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The transient and steady-state responses of movement detectors are studied at various pattern contrasts (i) by
intracellularly recording from an identified movement-sensitive interneuron in the fly's brain and (ii) by comparing
these results with computer simulations of an array of movement detectors of the correlation type. At the onset of
stimulus motion, the membrane potential oscillates with a frequency corresponding to the temporal frequency of
the stimulus pattern before it settles at its steady-state level. Both the transient and the steady-state response
amplitudes show a characteristic contrast dependence. As is shown by computer modeling, the transient behavior
that we found in the experiments reflects an intrinsic property of the general scheme of movement detectors of the
correlation type. To account for the contrast dependence, however, this general scheme has to be elaborated by (i) a
subtraction stage, which eliminates the background light intensity from the detector input signal, and (ii) saturation
characteristics in both branches of each movement-detector subunit.

1. INTRODUCTION

The extraction of motion information from the changing
light-intensity distribution across the photoreceptors is a
basic problem for the visual system. The principal mecha-
nisms of motion detection have been studied intensively in
various species and at different levels of analysis, comprising
behavioral, psychophysical, neurophysiological, and theo-
retical approaches.'- 5 Of the different models of biological
motion detection, the movement detector of the so-called
correlation type is perhaps the best established one. Origi-
nally it was proposed to account for motion perception in
insects,",3,6 -9 but recently it was shown also to account for
various aspects of motion vision in humans.' 0 -'4 In brief,
the mechanism of motion detection is nonlinear and local.
It is based on the multiplicationlike interaction of the appro-
priately filtered signals of neighboring retinal input chan-
nels.

In most theoretical accounts of this motion-detection
scheme, as well as its alternative formulations, the steady-
state responses of the detector were mainly taken into ac-
count.1 12"15-'7 There are only a few studies that concentrate
on the dynamical aspects of the motion-detector theory.'8 20

Particularly important in this context was the finding that
the steady-state responses of movement detectors cannot
account for recent experimental data obtained under tran-
sient stimulus conditions2 0' 2' and might even result in mis-
leading interpretations of experimental results. This
prompted us to examine, both theoretically and experimen-
tally, the transient responses of movement detectors of the
correlation type to the onset of pattern motion. The tran-
sient characteristics are analyzed as a function of stimulus
velocity and pattern contrast and are compared with their
steady-state counterparts. The specific relationship be-
tween pattern contrast and the response amplitudes are
then used to elaborate the motion-detection scheme in a
simple and physiologically plausible way.

As our experimental paradigm, we used the visual system
of the fly because it has long been established as a good
model system for studying various motion-dependent visual
information-processing tasks.2 2 We recorded from a mo-
tion-sensitive interneuron, the horizontal (HS) cell, in the
fly's brain, which proved to be advantageous from an analyt-
ical point of view. First, this cell can be identified individ-
ually from preparation to preparation.2 3 Second, it can be
recorded intracellularly, which allows us to monitor the
summed synaptic potentials of its presynaptic elements ex-
actly. Third, because these presynaptic elements are as-
sumed to represent the local movement detectors, biological
motion detection can conveniently be analyzed without
much interference from other processes. The importance of
the last point cannot be overestimated if we are interested
mainly in the basic mechanisms underlying motion detec-
tion. Additional processing might complicate the interpre-
tations when we try to analyze the mechanisms of motion
detection on the basis of behavioral or psychophysical ex-
periments. However, only if the properties of the move-
ment detectors are known is it possible to understand the
role of the subsequent information-processing steps, which
are essential for doing well in the visual world.

2. MATERIAL AND METHODS

A. Electrophysiology

1. Preparation
Female blowflies (Calliphora erythrocephala) were briefly
anesthesized with CO2 and mounted ventral side up with
wax on a small preparation platform. The head capsula was
opened from behind, and the trachea and air sacs, which
normally cover the lobula plate, were removed. To elimi-
nate movements of the brain caused by peristaltic contrac-
tions of the esophagus, the proboscis of the animal was cut
away, and the gut was pulled out. This allowed us to make
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stable intracellular recordings of up to 45 min. During the
experiment, the fly was supplied with ringer solution
through the indifferent electrode.2 4

2. Recording
Electrodes were pulled on a Brown-Flaming micropipette
puller (P-77), using glass capillaries with a diameter of 1 mm
(Clark, GC100F-10). They were filled with 1 M KCI and
had resistances of approximately 30-50 MO. For further
data analysis the graded potentials of the HS cells recorded
in response to movement stimuli were fed to an IBM AT
computer through a 12-bit analog-to-digital converter (Data
Translation Model DT2801-A) at a sampling rate of 2 kHz.
The programs for the evaluation of the data were written in
ASYST (Macmillan Software Company, Keithley Instru-
ments).

3. Stimulation
A monitor (Tectronix 608) was placed in front of the right
eye at an angle of 450 from the fly's frontal midline. The
position of the fly was carefully adjusted by using the sym-
metry of the frontal equatorial pseudopupils of both eyes.25

As seen by the fly, the display had a horizontal angular
extent of 680 and a vertical extent of 81°. The stimulus
pattern was produced by an image synthesizer (Picasso, In-
nisfree Inc.) controlled by an IBM AT. The intensity of the
pattern was modulated sinusoidally along its horizontal axis.
The stimulus grating had a fixed wavelength of 17; its
contrast could be varied between 0.05 and 0.5. The mean
luminance of the pattern was approximately 25 cd/M 2. In
the experiments shown here the pattern was moved from
back to front for 3.6 sec; between the different presentations
of stimulus motion, the pattern was kept stationary for 4.7

sec. The pattern velocity differed in different experiments,
as will be indicated in Section 3.

B. Computer Simulations
A one-dimensional array of as many as 72 correlation-type
movement detectors (Fig. 2) per spatial period was simulat-
ed on an IBM AT by using the ASYST software. The rele-
vant details of the computer simulations will be given in
Section 3.

3. RESULTS

As an indicator for the performance of the fly's motion-
detection system, we used the visually induced response of
the so-called HS cells, which reside in the posterior part of
the fly's third visual ganglion, the lobula plate. Until this
stage is reached, the retinotopic order of the visual pathway
remains preserved because of a columnar organization of the
visual ganglia. This is schematically shown in Fig. 1. In the
lobula plate the point-to-point representation of visual
space is abandoned by a set of large-field integrating visual
interneurons.2 3 Because these cells show an extraordinary
structural constancy and highly invariant physiological
characteristics, they can be identified individually from
preparation to preparation. The three HS cells on each side
of the fly's brain belong to this group of neurons. Jointly
they cover the entire extent of the ipsilateral visual hemi-
sphere with their receptive fields. In the lobula plate they
receive input from a large number of retinotopically orga-
nized columnar elements, which are assumed to represent
local movement detectors.2 426 The HS cells are sensitive to
movement along the horizontal axis of the eye in a direction-
ally selective way: when stimulated with periodic patterns

Retina

HS Cell 1

Lobula Plate

Fig. 1. Schematic diagram of the fly's visual system. Photoreceptors are located in the retina in separate ommatidia. They project
retinotopically through several ganglia (lamina, medulla) into the lobula complex, which is subdivided into the anterior lobula and the posterior
lobula plate. In the lobula plate, local movement information is spatially integrated in some way by giant tangential cells. One of these cells
(the HS cell) was used in the present study to monitor the response of the movement-detection system. Note that the specific structure of dif-
ferent cell types shown here, including the connectivity at different stages, is arbitrary.
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Our theoretical analysis of the motion-dependent re-
sponses is based on an array of movement detectors of the
correlation type. An individual movement detector consists
of two mirror-symmetrical subunits that share their two
neighboring input channels. In the rather general form of
the movement-detector model shown in Fig. 2 (upper sche-
matic) the two input signals of each subunit pass through
linear filters F, and F2. These filters have to differ in an
appropriate way in order for the detector to be directionally
selective for motion and have usually been assumed to repre-
sent low-pass filters with a different time constant."7 In
each subunit the filtered signal from one retinal location is
multiplied with the filtered signal originating from the
neighboring input channel. The final movement-detector
output is then given by the difference of the two subunit
outputs. Because the HS cells in the fly's brain pool the
movement information from a considerable portion of the
visual field, an array of movement detectors rather than an
individual one will be the basis for our theoretical predic-
tions. For convenience, we use a one-dimensional array of
detectors, as is shown in Fig. 2 (lower schematic). The
spatially integrated movement-detector output under both
steady-state and transient conditions is calculated in Ap-
pendixes A and B.

Fig. 2. General scheme of a movement detector of the correlation
type. The input signals A and B are transmitted linearly by the
receptors. Then they pass through linear filters F1 and F2. In the
next step the filtered signals Al and B2 are multiplied together.
This procedure is repeated in the mirror-symmetrical subunit of the
detector with the signals A2 and B1. The products AlB2 and A2B,
are subtracted from each other. In this way one results in a direc-
tionally selective movement detector that responds to leftward and
rightward motion with the same strength but with the opposite sign.
A retinotopic array of such movement detectors (schematically
drawn) is shown below. Spatial integration is achieved by simply
summing () the output signals of all movement detectors. Both
the steady-state and the transient responses of an array of detectors
are calculated in Appendixes A and B for periodic input functions.

moving from back to front, the HS cells show a pronounced
hyperpolarization. In contrast, front-to-back movement
leads to a depolarization of the cell, upon which are superim-
posed small spikelike potentials.2 4 The graded depolariza-
tions and hyperpolarizations of the HS cells reflect the
summed synaptic potentials elicited by their presynaptic
retinotopic input elements. Therefore in the experiments
shown here we stimulated these cells by motion from back to
front and, consequently, induced only graded potential
changes. Responses obtained by stimulus motion from
front to back are qualitatively similar but nevertheless are
harder to interpret. The smooth postsynaptic membrane
potential changes are then contaminated by action poten-
tials. However, when taking spike-frequency histograms of
the responses of other motion-sensitive cells, we obtain es-
sentially the same results as shown here.

0a.
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Fig. 3. Intracellular responses of the HS cell to sine-wave gratings
(contrast, 0.1) moving back to front at different temporal frequen-
cies, as indicated in the figure. Note that initially the cell's mem-
brane potential is modulated with the pattern's temporal frequency
before reaching a steady-state level. The data are averaged from
two flies, each stimulated 20 times with the entire stimulation pro-
gram of all five temporal frequencies.
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A. Transient Responses to Pattern Motion
To study the transient responses of the HS cells to the onset
of motion, we started a sine-wave grating moving abruptly
from back to front with a constant speed after it was at rest
for some time. *This is shown in Fig. 3 for five different
temporal frequencies ranging from 2 to 16 Hz (from top to
bottom); the temporal frequency is the ratio of the velocity
to the spatial wavelength of the pattern. Each response
trace represents an average of 40 response cycles from the
same two flies. In this experiment a relatively low contrast
was chosen in order to prevent nonlinearities in the input
channels of the movement detector from affecting the re-
sponse (see below). During pattern movement from back to
front, the cell hyperpolarizes on average. After the onset of
motion the membrane potential oscillates with a frequency
that exactly reflects the pattern's temporal frequency. The
membrane potential oscillations may be preceded by a brief
depolarizing deflection, which, however, cannot consistently
be found in all preparations (see below). At high oscillation
frequencies (16 Hz in Fig. 3), the membrane potential can
even cross the resting potential during its oscillatory phase
and, in this way, can transiently depolarize the cell in re-
sponse to back-to-front motion. The oscillation amplitude
gradually decreases with time. After approximately 1-2 sec
the cell's potential reaches a steady-state plateau that is
more or less stable during the rest of the stimulation time.
For the low pattern contrast the steady-state response of the
cell is rather small, and the hyperpolarizing transient-re-
sponse peaks assume amplitudes close to the maximum re-
sponse amplitudes, which can be obtained in a HS cell by
back-to-front stimulation. Because the pattern position at
the onset of motion was randomized in the different stimu-
lus presentations, the oscillations of the membrane potential
do not depend on the spatial phase of the pattern relative to
the eye.

Can these transient responses of the HS cells to motion be
accounted for on the basis of correlation-type movement
detectors? To answer this question an input equivalent to
that used in our experiment was fed into a retinotopic array
of detectors. In the computer simulations shown in Fig. 4,
as well as in the analytic formulation of the responses (Ap-
pendix B), first-order low-pass filters were used as filters F1,
and the filters F2 were omitted completely. The temporal
frequency can then be given in units of the filter time con-
stant, as is done in Fig. 4. When the pattern starts moving,
the spatially integrated movement-detector response re-
flects the corresponding response of the HS cells in many
respects. It shows oscillations with a decreasing amplitude
until it settles at its steady-state level. Again, the temporal
frequency of the stimulus is reflected in the oscillation fre-
quency of the response. The time constant of the exponen-
tial decay of the modulation amplitude represents the time
constant of F, if there is only one detector filter (see Appen-
dix B). Simulations with various other filter combinations
of F, and F2 have shown that the general phenomenon of
response oscillations after the onset of motion are robust
against the particular choice of the movement-detector fil-
ters. From the similarity between the experimental data
(Fig. 3) and the computer simulations (Fig. 4), we can con-
clude that not only time-averaged characteristics but also
specific dynamic properties of the cell's response to move-
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Fig. 4. Computer simulation of the responses of an array of move-
ment detectors stimulated by equivalent inputs as in the experi-
ment shown in Fig. 3. The detector signal can be seen to oscillate
with the pattern's temporal frequency (given here in units of the
filter time constant). Note the close similarity between the com-
puter simulations and the experimental data of Fig. 3.

ment stimuli can be described well by a movement-detector
model of the correlation type.

It should be noted, however, that there are two features in
the cellular responses that cannot be accounted for by the
model as used here and by all other variants tested so far.
First, in the electrophysiologically recorded responses the
membrane potential oscillations may be preceded by a brief
depolarizing deflection. This initial deflection, which is op-
posite that of the steady-state response, was found only in
response to motion from back to front. There are, however,
many examples in which it does not occur and, thus, does not
represent a necessary by-product of the fly's movement-
detection system. Moreover, when the cell was stimulated
with front-to-back motion, no hyperpolarizing deflections
were observed (data not shown). Second, when the pattern
stops moving, there is a transient depolarization of the HS
cell, which cannot be found in the model simulations. Here
the membrane potential declines to its resting level with a
time constant that reflects the time constant of the move-
ment-detector filter. At present we cannot decide whether
the latter discrepancy between model simulations and ex-
perimental results is a by-product of general physiological
properties of neurons or whether it reflects a specific func-
tional property of the fly's motion-detection system that has
not been taken into account so far in our model.
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B. Contrast Dependence of the Movement-Detector
Responses
The dynamic response properties of movement detectors do
not only provide information about the performance of the
system. In comparison with the steady-state responses they
also can be used as a tool to localize additional nonlinearities
in the motion-detection pathway. Here we analyze the con-
trast dependence of the fly movement-detection system un-
der both transient and steady-state conditions. The experi-
mental procedure was the same as described above, with the
exception that the pattern contrast was varied between 0.05
and 0.5 at two different temporal frequencies (1 and 10 Hz).
Each data point is an average of 37 stimulus presentations
obtained from the same sample of nine different flies. As is
indicated schematically in the insets of Fig. 5, the maximum
hyperpolarizing response peak after the onset of motion and
the mean steady-state response amplitude (between 2.6 and
3.6 sec after the onset of motion) were evaluated separately
from the time-dependent traces.

Both the steady-state and the hyperpolarizing peak re-
sponses show a highly nonlinear dependence on pattern con-
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Fig. 5. Average response amplitudes of the HS cell to sine-wave
gratings of different contrast moving back to front at two different
temporal frequencies (1 and 10 Hz). Schematic time-dependent
response traces are shown as insets to illustrate how peak and
steady-state responses were determined. The average peak and
steady-state response amplitudes are shown as functions of the
pattern contrast. The bars indicate the standard error of the mean.
The data are averages from 9 flies and 36 repetitive presentations of
the entire stimulus program. There is a difference in the contrast
dependence of both peak response curves, of peak and steady-state
responses to the same frequency, and of both steady-state response
curves. Note the different ordinate scales used in the two diagrams.

trast. From the detector theory (see Appendixes A and B)
the responses are expected to increase as a quadratic func-
tion with pattern contrast. In a biological system this is, of
course, possible only in a limited range. The responses
cannot increase indefinitely, but they approach a final maxi-
mum response level. Although the amplitude of the peak
responses reaches 80% of its maximum value at contrasts
between 0.15 and 0.20, the steady-state responses reach their
final level only at higher contrasts. It should be noted that
the contrast dependences of the transient and steady-state
responses are plotted at different scales. Thus, for the tem-
poral frequencies used here, the final amplitudes of the hy-
perpolarizing transient responses are considerably higher
than their corresponding steady-state counterparts. Only
for low temporal frequencies do the peak and steady-state
responses assume the same amplitudes. Moreover, the
transient response at the different temporal frequencies ap-
proaches different final response levels. At 1 Hz it has less
than two thirds of the amplitude obtained at 10 Hz. The
shape of the contrast-dependence curves is, however, the
same for both temporal frequencies; the two curves differ
only by a factor. The situation found for the steady-state
responses is much different. Here the responses obtained
for a temporal frequency of 1 Hz reach their final response
level at lower contrasts than do the ones for 10 Hz. At high
contrasts, both responses reach approximately the same am-
plitude, but the two curves differ to some degree with re-
spect to their shape: unlike the transient peak responses,
they are not just a multiple of each other. Similar contrast
dependences for different temporal frequencies have also
been found at the behavioral level in the optomotor yaw
torque response of the housefly Musca domestica.2 7

The specific contrast dependence of both transient and
steady-state responses can, in principle, be accounted for by
simple saturation nonlinearities. Where these nonlineari-
ties might be located in the movement-detection system can
be inferred from the findings shown in Fig. 5. This is possi-
ble because the sequence of linear and nonlinear elements in
a pathway can strongly affect the output of the network.
Saturation at the level of the HS cell, i.e., after spatial inte-
gration has been accomplished, cannot explain the experi-
mentally determined contrast dependences of the transient
and steady-state responses, because in this case the initial
transient as well as the steady-state response should ap-
proach a common response level irrespective of the temporal
frequency. A saturation characteristic before spatial inte-
gration at the output of the individual movement detectors
can be dismissed for similar reasons. Hence the specific
dependence of the movement-detector response on contrast
is likely to be due to saturation nonlinearities somewhere at
a more peripheral stage.

Before these saturation nonlinearities can be localized, we
have to consider some general aspects of saturation charac-
teristics. Let us assume that there is an element in the
motion-detection pathway, such as a nerve cell, the activity
of which can be modulated in both directions about a resting
level. Let us further assume that the element saturates for
both increments and decrements of its response. Then we
obtain a sigmoidal input-output response characteristic
(Figs. 6a and 6b). When a periodic input signal passes
through this type of nonlinearity, both the modulation am-
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Fig. 6. Consequences of a saturation characteristic for contrast
coding of a movement detector. A sinusoidal input signal (shown
below the input-output characteristic) passes an element that satu-
rates for both increments and decrements of its response. The
resulting output signals are shown at the left of the input-output
characteristic. a, If the signal is proportional to the light intensity
received by the eye, it can be modulated only between twice its mean
amplitude and the zero level. This range is indicated by the double-
headed arrow above the saturation characteristic. As can be seen
by comparing the input and the output modulations, the signal does
not saturate at all under these conditions. Consequently the result-
ing movement-detector response (see inset) will increase steeply
with increasing modulation amplitude of the input signal. b, If the
mean luminance is removed in some way, the input signal is zero
symmetrical and, thus, modulated about the steep-slope part of the
input-output characteristic. In this case small modulation ampli-
tudes will be transmitted with a high gain, whereas larger ones will
approach a saturation level. Accordingly, the movement-detector
response shown in the inset also saturates for larger modulation

plitude and the shape of the signal may be affected. These
changes strongly depend on the extent to which the mean
luminance is represented in the input signal. Two extreme
cases are illustrated in Fig. 6. When the signal is propor-
tional to the light intensity, it can assume only positive
values. By passing through the nonlinearity, the signal,
therefore, will not saturate. As a consequence, the resulting
movement-detector output (insets in Fig. 6) will increase
steeply with an increasing modulation amplitude. A satura-
tionlike contrast dependence of the movement-detector out-
put can be achieved, except by a simple output saturation,
only if the mean level of the input signal is eliminated in
some way before passing through the sigmoidal nonlinearity
(see Fig. 6b). Because we find this kind of saturationlike
phenomenon in our experimental results (Fig. 5), we have to
propose that the background intensity be eliminated at least
to some extent from the movement-detector input signals
before being processed further. Because saturation phe-
nomena are almost unavoidable in neuronal elements, the
elimination of the mean light intensity seems to be an essen-
tial precondition for a meaningful contrast coding by the
movement-detection system.

Saturation at the level of both the HS cell and the individ-
ual movement-detector output has already been discarded
as an explanation of the experimental results. Therefore, in
the motion-detector model of Fig. 2, saturation nonlineari-
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Fig. 7. Elaborated version of the model proposed to underlie the
evaluation of movement in flies. The general scheme of a move-
ment detector of the correlation type (see Fig. 2) is modified in three
ways: (i) the mean luminance is subtracted from the input signals;
(ii) saturation characteristics are inserted into both branches of the
two movement-detector subunits, (iii) the filter F2 of the general
movement-detector scheme shown in Fig. 2 is omitted. The filter
F is specified here as low-pass filter L.
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Fig. 8. Contrast dependence of a one-dimensional array of move-
ment detectors as elaborated in Fig. 7. Filter L, a first-order low-
pass filter, was chosen. The peak and steady-state responses to the
outset of motion were evaluated for two different temporal frequen-
cies as the corresponding experimental data of Fig. 5. The temporal
frequency of the stimulus is given in units of the time constant of the
movement-detector filter. The computer simulations of the model
account for the qualitative features of the corresponding experi-
mentally determined responses (compare with Fig. 5).

ties can be located only in the input channels to the detector
or after the low-pass filter. In Fig. 7 only the latter possibili-
ty is illustrated, as saturation in the input channels cannot
explain our data (see below). This specific version of the
movement-detector model represents perhaps the simplest
version that can account for the principal features of our
data and is derived from the more general scheme of a move-
ment detector of the correlation type (see Fig. 2) by three
alterations: (i) the filters F2 proved to be unnecessary and,
therefore, are omitted from the model; (ii) the mean lumi-
nance is eliminated in some way from the input signals of the
movement detector (in our model it is simply subtracted; see
Subsection 4.B.1); (iii) saturation characteristics are insert-
ed into both branches of each detector subunit; in the branch
that contains the low-pass filter the nonlinearity is inserted
after the filter. It should be noted that our comput-
er simulations were used only to find a kind of minimal
model version that was sufficient to account for the principal
features of the experimental results qualitatively rather
than to fit the data as closely as possible. A closer fit cer-
tainly would have been possible if the model had been elabo-
rated further (see below).

Computer simulations based on this version of the detec-
tor model are displayed in Fig. 8. The contrast dependence
of both the initial negative response peaks after onset of

motion and the final steady-state response plateau are
shown here for two different temporal frequencies. Again,
as in Fig. 4, the temporal frequencies are given in units of the
time constant of the movement-detector filter. Both the
transient and the steady-state responses approach different
saturation levels, which, in addition, depend on the temporal
frequency of the stimulus. For all contrasts the levels of the
transient-response peaks increase with increasing temporal
frequencies, which is in accordance with our experimental
results (compare the upper parts of Figs. 5 and 8). This
effect is even more pronounced if the filter F2 is not omitted
but is replaced by a high-pass filter with an appropriate time
constant. The steady-state-model responses depend on
contrast in quite a different way (Fig. 8, bottom). Most
importantly, the shape of the contrast-dependence charac-
teristics depends on the temporal frequency of the stimulus.
This is, at least qualitatively, in accordance with the experi-
mental data as described above (compare the lower parts of
Figs. 5 and 8). A different contrast dependence of the
steady-state responses at different temporal frequencies is
not obtained when the saturation characteristic is inserted
before the low-pass filter. The resulting curves for the dif-
ferent temporal frequencies are almost parallel in this case.
The quantitative discrepancies between the model simula-
tions and the experimental results are due to the fact that
the movement-detector time constant is not a constant, as
was assumed in the simulations, but depends on the stimu-
lus conditions (see Section 4).28,29 If the stimulus depen-
dence of the time constant is taken into account, the differ-
ence between the contrast-dependence characteristics ob-
tained at different temporal frequencies becomes smaller, as
in the experimentally determined curves, and may even dis-
appear totally. Nevertheless, the rather simple model
shown in Fig. 7 is certainly sufficient to describe, at least in a
first approximation, the performance of the fly's movement-
detection system under both transient and steady-state con-
ditions with respect to its contrast dependence.

4. DISCUSSION

Theoretical as well as experimental studies of the visual
system of insects have played a decisive role in the conceptu-
alization of the basic principles underlying movement detec-
tion.",2 The movement detector of the correlation type that
has emerged from these studies could subsequently be ap-
plied successfully to certain aspects of motion vision in hu-
mans.10-14 Thus the movement-detection system of the fly
can be regarded as a biological model system for experimen-
tally studying the properties of movement detectors of the
correlation type. The following features are essential for
the adequate performance of this movement-detection
scheme: It has two spatially displaced input channels that
feed their signals into two mirror-symmetrical subunits. In
each subunit the signals from the neighboring input stages
are multilied after they have been delayed in some way with
respect to one other. Finally, the outputs of the two sub-
units have to be subtracted in order to make the movement
detector directionally selective and its output independent
of the mean intensity of the stimulus pattern (see Appendix
A). The subtraction stage may be omitted if special combi-
nations of filters are chosen in both branches of the detector
subunits. A combination of a low-pass and a high-pass filter
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of the same order and with the same time constants repre-
sents such a special possibility.30

What properties of the movement detector are a conse-
quence of these essential components and thus are inevita-
ble on the basis of this detection mechanism? There are two
main consequences. The first concerns the possibility of
response transients. Depending on the stimulus motion,
the detector cannot always be assumed to operate under
steady-state conditions, and the response may then deviate
considerably from being proportional to the stimulus veloci-
ty. 2 0 The second consequence concerns a well-known prop-
erty of movement detectors of the correlation type. The
detector signal does not unambiguously reflect the stimulus
velocity, even under steady-state conditions. Instead, it
depends on the textural properties of the stimulus pattern,
such as its spatial-frequency content and its contrast. 2

1
9

,31

This dependence of movement perception on the properties
of the pattern is not a specific feature of insects but is also
well established in other systems, such as in human vision.32 -38

Here we have studied the contrast dependence of the detec-
tor response and how the problem of an ambiguous move-
ment-detector output signal can be alleviated by elaborating
the detection scheme in a simple and physiologically plausi-
ble way.

A. Transients to the Onset of Motion
The onset of motion of a stimulus pattern represents a spe-
cial situation in which the movement-detector theory as
formulated to account for the steady-state responses cannot
be applied. This stimulus condition was chosen in our ex-
periments because it is in common use in psychophysical and
electrophysiological experiments, and the detector response
can be derived by simple calculation (see Appendix B). We
used the visually induced membrane potential changes of
the large-field HS cells2 3 as our indicator for the perfor-
mance of a biological movement-detection system. Three
features of the HS cells' transient responses to periodic one-
dimensional patterns are particularly interesting. First, the
membrane potential oscillates with the temporal frequency
of the stimulus pattern, and only after a while does it reach a
time-independent steady-state level. Second, during the
transition phase the response profiles may cross the zero
response level and then signal motion in the wrong direction.
Third, the instantaneous peak response amplitudes can be
much larger than the final steady-state level. These re-
sponse characteristics of the HS cells can be easily, at least
qualitatively, interpreted as consequences of the intrinsic
properties of an array of movement detectors of the correla-
tion type.

The modulations in the response transients are found only
if the stimulus pattern is periodic. In the case of patterns
with a random texture, the response is expected to peak
transiently immediately after the onset of motion and then
to decay exponentially to the steady-state level. This is just
what can be found in directionally selective large-field neu-
rons in the fly, but it has been interpreted as the result of
some kind of adaptation phenomenon. 3 9 However, from the
present results it seems to be quite certain that transient
movement-detector properties play a decisive role in shap-
ing these experimentally determined response transients of
the fly's large-field neuron.

The time constant of decay of the transient responses both

to periodic and to random patterns should reflect the time
constant of the movement-detector filters (see Appendix B).
This, however, is true only so long as no other processes with
time constants in the critical range interfere with the move-
ment-detector responses. One such process is the so-called
adaptation of the movement-detector time constant.2 8

,
29

This means, depending on both the temporal frequency and
the contrast of the stimulus pattern, that the detector time
constant continually decreases after onset of motion until it
reaches its final steady-state level. The main decrement of
the time constant is found within the first 2 sec after onset of
motion.2 8 In this way the time constant can assume values
within a range of approximately 500-5 msec.2 02829 The
variable time constants of the fly movement detectors imply
that it is not possible to interprete the time constant of decay
of the response transient to the onset of motion in a straight-
forward way. Instead, it reflects both the adapation process
of the detector time constant ansd its instantaneous value.

Because the transient and the steady-state responses of a
movement-detector array may differ considerably, the tran-
sient responses should be taken into account in interpreting
experimental data obtained under transient stimulus condi-
tions. In this way the characteristic response transients
that have now been found experimentally were predicted in
a behavioral analysis on the processing of movement infor-
mation by the landing system of the housefly.2'

By disregarding the importance of the response transients
of the movement-detection system, Eckert and Hamdorf 40

drew incorrect conclusions with respect to the potential neu-
ronal substrate of the fly's landing system. They tried to
relate the optimum temporal frequency of a movement-
sensitive visual interneuron as obtained under steady-state
conditions to the optimum temporal frequency of the land-
ing response. However, the optimum temporal frequency of
the landing response is significantly affected by transient
movement responses.2'

In an electrophysiological study of another motion-sensi-
tive visual interneuron of the fly,41,42 transient patterns of
spike activity have been found in the response to the onset of
motion. These patterns are virtually identical to the intra-
cellularly recorded membrane potential oscillations as mea-
sured in the present study. These phenomena are interpret-
ed, however, without consideration of movement-detector
theory. Instead, the measured transient phenomena are
accounted for in terms of afterimagelike effects, which are
assumed to reduce the sensitivity of the input channels to
the interneuron locally.4

,
42 From the close similarity of the

transient phenomena found by Maddess 4
,
42 and from our

own findings, we would like to suggest that both findings
simply reflect the intrinsic properties of the motion detec-
tors forming the input to these cells. This inference is fur-
ther supported by other, more complex experimental results
of Maddess,1 ' 42 which can be accounted for equally well by
the movement-detector theory. For instance, the time
course of the transient responses to moving patterns strong-
ly depends on the textural properties of the stationary stim-
ulus that is seen by the animal before the onset of motion. If
both the moving and the stationary patterns are periodic
gratings, the modulation amplitude of the initial oscillations
of the response decreases with a decreasing contrast of the
stationary grating.

The two examples discussed above clearly demonstrate
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that it is worthwhile to take movement-detector theory into
account when we interpret complex motion-dependent ex-
perimental data. Moreover, the existence of transient re-
sponses should be considered if respective stimuli are used.
Then the data, in general, cannot be explained purely on the
basis of the steady-state detector theory. This might also be
important when we interpret psychophysical data because
transient movement stimulation is in common use there and
often leads to surprising results. 43

B. Nonessential Nonlinearities in the Movement-
Detection System
The general scheme of a correlation-type movement detec-
tor is elaborated here in two ways in order to account for our
experimental data on the fly visual system. First, it is pro-
posed that the mean background luminance be subtracted
from the detector input signals. Second, saturation nonlin-
earities are inserted into both branches of the two detector
subunits (see Fig. 7). Although both elaborations are not
essential in order for the detector to work, they endow the
detector with properties that might be beneficial for its spe-
cial purposes.

1. Elimination of the Background Luminance
The elimination of the mean background luminance turns
out to be necessary if the detector input channels contain
saturationlike nonlinearities, which cannot easily be avoided
in any biological system. Elimination of the background
luminance in the input channels to the movement detector,
at least in the form shown in Figs. 2 and 7, does not affect the
detector output otherwise and, consequently, earlier conclu-
sions on its properties because the final detector output is
independent of the mean luminance anyway (see Appendix
A). Eliminating the mean luminance peripherally might
even be advantageous for a movement detector that has to be
implemented by biological or technical hardware. If the
mean luminance were not eliminated in the input channels,
the detector output signal would usually be small relative to
the signals of the two detector subunits that are to be sub-
tracted. Thus a movement detector made of neuronal com-
ponents might be confronted with serious problems in sig-
nal-to-noise ratio.

In our elaboration of the movement-detector model (see
Fig. 7) the background luminance is eliminated simply by
subtracting it from the local light-intensity signals. Tempo-
ral high-pass filtering of the movement-detector input sig-
nals would be another simple means to eliminate back-
ground luminance. However, because of the experimental
results of Maddess, 41" 2 this possibility can be discarded. As
was discussed above, the time course of the transient re-
sponses to the onset of motion is strongly affected by the
texture of the stationary pattern presented before the move-
met stimulus. A linear temporal high-pass filter would, of
course, represent all stationary patterns in the same way as
do uniform fields.

It is interesting to note that in both vertebrates and inver-
tebrates the mean background luminance is removed to a
high degree at processing stages peripheral to movement
detection, although most likely by different mechanisms.
In the vertebrate retina this is accomplished by the center-
surround organization of the ganglion cells' receptive
fields.44 For this reason, spatial band-pass filters are usual-

ly inserted into the input channels of those movement-de-
tection models used to explain motion vision in humans. 2"16

In the fly's visual system the background luminance is re-
moved in the first visual ganglion, the lamina (see Fig. 1), by
a mechanism that is not completely understood so far. At
the synapses between the retinal receptor cells and the first-
order interneurons, the background luminance is eliminated
by a kind of subtractive inhibition, while at the same time
the contrast signal is expanded to fill the dynamic range of
the interneuron. However much the mean intensity varies,
the strength of inhibition is always adjusted to keep the cell's
response centered on the band of contrast signals. 454 6

Hence the peripheral processing of visual information ap-
pears to be excellently adapted to the requirements of mo-
tion detection.

2. Saturation Nonlinearities in the Movement-Detection
System and Their Functional Significance
The initial hyperpolarizing transients of the HS-cell re-
sponse to the onset of back-to-front motion have been found
to be relatively independent of contrast, at least for con-
trasts above 0.15, whereas their amplitude increases with
increasing pattern velocity. The steady-state responses are
different in this respect. They increase, depending on the
temporal frequency of the stimulus, up to much higher con-
trasts and, therefore, are similar in this regard to corre-
sponding behavioral data3l 47 and electrophysiological find-
ings on another motion-sensitive large-field neuron in the
fly.48 The simplest way to account for these results is to
assume saturation nonlinearities before multiplication of
the movement-detector input signals. Interestingly, when
studying apparent motion phenomena in flies, Bfilthoff and
G6tz49 also proposed a saturation nonlinearity in the move-
ment-detector input channels. On the basis of their data,
however, they could not decide whether the saturation char-
acteristic is located before or after filtering of the input
signals.

It is suggested by our findings for the contrast dependence
of the HS-cell responses that the transient-response peaks
are relatively invariant against variations in pattern contrast
but, at the same time, represent (at least qualitatively) the
temporal frequency of the pattern. On the other hand, the
steady-state responses are much more ambiguous in this
respect and do not provide reliable estimates of the temporal
frequency of the stimulus pattern. It should be noted, how-
ever, that the steady-state response does not unambiguously
code for the temporal frequency anyway because, as was
explained above, the time constant of the movement-detec-
tor filter adapts when the eye is exposed to motion, even for
only a fraction of a second.28 29 This adaptation of the time
constant results in a considerably expanded range of tempo-
ral frequencies that lead to large response amplitudes at the
movement-detector output.2 6 50 5'

The functional significance of the differences between the
transient and steady-state responses can be assessed appro-
priately only if we take into account the conditions under
which the particular movement-detection system has to op-
erate. We are in the fortunate situation that there is de-
tailed knowledge about visual orientation behavior of the fly
both in free flight and under laboratory conditions.3 2 2 52 In
visual orientation flies exploit motion information for differ-
ent purposes. For instance, specific feedback control sys-
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tems enable the fly to stabilize its flight course against inter-
nal and external disturbances and to turn toward objects
that move relative to the retina. In optomotor flight-course
stabilization only slow changes of retinal large-field motion
are compensated for.53 Therefore the movement-detection
system can be assumed to operate under steady-state condi-
tions during course stabilization. The feedback control sys-
tem, however, is not required to rely on unambiguous veloci-
ty measurements under these dynamic conditions. On the
other hand, brief velocity transients occur in free-flying
houseflies during active turns.5 4 When these transients re-
sult from relatively small objects, they may induce turns
toward these objects,5 3 such as in pursuit of other flies.5 2'55

Under these conditions the inevitable time constants in the
feedback loop of the underlying control system can be as-
sumed to be of the same order of magnitude as the duration
of the movement transients; therefore corrective fine tuning
of a turn after it has been induced might not be possible.
This suggests that an unambiguous representation of veloci-
ty during motion transients might be useful. With respect
to pattern contrast, this invariance is more or less realized.
At the same time, faster movements result in larger response
transients of the movement-detection system.

As a consequence of an adaptation of the movement-de-
tector time constant to its optimal value, the response tran-
sients are predicted to signal correctly, at least in a certain
velocity range, both increments and decrements of pattern
velocity from its mean level. Moreover, a given, brief rela-
tive deviation from the mean velocity is expected, in a first
approximation, to lead to response transients of always the
same amplitude, irrespective of the mean velocity. It is
interesting to note that this was actually found experimen-
tally, at least to some degree, in a motion-sensitive interneu-
ron in the fly's visual system.39 It should be emphasized
that this kind of coding of velocity contrast 39 can be account-
ed for simply by the intrinsic properties of the movement
detector of the correlation type together with the assump-
tion of a detector time constant that appropriately adapts to
the stimulus velocity.

C. Other Movement-Detection Schemes
In this study we concentrated on a comparison of experi-
mental data with the predictions of the so-called correlation-
type movement detector. This scheme specifies the differ-
ent computations underlying movement detection in a for-
mal way and, therefore, represents an algorithmic model.
The advantage of this level of description is that it allows us
to account for the operations independently of the specific
hardware by which they are implemented. This is of partic-
ular importance if we want to compare motion detection in
different biological and technical systems because a given
algorithm can be realized on the hardware level in complete-
ly different ways.

There are other algorithmic models that have been pro-
posed to underly motion detection in biological systems.
One class of detectors are the so-called spatiotemporal ener-
gy models.' 6 Although they differ considerably from the
correlation-type movement detector with respect to their
internal structure, both motion-detection schemes are, un-
der certain assumptions, mathematically equivalent at their
output.' 5 "16 Therefore they cannot be distinguished on the
basis of the present experiments. Another class of models,

the so-called gradient schemes,5 6'57 cannot account for re-
sponse transients as reported here because the output of this
model, at least in its mathematically ideal form, should al-
ways be proportional to pattern velocity. This is in accor-
dance with earlier experimental results on steady-state re-
sponses that exclude the gradient scheme for motion vision
in insects.3

Of course, some components of the fly's movement-detec-
tion system as proposed in this study (Fig. 7) can be account-
ed for also in cellular terms. The likely cellular bases of the
elimination of the mean luminance from the light-intensity
distribution as received by the eye and the saturation non-
linearities in the detector input channels were discussed in
previous sections. Cellular models were also proposed for
the essential multiplicationlike interaction of the two move-
ment-detector input channels. The so-called shunting inhi-
bition model5 8'59 represents the most widely discussed possi-
bility. There is some experimental evidence that this cellu-
lar interaction scheme plays a role in motion detection in the
fly visual system.6 0 Whether this type of cellular model can
account for the multiplicationlike interaction is currently
being investigated.

APPENDIX A: STEADY-STATE DETECTOR
RESPONSE

The definitions used for all calculations are shown in Table
1.

Moving a sine grating across a one-dimensional array of
movement detectors (see Fig. 2) with a constant velocity
leads to the following input signals at each detector input
channel:

A =I+ Alsin(wt +o),

B = I + Al sin[w(t - At) + ].

With At = Ao/w and w = 2w/X, B becomes

B = I + AI sin[wt + o - 2rA/X].

The output functions of the linear filters are then

Al(t) = F1(O)I + F(co)4A sin[ct + so + k1(w)],

A2(t) = F(O)I + F2(C)AI sin[cot + (p + 02 (w)]

Bl(t) = F,(O)I + Fl(w)AJ sin[wt + so + k1(w) - 27A\p/X],

Table 1. Definitions of All Parameters

Parameter Definition

I Mean luminance of the pattern
AI/I Pattern contrast
X Spatial wavelength of the pattern
w Angular velocity
t Time
1P Phase of the pattern at t = 0
At Time interval between the reception of the stimulus

by the left and the right input channels
Aso Angular distance between adjacent visual elements
W Angular frequency = 27rw/X
F(w) Amplitude-frequency function of a linear filter
F(O) Amplitude-frequency function for = 0
0(X) Phase-frequency function of a filter
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B2(t) = F2(0)I + F2(w)Al sin[wt + (p + 02 (w) - 2r'.A/A].

The spatially integrated steady-state response of a one-di-
mensional array of movement detectors is given by the ex-
pression (for details, see Ref. 1)

R = Fj(w)F 2(w)A 2 sin[0(o) -02(01sin(2rA<,/X).

For the special case when the filter F2 is omitted and F is
represented by a first-order low-pass filter with

F1 (C,) - (1 + r
2
W

2
)

1 2

R becomes

() = - arctan(rw).

R = AI2 sin 2r )r2~XJ )1+r T2O2

APPENDIX B: TRANSIENT DETECTOR
RESPONSE TO THE ONSET OF MOTION

For convenience filter F2 will be omitted, and filter F, will be
represented by a first-order low-pass filter. The input sig-
nals are then

A = fI + AI sin(so) f(
I + Al sin(t + 2o) f7

B = + X )
%.I + Al sin(t + so -27r

)r t < 0
)r t k 0

A J

for t < 0

for t > 0

After convolution with the impulse response g(t) = (1/7T)
exp(-t/r) of a first-order low-pass filter with the time con-
stant r, we obtain

A, = I + Al cos((p) 7 2 2
1+ r 2

X [-sin(wt) - cos(wt) + w exp(--)]

+ Al sin((')
1 + T

2
W

2

X [ cos(wt) - c sin(wt) - exp( )] 

B1 =I+ Al cos(so-27r '.
X, + 2CO2

X [-sin(wt) - cos(wot) + exp(--)]

+ Al sin - 2 s) 1r

X [ cos(wt) - w sin(wt) - ex )]

The response R is again given by AjB - AB,, and after
spatial integration we obtain

R(t) = A sin(2.r4 X) rA c
X I 1+ 2W2

_ A2 sin(27. X) (1 + r2W2)1/2

X sin[wt + arctan(G-c)]exP(- -)
Thus the response of an array of movement detectors con-
sists of two components. One component represents the
steady-state solution (see Appendix A), and the other oscil-
lates with the temporal frequency of the stimulus. The
oscillation amplitude decays with the time constant of the
movement-detector filter.
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