we used the PAM-250 distance matr ix  [19] with positive entries between 0 

and 25, and gap penalty 15. 
From earlier measurements [2], we obtained a value of L := 40 for the stopping criterion to 

guarantee near-to-optimal results: the score of the alignments calculated in these tests differs by 
at most  1 percent from the score of the optimal alignment (in cases where we were able to check 
this with HSh). The values of the weight factors O~p,q are calculated from the pairwise optimal 
alignment scores Wop(Sp, Sq), according to the formula given in [2]. 

Figures 1 and 2 show plots of running time and memory usage, respectively, for sets of k = 
3 , . . . ,  9, sequences with different average length n on a Silicon Graphics workstation with a MIPS 

R4000 CPU. 
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As can be seen from these results, very fast calculation of high-quality alignments with rather  
modera te  memory  usage is possible with d ~ c-align for up to seven sequences. In particular, the 
near-to-linear growth of running t ime for sets with three and four sequences allows us to align 



72 J. STOYE et al. 

three  sequences of length  up to 9000, and  four sequences of length up to 6000 wi th in  10 minutes ,  

as fur ther  measurement s  have shown. In  contrast ,  the compara t ive ly  long r u n n i n g  t ime for eight 

and  more sequences depends  (in addi t ion  to longer MSh-runs) on the smaller reduct ion ( r / n )  in 

these cases (see Table  1), since the mult iple  addi t ional  cost C is a sum of (k2) summands ,  of 

which only  one is tes ted against  0 when de te rmin ing  the bounds  of the relevant regions. 

Table 1. Ratio of relevant part to original size of columns col el averaged over 100 1 , q '  
sets of k -- 3 , . . . ,  9, sequences. 

k 3 4 5 6 7 8 9 
r 

average - 0 . 0 0 9  0 . 0 2 3  0 . 0 7 3  0 . 1 7 0  0 . 2 4 2  0 . 3 8 9  0.608 
n 

Finally,  we have invest igated whether  the a l ignment  scores improve upon  using the windowing 

approach ment ioned  in Section 5. Table  2 shows the relative error of our score for four sets of 

r a n d o m  sequences wi th  different k and n (i.e., the percentage of the opt imal  score by which the  

score ob ta ined  by our a lgor i thm exceeds the opt imal  one), for different values of L and  W. 

Table 2. Effect of windowing 

k n L W - - 0  W = I L  
4 

60 0.00% 0.00% 

3 I00 40 0.12% 0.00% 

20 0.47% 0.35% 

60 0.21% 0.18% 

3 300 40 0.21% 0.18% 

20 0.36% 0.35% 

60 0.28% 0.12% 

4 100 40 0.28% 0.18% 

20 0.34% 0.18% 

60 0.41% 0.41% 

5 100 40 0.46% 0.42% 

20 0.69% 0.69% 

on alignments obtained with d ~4 c-align. 

w =  !L 
2 

o.0o% 

0.0o% 

0.25% 

0.18% 

0.18% 

0.32% 

0.12% 

0.17% 

0.18% 

0.41% 

0.42% 

0.50% 

W = L  

0.00% 

O.00% 

0.25% 

0.08% 

0.17% 

0.17% 

0.00% 

0.09% 

0.17% 

0.41% 

0.42% 

0.50% 
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