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Coding of sensory information often involves the activity of neuronal
populations. We demonstrate how the accuracy of a population code
depends on integration time, the size of the population, and noise
correlation between the participating neurons. The population we
study consists of 10 identified visual interneurons in the blowfly
Calliphora vicina involved in optic flow processing. These neurons
are assumed to encode the animal’s head or body rotations around
horizontal axes by means of graded potential changes. From electro-
physiological experiments we obtain parameters for modeling the
neurons’ responses. From applying a Bayesian analysis on the mod-
eled population response we draw three major conclusions. First,
integration of neuronal activities over a time period of only 5 ms after
response onset is sufficient to decode accurately the rotation axis.
Second, noise correlation between neurons has only little impact on
the population’s performance. And third, although a population of
only two neurons would be sufficient to encode any horizontal
rotation axis, the population of 10 vertical system neurons is advan-
tageous if the available integration time is short. For the fly, short
integration times to decode neuronal responses are important when
controlling rapid flight maneuvers.

INTRODUCTION

Most visual interneurons are sensitive to various stimulus
parameters, such as image contrast or the velocity of a stimulus
pattern. Hence, the information an individual neuron provides
about a stimulus is highly ambiguous. Two additional factors
may further increase the ambiguity of a single neuron. First
individual neurons are often broadly tuned to a particular
stimulus parameter, and two different stimuli may induce the
same neuronal response. Second, when stimulated repetitively
with the same stimulus, neurons may exhibit a considerable
amount of variability that can be due to various sources (e.g.,
Johnston and Wu 1995). Such ambiguities can be reduced
when taking into account the responses of a population of
neurons rather than just the response of a single neuron.
Indeed, many nervous systems have been concluded to encode
information by a distributed pattern of activity spread over a
population of neurons (e.g., Georgopoulos et al. 1986; Lee et
al. 1998; Nicolelis et al. 1998; Theunissen and Miller 1991;
Zhang et al. 1998). Each neuron in the population is tuned to
a slightly different aspect of the stimulus. Theoretical studies
and model simulations have demonstrated that the accuracy of

population codes depends on the number of neurons constitut-
ing the population, the width and form of each neuron’s tuning
curve, and the variability of the responses (e.g., Abbott and
Dayan 1999; Hinton et al. 1986; Pouget et al. 1999; Rolls et al.
1997; Wilke and Eurich 2002; Zohary et al. 1994). Many
studies investigate population coding of sensory information
by integrating neuronal activities over several hundreds of
milliseconds. Biological systems, however, often require be-
havioral adjustments to take place within considerably smaller
time intervals when facing rapid environmental changes (see
however Heller et al. 1995; Oram and Perrett 1992; Osborne et
al. 2004; Tovee et al. 1993).

To study systematically the impact of integration time on the
accuracy of a population code, we combine electrophysiolog-
ical experiments and numerical modeling. Our experimental
system, the blowfly, employs populations of individually iden-
tified interneurons processing directional motion information
(reviews: Borst and Haag 2002; Egelhaaf et al. 2002, 2005;
Hausen and Egelhaaf 1989; Krapp 2000). We focus on a
subpopulation of 10 tangential neurons, the vertical system
(VS) neurons (Hengstenberg et al. 1982). VS neurons are well
described in terms of their response properties (Hengstenberg
1982; Krapp et al. 1998); this makes them an ideal model
system to investigate different aspects of population coding.
Previous studies suggest that each VS neuron analyzes optic
flow resulting from rotations of the animal’s head or body
around a specific axis located in the horizontal plane (Krapp
and Hengstenberg 1996; Krapp et al. 1998). Figure 1A shows
the receptive field organization of two VS neurons. The pref-
erence of a given VS neuron to sense a specific rotation is
mediated by the distribution of local directional motion sensi-
tivities within its receptive field. The preferred rotation axes of
the VS neurons are distributed within an angular range of
~180° in the horizontal plane (Fig. 1B). VS neurons connect
either directly or via descending neurons to various motor
systems (Gronenberg et al. 1995; Huston and Krapp 2003;
Strausfeld et al. 1987). Visual motion stimulation introduces
graded membrane potential changes in VS neurons sometimes
superimposed by small spike-like depolarizations (Hengsten-
berg 1977).

In the present account, we make intracellular recordings
from VS neurons in a panoramic virtual reality optic flow
stimulator (Lindemann et al. 2003). We challenge the neurons
with wide-field optic flow stimuli simulating rotations of the fly
at two different velocities around different horizontal rotation
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POPULATION CODING OF SELF-MOTION

A Receptive field of VS4- and VS7-neuron
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FIG. 1.
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B VS-neuron population
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A: receptive field organization and preferred rotation axes of the neurons VS4 and VS7 as seen from the right and above. Direction and length of the

small arrows in the receptive field indicate the neurons’ preferred direction for local motion and motion sensitivities, respectively (data from Krapp et al. 1998).
Both receptive fields cover the entire visual hemisphere, but the maximum sensitivity to downward motion is observed in the frontolateral (VS4) and the
caudolateral (VS7) visual hemisphere. The preferred axes of rotation (PAR) of VS4 and VS7 differ by ~60°. B: preferred rotation axes of all vertical system
(VS) neurons in the right brain hemisphere quantitatively estimated from their local response properties (adapted from Krapp 2000) (perspective: from the rear
and above). VS neuron responses to wide-field optic flow stimuli simulating horizontal rotations of the fly, are in agreement with the estimated preferred axes
shown. Note that the globes in A and B are rotated by 90° with respect to each other, because the most sensitive regions of the receptive fields are approximately

orthogonal to their respective preferred rotation axes.

axes. We chose the velocities to match the lower and upper
range of velocities occurring during real flight (van Hateren
and Schilstra 1999). On the basis of electrophysiological ex-
periments performed in the present as well as in previous
studies (Krapp et al. 1998), we obtain the relevant parameters
for modeling the large number of responses that are required to
analyze population coding. To find the time interval within
which the population activity of VS neurons needs to be
integrated for achieving a good estimate of the fly’s rotation
axis, we apply a Bayesian analysis to the modeled population
response. This technique is frequently used in the context of
population coding (review: Dayan and Abbott 2001; Oram et
al. 1998). A Bayesian analysis determines the coding perfor-
mance of neuronal populations without referring to a specific
neuronal readout mechanism. It only requires the distribution
of neuronal responses and the probability distribution of the
different stimuli. The Bayesian analysis provides information
about the accuracy an ideal readout mechanism could achieve.

By applying this approach, we investigate the accuracy with
which the population of VS cells encode the animal’s axis of
self-motion, depending on integration time, noise correlation
among neurons, the distribution of tuning curves, and the
number of neurons constituting the population. Apart from the
integration time, the noise correlation and the number of
neurons in the population are of particular interest to our model
system. First double recordings from tangential neurons have
indicated that, to some extent, the stochastic membrane poten-
tial fluctuations (“noise”) in neighboring neurons are correlated
(Haag and Borst 2004; Warzecha et al. 1998). Second, 10 VS
neurons in each brain hemisphere process rotations around
different axes in the horizontal plane. The system seems to be
over-determined because, theoretically, no more than two VS
neurons should provide sufficient information to estimate any
horizontal rotation. We demonstrate that for the given neuronal
noise levels, encoding the animal’s self-motion within only a
few milliseconds requires a population of more than two VS

neurons. The short integration time matches the duration of the
fly’s alternating self-motion sequences during real flight. (van
Hateren and Schiltra 1999).

METHODS

Experiments

ELECTROPHYSIOLOGY. Experiments were done on 1- to 2-day-old
female blowflies (Calliphora vicina) bred in our laboratory stock. The
dissection of the animals for electrophysiological experiments fol-
lowed standard procedures described elsewhere (see e.g., Warzecha et
al. 1993). The flies’ eyes were aligned with the stimulus device
according to the symmetrical deep pseudopupil (Franceschini 1975).
Intracellular recordings from VS neurons in the right lobula plate (3rd
optic lobe) were made using borosilicate electrodes (GC100TF10,
Clark Electromedical) pulled on a Brown-Flaming Puller (P-97, Sutter
Instruments). Electrodes were filled with 1 M KCl and had resistances
between 20 and 40 M. Recordings were carried out using standard
electrophysiology equipment. The data were low-pass filtered (corner
frequency: 2.4 kHz) and sampled at a rate of 4 kHz (I/O-card DT3001,
Data Translation) using the VEE Pro 5.0 (Agilent Technologies) in
conjunction with DT VPI (Data Translation) software. VS neurons
were identified by the location of their receptive field, their preferred
direction of motion, and their signal structure (Hengstenberg 1982;
Krapp et al. 1998). Experiments were done at temperatures between
28 and 32°C. Such relatively high temperatures closely approximate
the fly’s head temperature during flight (Stavenga et al. 1993).

VISUAL STIMULATION AND DATA ANALYSIS. Stimuli were pre-
sented using FliMazx, a special-purpose panoramic VGA output device
that generates image frames at a frequency of 370 Hz (Lindemann et
al. 2003). FliMax is composed of triangle-shaped printed circuit
boards (side length: 30 cm), assembled to form 14 of the 20 sides of
an icosahedron (radius of inscribed sphere: 22.4 cm). Each of these
boards supports 512 regularly spaced round light-emitting diodes
(LEDs, Wustlich WU-2-53GD, diameter: 5 mm, emitting wavelength:
567 nm, effective viewing angle 25°). LEDs are controlled individu-
ally via a computer equipped with a standard VGA graphics card and
customized software. The luminance of each LED is adjustable to
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eight intensity levels and is kept constant between updates by sample-
and-hold circuits. FliMax has an opening in the rear to position a fly
in its center and to access the animal’s brain for electrophysiological
recordings. Due to this opening in the back, neurons with receptive
fields mainly located in the posterior part of the visual field (VS9-
VS10) (Krapp et al. 1998) were not well stimulated by FliMax and are
not experimentally analyzed here.

Visual stimuli were designed to simulate optic flow fields resulting
from the animal’s rotation around various horizontal head axes. A
three-dimensional (3D) model of a sphere patterned with randomly
distributed black and white patches was designed using Open Inventor
(Silicon Graphics). Rotations within this sphere were rendered using
Open Inventor and the Mesa (www.mesa3d.org) OpenGL (SGI)
implementation (see Lindemann et al. 2003 for details).

We stimulated the fly with optic flow sequences mimicking rota-
tions around 12 different horizontal axes. The different rotation axes
were spaced at 30° in the horizontal plane. Each rotation stimulus was
presented for 500 ms. Rotations around the fly’s longitudinal head
axis to the left and right were assigned rotation axes of 0 and 180°,
respectively (roll rotation). Nose-down and -up rotations around the
transverse head axis corresponded to rotation axes of 90 and 270°,
respectively. To obtain the VS neurons’ tuning curves, rotations
around the 12 axes were presented twice and at two velocities (50 and
3,000°/s). The velocity of the simulated rotation was chosen to match
the upper and lower bound the fly encounters during real self-motion

A Response with and without spikes

VS1-neuron
50
40
< 30
E
ol
T 20
°
2]
10 h J
0 /’\'j
-10
0 50 100 150 200 250
time [ms]
VS2-neuron
50
40 — integration time 5 ms
~ integration time 10 ms
= integration time 20 ms
= 30 integration time 40 ms
E —— integration time 80 ms
;‘E 20
k3]
[}
10
0
-10
0 50 100 150 200 250
time [ms]

K. KARMEIER, H. G. KRAPP, AND M. EGELHAAF

as determined by van Hateren and Schilstra (1999). In this study, it
was shown that flies exhibit a saccadic flight and gaze strategy. As a
consequence, most rotational self-motion components are squeezed
into the saccades, leaving mainly translations and only low-velocity
rotations for the intersaccadic interval. Therefore we think a simula-
tion of pure self-rotations is adequate. The interstimulus interval was
5 s. To estimate the amount of noise in VS neurons, we presented
rotations around a subset of the 12 rotation axes: the fly was either
stimulated with rotations around three different axes at both rotation
velocities or with rotations around six different axes only at the slow
velocity. To obtain as many responses as possible, stimuli were
repeated until the recording became unstable. This resulted in 8—14
stimulus repetitions per experiment.

Data were analyzed only if no systematic shift of the resting
potential was observed over the entire duration of the experiment and
if the excitation level of VS cell’s during rotation about its preferred
axis exceeded 10 mV. The resting potential before stimulus onset was
set to zero in each recording. In some VS neurons, the graded
depolarizations of the membrane were superimposed by small spike-
like events or spikelets. Neurons with similar response modes have
been found in other invertebrate and vertebrate systems (Azouz and
Gray 1999; Miller et al. 1991; Sanchez-Vives et al. 2000). Active
membrane properties that produce spikelets are particularly pro-
nounced in the VS1 cell (compare VS1 cell and VS2/3 cell in Fig. 2A)
(Haag et al. 1997; Hengstenberg 1977, 1982). Because we did not
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FIG. 2. A: single response traces recorded from a VS1- and a VS2/3 neuron. The original traces are shown in black. Gray traces result from clipping spikelets,
which are spike-like active events of variable amplitude on top of the graded membrane depolarizations. We stimulated the neurons with optic flow mimicking
rotations around axes of 210° (VS1) and 240° azimuth (VS2/3), respectively. Bars above the x axis indicate the time windows used to obtain the mean responses
shown in B. B: average responses of the VS1 and the VS2/3 neuron obtained for the time windows indicated in A. Means *= SD are shown as obtained from

13 (VS1) and 9 (VS2/3) stimulus repetitions.
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want to model this special feature of the VS1 cell in our approxima-
tion to population coding in the fly visual system, we decided to clip
the spikelets. Clipping the spikelets did not have an impact on our
general conclusions (see following text). The spikelets were detected
by thresholding the slopes of membrane potential changes. When, due
to the occurrence of a spikelet, the slope exceeded a threshold value,
they were replaced with the average membrane potential before and
after the spikelet. The threshold criterion was defined as 3.5%95™
percentile of the slopes in membrane potential changes measured
before motion onset. The beginning of a spikelet was defined as the
time when the ascending slope of the membrane potential change
exceeds the threshold value. The end of a spike was defined when the
membrane potential slope drops below this threshold again. The result
of this procedure is exemplified in Fig. 2A where the original re-
sponses and the responses after spike-clipping are shown. The VS1
neuron shows many spikelets during visual activation, whereas the
VS2 neuron does not. The consequence of spikelet-clipping on the
mean response of these two neurons is shown in Fig. 2B for different
integration times. The mean activity in the VS1 neuron determined
from the neuron’s original response trace is 36% higher than the mean
activity obtained after clipping the spikelets (average difference: 2
mV). We did not observe any qualitative effects of spikelet clipping
on the relationship between mean activity and integration time.

We analyzed in detail the following neuronal response parameters:
the time course of the neurons’ responses to motion stimuli; the
relationship between variance and mean activity; and the orientation
of the neurons’ preferred rotation axes in the horizontal plane. We
define the noise as the variance of the difference between individual
response traces and the time-dependent mean response.

Bayesian analysis

To determine the accuracy with which the axis of the animals’
self-rotation can be inferred from the population response of VS
neurons, we applied a Bayesian analysis (review: Dayan and Abbott
2001; Oram et al. 1998). As a measure of the accuracy, this analysis
provides the error with which the axis of the animals’ self-rotation can
be decoded from the activity pattern distributed across the population
of VS neurons. A Bayesian analysis relies only on estimates of the
probability distribution of neuronal activities conditional on an indi-
vidual stimulus drawn from a given set of stimuli (e.g., Foldiak 1993;
Salinas and Abbott 1994; Sanger 1996).

The application of a Bayesian analysis to determine the systems
accuracy requires the probability distribution of neuronal activities for
optic flow stimuli simulating many different rotation axes. Obtaining
those probability distributions requires a far greater number of stim-
ulus presentations than could be applied during the limited time
available for stable intracellular recordings. To solve this problem, we
modeled response traces based on parameters obtained from least-
square fits to our experimental data (optimization tool box, Matlab,
Mathworks ICN) and on the tuning curves determined in a previous
study (Krapp et al. 1998). The details are described in RESULTS. The
modeled responses, in turn, were used to approximate the neurons’
probability distribution of activities we require for applying the
Bayesian analysis.

Many samples of the response » of a neuron to a stimulus s; allows
us to estimate the probability distribution p(r|s,). The distribution
p(rs,) describes the probability of observing a certain neuronal re-
sponse r given that stimulus s, was presented. Estimating the proba-
bility distribution of neuronal responses for all stimuli from the
stimulus set S = {s;, 5, ..., s;} results in the distribution p(r|s). To
obtain a measure of the neuronal responses to rotations around a
certain axis, we average the neuron’s activity within a given time
interval. Bayes’s rule states that

p(sln) = plris)p(s)ip(r) ()
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where p(s) is the probability distribution of the stimuli and p(r) is
calculated as

n

p() = Dplrls)p(s) @)

i=1

If each stimulus s; is presented with equal probability, Eq. I
simplifies to

plsl) = plrls) Yop(rls) 3

i=1

Once we know the probability distributions p(s), p(r) and p(r|s),
which are either set by the experimenter or can be obtained experi-
mentally, we can estimate the probability that a particular stimulus is
present given the observed response.

By modeling the activities of all n neurons of a population, we
obtain the population response R = {r,, r,, . . ., ,,}, which allows us
to estimate the probability distributions of the population response

p(rir.. . ~J’u|5i) :P(R|Si)

P(sIR) = p(R[s) Dp(Rls).

i=1

The distribution p(R|s) contains all information about the stimulus
s present in the neuronal population responses. It may be used to
compute a stimulus estimate S,. S, 1S calculated to minimize the
variance between the estimated and the true rotation axis by applying
the loss-function L(S, S..) = (S — S..)° As a performance measure
for estimating the stimulus from the population response, we define
the decoding error E, according to a standard procedure as the
root-mean-squared difference between the true and the estimated
rotation axis (see e.g., Dayan and Abbot 2001). We determined E for
rotation axes at a spatial resolution of 1°.

RESULTS
Results of experiments and fitting procedure

TIME COURSE OF RESPONSE.  To study the impact of integration
time on the accuracy of the population code in VS neurons, we
investigate the time course of the stimulus-induced response
component for different rotation axes. The stimulus-induced
response component is defined as the time-dependent average
across the responses to many repetitions of the same stimulus.
The time course of the responses was analyzed for intracellular
recordings from four different types of VS neurons recorded in
six experiments. Each experiment lasted long enough to obtain
a sufficient number of response traces required to estimate
reliably the response parameters. We stimulated all neurons
with slow (50°/s) and fast rotations (3,000°/s) around 12
different horizontal head axes at spacing of 30°. Figure 3A
(black line) shows the time course of the stimulus-induced
responses to a slow rotation around the preferred and the
nonpreferred axis. A rotation around its preferred axis maxi-
mally activates the neuron. Rotation in the opposite direction
(“nonpreferred axis”) inhibits the neuron. The time course of
the responses to fast and slow rotation velocities differ in
amplitude (Fig. 3B; see Egelhaaf and Borst 1989; Hausen
1982a,b). For rotations around the preferred axis at both fast
and slow velocities the response increases steeply after motion
onset. It takes another 20-50 ms for the response to assume a
plateau value that stays fairly constant for the remaining
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B Response to fast rotation (3000°/s)
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Experimental results and model fits. A: measured stimulus-induced response of a VS1 neuron to a slow rotation at 50°/s around the 270 and 90° axes

(black lines). The fit to the time course of the responses is plotted in gray. The stimulus-induced activity is averaged over 2 stimulus repetitions. The bar above
the x axis indicates the time window used to obtain the plateau values shown in C. B: measured stimulus-induced response of a VSI neuron to a fast rotation
at 3,000°/s. C: plateau tuning curve measured in a VS1 and a VS2/3 neuron. Neurons were stimulated with rotations around 12 different axes at a velocity of
50°/s. Circles give the means * SD for 2 response repetitions. The plateau value was obtained within a time window of 100 ms length starting 50 ms after
response onset. Lines drawn through the measured data indicate a fitted sinusoidal function with different amplitude factors for the positive and negative
half-waves. The root of the mean squared error between the fitted and the measured tuning curves amounts to 0.39° (VS1) and 0.27° (VS2/3). D: normalized
plateau tuning curves to horizontal rotations for all 4 VS neurons recorded in the experiments. The amplitudes were normalized to the mean amplitude obtained

from all experiments using slow rotations.

50-500 ms of stimulation (Fig. 3, A and B). Slow rotations
around the nonpreferred axis hyperpolarize the neuron relative
to its resting potential. Hyperpolarizations induced during fast
rotations are less pronounced. As with responses to preferred
axis rotations, a steep transient depolarization precedes the
hyperpolarizing plateau value (see also Egelhaaf and Borst
1989). The preferred axis of a given VS neuron does not
depend on the rotation velocity.

The limited time of stable intracellular recordings allowed us
only to measure VS neuron activities to rotations around 12
different axes. To determine the estimation error E for the
rotation axes at a much finer spatial resolution, we had to
model the time course of responses for those axes we did not
obtain experimentally. When modeling the time course of the
stimulus-induced response (gray line in Fig. 3, A and B), we
considered two response components: /) a band-pass filtered
step response starting at response onset that represents the
transient depolarization of the response. The peak of the first
component proved to be independent of the rotation axis and

was set to 6 and 7 mV for slow and fast rotations, respectively.
2) A second band-pass filtered step response starting at re-
sponse onset that accounts for the plateau value of the re-
sponse. Other than the amplitude of the transient depolariza-
tion, the plateau value of the step response depends on the
rotation axis.

To obtain the plateau value, we integrated the response
within time intervals of 100 ms, starting 50 ms after response
onset (see bar in Fig. 3, A and B). When modeling the first
component (/) a time constant of 4 ms produced the best fits to
the experimental data for both the high- and low-pass filters.
For the second component (2) best fits were obtained with time
constants of 4,950 ms (high-pass) and 15 ms (low-pass). The
only parameter for modeling the time course of the response
that depends on the rotation axis is the plateau value of the
second response component. Fitting a function to the plateau
values of the responses measured at 12 rotation axes allowed us
to derive the plateau values of the responses to intermediate
rotation axes. We will refer in the following to the function
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fitted through the measured plateau values as plateau tuning
curve. The plateau tuning curves can be approximated by
phase-shifted cosine functions using different amplitude fac-
tors for the positive and the negative half-wave. The amplitude
factors are different for slow and fast rotations. In Fig. 3C, we
plot the experimentally determined plateau values of two
different VS neurons to slow rotations together with the cor-
responding plateau tuning curves. Plateau tuning curves of a
given VS neuron obtained in different flies were found to be
very similar (maximal shift of the preferred rotation axes: 14°).
The mean amplitude factors and SDs of the positive (negative)
half-wave of the plateau tuning curves were 15,45 = 1,18 mV
(—=9,74 = 4,08 mV) for slow and 7,54 = 2,77 mV (—2,23 *+
4,14 mV) for fast rotations as averaged across all experiments.
The positive amplitude factors of all plateau tuning curves
were normalized to the mean obtained from six experiments.
The negative amplitude factors were normalized correspond-
ingly. Figure 3D shows the normalized plateau tuning curves
of four different VS neurons. The preferred axes of rotation
and the overall form of the tuning of all VS neurons as obtained
with global optic flow stimuli are in close agreement with
predictions based on local motion stimuli (cf. Fig. 1B) (Krapp
et al. 1998; see Karmeier et al. 2003 for further details on the
prediction of the preferred rotation axis from the neurons’
receptive field organization). Therefore instead of determining
experimentally the time course of responses for all 10 VS
neurons, for the remaining six VS neurons, we calculated the
time course based on the neurons’ receptive field organization.

Noise

The membrane potential of individual response traces of VS
cells fluctuates considerably about the stimulus-induced re-
sponse component, i.e., the mean across the responses to many
stimulus repetitions (see METHODs and preceding text). Despite
these stochastic membrane potential fluctuations, the variabil-
ity of the responses of fly tangential neurons to repeated
presentation of the same stimulus is much smaller than the
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variability of vertebrate cortical neurons (Barberini et al. 2001;
Warzecha and Egelhaaf 2001). The fluctuations were still
conspicuous even after the spikelets had been removed. The
stochastic component of the membrane potential is determined
by subtracting the stimulus-induced response component from
an individual response. Figure 4A shows the probability distri-
bution of the stochastic membrane potential component ob-
tained in the plateau phase within a 400-ms time window that
starts 100 ms after motion onset. This distribution may be
approximated by a normal distribution. Figure 4B shows the
variance of the stochastic membrane potential component as a
function of the mean stimulus-induced component for both fast
and slow rotation velocities. The variance increases with in-
creasing stimulus-induced depolarization of the cell, reaches a
maximum and, for even higher activity levels, decreases again.
Because the mean stimulus-induced activity varies during the
initial response phase after motion onset (cf. Fig. 3, A and B),
we averaged the stimulus induced activity within 50-ms time
windows overlapping by 25 ms. The resulting mean activities
were assigned to 0.5-mV activity classes. The dependence of
the variance on the mean activity does not depend critically on
either the length or the overlap of the chosen time windows and
can be fitted by a Gaussian function (Fig. 4B; 0 = 5.2, p =
7.5, max. amplitude: 10.1).

Population coding of self-motion

MODELING RESPONSES FOR THE BAYESIAN ANALYSIS. To apply
the Bayesian approach based on our experimental data, we
modeled the time course of VS neuron responses and their
noise statistics. Neuronal responses of all 10 VS neurons
located in the right brain hemisphere were modeled at a
temporal resolution of 1 ms and a spatial resolution of the
rotation axis of 1°. The mean time course of each neuron’s
membrane potential r(7) for a given rotation axis is composed
of the transient depolarization and the plateau value, scaled to
the value of the plateau tuning curve (see RESULTS OF EXPERI-
MENTS AND FITTING PROCEDURE).

B Dependence of variance on stimulus
induced activity
18¢

16 O slow o
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FIG. 4. A: probability distribution of the stochastic membrane potential component for 9 stimulus repetitions (slow rotations around the 270° axis). The time
interval used for analyzing the membrane potential starts 100 ms after stimulus onset and lasts for 400 ms. B: the variance of the stochastic membrane potential
component scales nonlinearly with the stimulus induced membrane potential component. The variance of the stochastic membrane potential component is
analyzed for 3 different rotation axes and both rotation velocities. Each stimulus was repeated =8 times. The variance and mean of each response trace are
analyzed in 16 time windows of 50-ms length, overlapping by 25 ms. We determined the dependence of the variance on the membrane potential in three
experiments. The data shown are obtained from the same VSI recording as used for Fig. 3, A and B.
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Modeling approach. A: simulated VS1 response trace to a slow rotation around the 270 and 90° axes. Bars above the x axis indicate the integration

windows used in the further analysis. B: tuning of the VS1 neuron calculated from average responses in the different time windows plotted in A. Bars give the
SD. C: normalized plateau tuning curves for slow rotations of all 10 modeled VS neurons located in the right brain-hemisphere. Tuning curves of the neurons
that were not only modeled, but also recorded in the experiments are given in gray (cf. Fig. 3D). The tuning shape and the preferred axis of rotation determined
for the VS neuron with wide-field optic flow are in close agreement with predictions based on local motion stimuli.

Each individual response trace r,(f) was computed by adding
individual noise traces n/f) to the mean time course of the
membrane potential r(f)

ri(t) = () + n(t)

Individual noise traces were computed as a series of low-
pass-filtered random numbers drawn from a Gaussian distribu-
tion (for further details see: Kretzberg et al. 2001). The noise
is scaled according to its dependence on the mean activity as
derived from our experimental data (Fig. 4B).

Figure 5A shows an individual model response of a VS1
neuron. The time course of the modeled responses nicely
captures the features of our experimental data (compare Figs.
3A and 5A). From the repeated calculation of individual re-
sponses to different rotation axes, we obtained the distribution
of neuronal activities conditional on each stimulus p(r|s). The
activities were integrated over time windows of 5-, 10-, 20-,
40-, and 80-ms length. The conditional probability distribu-
tions allowed us to reconstruct the mean tuning curves and SD
for different time windows (Fig. 5B). Modeling the activities of
all 10 VS neurons of the population allows us to estimate the
probability distributions of the population response for 360

rotation axes (spatial resolution: 1°). Figure 5C shows the
normalized plateau tuning curves for all 10 VS neurons of the
right brain hemisphere. We compute the decoding error as
described in METHODS (Fig. 6A).

Accuracy of VS system

We estimated how accurately horizontal rotations of the
animal could be decoded from the activity pattern within the
population of 10 VS neurons located in one brain-hemisphere.
The mean responses of each neuron of the population were
calculated from individual response traces in time windows of
5, 10, 20, 40, and 80 ms after response onset (Fig. 5B). In Fig.
6A, we plot the error E obtained from the population response.
The error slightly depends on the rotation axis. A rotation
around an axis at an azimuth of 360°, for instance, is encoded
more accurately than a rotation around an axis at 180° azimuth
(Fig. 6A, black line). With increasing integration time the
decoding error decreases. A decrease of the error for longer
integration times is expected for two reasons: the increasing
modulation depth of the tuning curves (Fig. 5B) and the
decrease of the SD of the noise (error bars in Fig. 5B). Due to
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B Error for slow and fast rotation
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FIG. 6. Error for slow and fast rotations and effect of correlated variability. A: decoding error for the population of VS neurons as a function of the rotation
axis (slow rotation; 50°/s). We compute the error from repeatedly modeled responses of all 10 VS neurons. The gray-scale code indicating the 5 integration
windows is the same in Fig. 5. B: error as a function of the integration window starting at response onset for slow and fast rotations with uncorrelated noise.
Solid lines give the median error over all rotation axes, bars indicate the 25th and 75th percentile for each integration window. C: correlation coefficient effective
between the VS1 neuron and all other VS neurons. The correlation coefficient given in the legend applies to 2 neurons with completely overlapping receptive
fields. D: error for slow rotations without correlated noise and with a correlation coefficient of 0.5 or 1 for a neuronal population with identical tuning curves.

the specific time course of the responses, the tuning curves
reconstructed from the modeled responses for short integration
times modulate only slightly with changes in the rotation axis.
This is a consequence of the transient depolarizations after
stimulus onset, a common feature of the responses to any
rotation axis. Consequently, the decoding error is relatively
large for short integration times. As an overall measure of
accuracy for a given time window we apply the median across
the error for all rotation axes. For slow rotations, the median
error drops <7° already after an integration time of only 10 ms
(Fig. 6B). The error bars in Fig. 6B indicate the 25th and 75th
percentile and reflect the modulation of the error across all
rotation axes. The system’s accuracy decreases for simulated
rotations of 3,000°/s. But even for fast rotations the median
error drops <15° after an integration time of 10 ms (Fig. 6B).

Correlation of noise

The results presented so far were calculated for a population
of neurons with uncorrelated noise, i.e., the time course of
stochastic response components were statistically independent
between the neurons. However, the receptive fields of most VS

neurons overlap (cf. Fig. 1A), and it is assumed that they partly
receive input from the same presynaptic elements. Dual record-
ings from two spiking tangential neurons with largely overlap-
ping receptive fields revealed that in these neurons 30% of the
spikes are generated synchronously (Warzecha et al. 1998).
Moreover, a recent study indicates that neighboring VS neu-
rons are directly coupled via electrical synapses (Farrow et al.
2005; Haag and Borst 2004). This would certainly increase the
noise correlation between VS neurons. In agreement with these
experimental findings, we included correlated noise in our
simulations. We assumed that the noise between VS neurons is
positively correlated to a degree that depends on the overlap of
their receptive fields and thus on the separation of the neurons’
preferred rotation axes.

Accordingly, two (hypothetical) neurons with identical pre-
ferred rotation axes have the strongest noise correlation. The
correlation coefficients assumed for neurons with identical
preferred rotation axes were 0, 0.5, or 1 (Fig. 6C). If the
preferred axes differ from one another, the correlation coeffi-
cient is scaled down by a factor that is computed as the tuning
curves’ area of overlap normalized to the area of the entire
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tuning curve. Tuning curves of the modeled VS neuron popu-
lation never completely overlap, and the correlation coefficient
between two neurons is thus always smaller than the coefficient
assumed for neurons with identical preferred axes (Fig. 6C). If
we assume a correlation coefficient of 0.5 for neurons with
identical preferred rotation axes, the noise between the VS1
neuron and the VS2 neuron is correlated with a coefficient of
0.49 (pale gray curve in Fig. 6C). In this case, 49% of the noise
originates from the common input of the neurons, and 51% is
intrinsically generated and/or originates from inputs the neu-
rons do not share. We model the noise traces of these two
neurons by adding two components: One component is the
same for both neurons and is scaled to a variance of 0.49 mV?,
The other component contains independent noise and is scaled
to 0.51 mV>.

Noise correlations of all tested strengths decrease the accu-
racy of the VS-neuron population, particularly for short inte-
gration times (Fig. 6D). However, even for maximally corre-
lated noise the decoding errors drop <5° within 40 ms after
response onset. By that time, the negative effect of correlated
noise seems to be functionally negligible.

Number of neurons

In a noise-free system, two neurons with orthogonally ar-
ranged preferred axes are sufficient to encode any horizontal
rotation. To assess the potential significance of 10 rather than
2 VS neurons, we compute the decoding error for a hypothet-
ical population of two VS neurons whose preferred axes are
arranged in an orthogonal way (gray tuning curves in Fig. 7A).
Otherwise, we assume the same time course of the responses
and the same variance as measured in VS neurons and no noise
correlation.

The simulations show that, for short integration times, two
neurons cannot estimate the rotation axis as accurately as the
population of 10 neurons and that the encoding error is larger
by a factor of >3-5 (cf. Figs. 6B and 7B). Nevertheless, a
detection of the rotation axis with a median error of 7° is
achieved for integration times as short as 20 ms (Fig. 7B, gray
line). The comparatively high performance of a population of
only two neurons is due to the graded response mode of VS
neurons. If we approximate crudely two spiking neurons by
rectifying the tuning curves, only after integration times of
>40 ms, the decoding error drops <10° (Fig. 7B, dotted line).
Furthermore, the error is strongly modulated and depends
critically on the respective rotation axis (Fig. 7B, inset). Even
if the median error drops <5° after 80 ms, for some rotation
axes the error is as high as 45°!

The accuracy of the neuronal population coding information
with graded membrane potential changes improves if the inte-
gration window does not start directly at response onset but
100 ms later (Fig. 8). The higher accuracy for later time
windows can be attributed to two factors. First, the initial
transient response of VS neurons is less dependent on the
rotation axis than the plateau response (see Fig. 3A and B).
Second, the population response is less variable due to the
dependence of the variance on the mean response (see Fig. 4B).
During the plateau response, two neurons determine the rota-
tion axis at high accuracy already within 1 ms, even in the
presence of noise (median decoding error: 4.3°). For a smaller
population of VS cells and given the specific time course of the
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FIG. 7. Decoding the rotation axis from the population response of 2
neurons. A: tuning curves for 2 neurons with a graded response mode
(nonrectified, gey lines) and with a rectified tuning curve mimicking the spike
rate of a spiking neurons (dashed lines). B: decoding error as a function of
integration time for neurons with rectified and nonrectified tuning curves. Even
if the median error for the spiking neurons after 80 ms integration time is in the
same range as for the neurons with a graded response mode, some rotation axes
can only be reconstructed with a low accuracy (inset).

VS neuron responses, an accurate estimation of the rotation
axis requires either sufficient integration time or it requires the
integration to start some time after response onset. These
decoding strategies, however, are not particularly advisable if
the transitions between different self-motions take place very
rapidly as they do in flies (Schilstra and van Hateren 1999). A
fast and accurate estimation of the rotation axis under dynam-
ical stimulus conditions, therefore requires a larger population
of neurons than the minimum number of two.

Spatial distribution of neurons

The preferred axes of the ten VS neurons as determined
experimentally (Krapp et al. 1998) are not equally spaced
along the azimuth (Fig. 5A). To test the impact of the spatial
arrangement of the preferred rotation axis on the decoding
error, we investigate three different situations. /) The preferred
axes of the 10 VS neurons are equally spaced within an
azimuth range between 81 and 270°, which corresponds to the
range within which the experimentally determined axes were
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FIG. 8. Coding accuracy of a 2-neuron population for 2 different starting

times of the integration window. Neurons are arranged as shown in Fig. 7A. A:
responses traces for rotations around axes at 0 and 180°; the preferred rotation
axis is at 0°. Bars below the traces indicate the integration windows starting
directly at response onset (gray) or 100 ms later (black). B: decoding error as
function of integration time for windows starting at response onset or 100 ms
later.

found. 2) The preferred axes of 3, 4, and 3 neurons cluster
around 270, 0, and 60° azimuth. 3) The preferred axes of 3, 4,
and 3 neurons coincide at 270, 0, and 60° azimuth. In Fig. 94,
we plot the tuning curves for the different spatial arrangements.
The coding accuracy is computed from 10 ms integration
windows starting at response onset.

In the case of uncorrelated and medium correlated noise, the
specific arrangement of the preferred axes does not affect the
median error (Fig. 9B). Only for the highest noise correlation,
the error increases and the arrangement of the preferred axes
has a small effect. However, even for this correlation the mean
error of the population with three clusters of completely over-
lapping tuning curves (3) is only 2.3° higher than for the
population with equally distributed tuning curves (/). For a
population of broadly tuned VS neurons in graded response
mode the exact spatial arrangement of the neurons can thus be
neglected.

DISCUSSION

In this study, we combined experimental data and modeling
to investigate the accuracy of a population code. Population
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responses were modeled to fit electrophysiological data re-
corded from VS neurons in the fly visual system on wide-field
optic flow stimulation. We demonstrate that the population of
VS neurons encodes any horizontal rotation axis with a rea-
sonable error within the very short time interval of 10 ms.
When applying a Bayesian analysis to compute the accuracy of
a population code, we obtain an upper bound of a system’s
theoretical coding accuracy. This method, however, does not
allow us to infer how the decoding of sensory information is
accomplished in a particular neuronal system. So far, little is
known about which components of the signals carried by VS
neurons are decoded by subsequent processing stages and used
for motor control (e.g., Gronenberg et al. 1995; Huston and
Krapp 2003; Strausfeld et al. 1987). Nevertheless, the factors
that affect the coding accuracy of a neuronal population code
can be pin-pointed by a Bayesian analysis. In the following, we
will discuss three of these factors: the integration time, noise
correlation between neurons, and the population size and
spatial arrangement of neurons.

Integration time

The population of VS neurons encodes the rotation axis for
slow rotations with a median error of 7° after an integration
time of only 10 ms starting at response onset. Extending the
integration time to >20 ms only results in minor improve-
ments. The accuracy of the population code decreases at high
rotation velocities of 3,000°/s. However, after an integration
time of 20 ms even at this velocity a decoding of the rotation
axis is possible with an acceptable accuracy (median error: 7°).
Interestingly, the shortest integration times that are sufficient to
decode the population activity of VS neurons with a high
accuracy are smaller than the time constants and integration
times of the motion detection mechanism presynaptic to VS
neurons (e.g., Borst et al. 2003; Egelhaaf and Borst 1989;
Lindemann et al. 2005; Srinivasan 1983).

Averaging neuronal responses over time reduces neuronal
noise and can enhance the accuracy of a population code. For
neurons that do not immediately reach their steady-state re-
sponse, as was the case for the VS neurons in our experiments,
increasing the integration time has another positive effect.
Because the neuronal response starts with a depolarizing onset
peak that is independent of stimulus direction, integration over
time increases the neuron’s specificity to a certain stimulus (cf.
Fig. 5B). However, in other studies the information about the
stimulus was found to increase only slightly for longer inte-
gration times (Heller et al. 1995; Oram and Perrett 1992;
Osborne et al. 2004; Tovee et al. 1993). The differences
between studies are likely due to the specific temporal structure
of the responses.

Noise correlation

Correlated noise in neural populations may result from
various sources (review: Usrey and Reid 1999). It may be
attributed to reciprocal synaptic connections between the neu-
rons or might be the result of common synaptic input. For
visual interneurons in the fly both sources are established:
spikes in neurons with overlapping receptive fields are syn-
chronized to a large extent, indicating that they are postsynap-
tic to the same input elements (Warzecha et al. 1998). Apart
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from overlapping receptive fields neighboring VS neurons
were recently found to be coupled via electrical synapses and
to have partly correlated membrane potential fluctuations (Far-
row et al. 2005; Haag and Borst 2004). Essentially, both
experimental findings imply an increase of noise correlation
with a decrease of the distance between the preferred stimulus
axes of the neurons. Our results on population coding in VS
neurons show that noise correlations slightly increase the
decoding error. This result fits in with the results of theoretical
studies predicting that distance-dependent noise correlations—
often called local or limited-range correlations— deteriorate
the performance of a population (Abbott and Dayan 1999;
Wilke and Eurich 2002).

The impact of noise correlation on the ability of a neuronal
population to encode information depends on the way in which
noise is correlated and on the arrangement of the tuning curves
of neurons (review: Averbeck and Lee 2004). In any case,
correlation coefficients such as those measured in fly tangential
neurons (Haag and Borst 2004; Warzecha et al. 1998) or those
between retinal ganglion cells of vertebrates having overlap-
ping receptive fields (e.g., Berry et al. 1997) have a relatively
small effect on the decoding error.

Population size and spatial arrangement of neurons

Although two neurons with different preferred rotation axes
should, in principle, be sufficient to encode any rotation axis of

200 250 300 350
rotation axis [deg]

the fly in the horizontal plane, the population of VS cells
consists of 10 neurons. We found that the decoding error is
small for a two-neuron population, but only if the neuronal
response is integrated within a time window >20 ms or if the
integration window starts some time after response onset.
Whereas the number of VS cells is highly relevant when the
rotation axis has to be estimated within a short time interval,
the exact spatial arrangement of the VS neurons’ preferred
rotation axes has only a marginal effect on the decoding error.
Our results revealed that the coding accuracy can be improved
by different strategies: an ideal observer reading out the neural
code may integrate the neuronal responses of a small popula-
tion over a long time window or wait some time before starting
the integration. Alternatively, the observer could take into
account the responses of a larger population of neurons. The
latter strategy allows for a fast reconstruction of the stimulus
within a short integration time and seems to be used in the fly
VS system. The relatively large population of VS neurons hints
at the importance of fast processing of information to solve
behavioral tasks, such as flight control and gaze stabilization.

The short integration times required to decode the rotation
axis and the marginal effect of the spatial arrangement of
preferred axes can be attributed partly to the graded response
mode of VS neurons. Tuning curves of VS neurons do not
rectify during motion about nonpreferred axes and thus each
neuron contributes a distinct and different response to the
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population activity for any rotation axis. For a population of
neurons with rectified tuning curves, some stimuli will evoke
subthreshold responses in the neurons that are affected by the
rectification nonlinearity and lead to a “null” response (cf. Fig.
7A). To counteract the detrimental effect of “null” responses,
the stimulus range evoking a “null” response would have to be
reduced. This could be achieved by increasing the width of the
tuning curves. Broadening of tuning curves, however, was
shown to decrease the accuracy of a population code (e.g.,
Zhang and Sejnowski 1999; Zhang et al. 1998). Therefore
given a certain width of the tuning curves, neurons with a
graded response mode are superior to spiking neurons, espe-
cially for neuronal populations containing only a small number
of elements. Neurons with a graded response mode may also be
superior to spiking neurons if the integration times for decod-
ing the neuronal responses is a limiting factor (for the conse-
quences of the lengths of integration windows on graded and
spiking neuronal responses, see also Kretzberg et al. 2001;
Warzecha and Egelhaaf 2001).

Conclusion

We investigated the accuracy with which a population of
visual interneurons in the fly encodes the information about the
current self-motion from optic flow. Optic flow coding neurons
have been found in many other species. Most of these neurons
show broad and unimodal (single peaked) tuning to self-motion
(e.g., Brosseau-Lachaine et al. 2001; Duffy and Wurtz 1991;
Sherk et al. 1995; Tanaka and Saito 1989; Wylie and Frost
1999). One consequence of the broad tuning is that an indi-
vidual neuron provides only ambiguous information about the
actual self-motion or heading direction. Recent studies have
shown that only the signals of a population of MST neurons
provide reliable information about the heading direction (Ben
Hamed et al. 2003; Lappe et al. 1996; Page and Duffy 2003).
Current computational models of heading perception use the
properties of the population of MT and MST neurons when
trying to reproduce findings from human psychophysics (de-
tailed review: Lappe 2000). All these studies corroborate the
conclusion of the present study that only a population of
neurons can provide unambiguous information about the cur-
rent self-motion.

Our results indicate that a larger population of VS cells than
the minimal number of two is important if the horizontal
rotation axis has to be decoded from the population response of
VS neurons with high accuracy within only 10 ms after
response onset. Such short integration times match the time
scale of natural self-motions of the fly. The most prominent
feature of blowfly flight, fast head and body saccades as well as
the intersaccadic intervals, take place on a time scale of some
tens of milliseconds (van Hateren and Schilstra 1999). Hence
the accuracy of the population of VS neurons in estimating
horizontal rotations appears to be appropriate to extract behav-
iorally relevant information from the neuronal response under
natural conditions. In a replay approach, developed to present
visual stimuli the fly previously generated by its own behavior
(Kern et al. 2005; van Hateren et al. 2005), we will test whether
it is actually possible to reconstruct the animal’s horizontal
rotations from the population response under natural conditions
as our current systems analysis approach suggests.
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