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The variability of responses of sensory neurons constrains how
reliably animals can respond to stimuli in the outside world. We
show for a motion-sensitive visual interneuron of the fly that the
variability of spike trains depends on the properties of the motion
stimulus, although differently for different stimulus parameters. (1)
The spike count variances of responses to constant and to
dynamic stimuli lie in the same range. (2) With increasing stimulus
size, the variance may slightly decrease. (3) Increasing pattern
contrast reduces the variance considerably. For all stimulus con-
ditions, the spike count variance is much smaller than the mean
spike count and does not depend much on the mean activity
apart from very low activities. Using a model of spike generation,
we analyzed how the spike count variance depends on the

membrane potential noise and the deterministic membrane po-
tential fluctuations at the spike initiation zone of the neuron. In a
physiologically plausible range, the variance is affected only
weakly by changes in the dynamics or the amplitude of the
deterministic membrane potential fluctuations. In contrast, the
amplitude and dynamics of the membrane potential noise
strongly influence the spike count variance. The membrane po-
tential noise underlying the variability of the spike responses in
the motion-sensitive neuron is concluded to be affected consid-
erably by the contrast of the stimulus but by neither its dynamics
nor its size.
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All information an animal is able to acquire about its environment
is contained in the activity of its nerve cells. Therefore, the vari-
ability of neuronal responses constrains how reliably stimuli can be
perceived or responded to. In cortical visual interneurons, spike
count variances have been found to be in the order of the mean
spike count (Tolhurst et al., 1983; Vogels et al., 1989; Britten et al.,
1993; Barberini et al., 2000). Smaller spike count variances have
been observed at more peripheral stages of the vertebrate visual
system (Levine et al., 1988, 1992; Berry et al., 1997; Reinagel and
Reid, 2000) and in motion-sensitive neurons of the fly (de Ruyter
van Steveninck et al., 1997; Warzecha and Egelhaaf, 1999).

In visual neurons, a given activity can usually be elicited by
various combinations of stimulus parameters. For example, the
output of motion-sensitive visual interneurons may depend on the
size, the contrast, and the velocity of the stimulus. An extended
pattern with a small contrast may elicit the same response as a
smaller pattern with a high contrast. Moreover, stimuli with tem-
porally modulated velocity might lead, at a certain response phase,
to the same response level as a constant velocity stimulus. Because
in these situations the spatiotemporal activity distribution across
the synaptic inputs of the neuron may differ considerably, the
variability in the resulting responses may also differ. Apart from
studies that explicitly investigated whether the stimulus dynamics
affects neuronal variability (Berry et al., 1997; de Ruyter van
Steveninck et al., 1997; Burac̆as et al., 1998; Warzecha and
Egelhaaf, 1999), there are only few studies on the dependence of
neuronal variability on the stimulus conditions (Dijk and Ringo,
1987; Croner et al., 1993).

Therefore, we analyze the stimulus dependence of the across-
trial variance of the spike activity of the H1 neuron in the fly visual
system. The H1 neuron, as well as other so-called tangential cells

(TCs), of the fly have been widely used for investigating neuronal
processing of visual motion information (for review, see Hausen
and Egelhaaf, 1989; Egelhaaf and Borst, 1993; Egelhaaf and War-
zecha, 1999) and, in particular, the reliability of neural coding (de
Ruyter van Steveninck and Bialek, 1988, 1995; de Ruyter van
Steveninck et al., 1997; Haag and Borst, 1997; Warzecha and
Egelhaaf, 1997, 1999; Warzecha et al., 1998). Our electrophysio-
logical analysis is supplemented by model simulations, which will
form the basis for interpreting the experimental results. The sim-
ulations are based on a phenomenological model of spike genera-
tion that was adjusted to account for the response properties of the
H1 neuron (Kretzberg et al., 2000). In the simulations, the postsyn-
aptic membrane potential is varied systematically to analyze the
determinants of the resulting spike responses. The spike count
variance will be shown not to be determined unambiguously by the
mean spike activity but to depend also on the visual input that
induces a given activity level. Irrespective of this stimulus depen-
dence, the spike count variance will be shown to be considerably
smaller than the mean spike count for all stimulus conditions.

MATERIALS AND METHODS
Preparation and electrophysiology. For electrophysiological experiments,
female blowflies of the genus Calliphora were obtained from our laboratory
stocks. To avoid inbreeding, the stocks were regularly refreshed by animals
caught outside. The animals were dissected as described previously (War-
zecha and Egelhaaf, 1997). The experiments were performed at room
temperature (19–22°C). Experiments were done in compliance with insti-
tutional guidelines and those of the Society for Neuroscience.

The H1 neuron can be identified unambiguously on the basis of its
preferred direction of motion and the location of its extended output
region (Eckert, 1980; Hausen, 1981). The activity of the H1 neuron was
recorded extracellularly with tungsten electrodes in its output region. The
electrode tips were sharpened electrolytically and insulated with varnish.
They had resistances between 2 and 8 MV. Recorded signals were pro-
cessed by standard electrophysiological equipment. Spikes were converted
into pulses of fixed height and duration, which were fed at a rate of 1 kHz
into a personal computer through an analog-to-digital converter of an
input–output card (2801A; Data Translation Inc., Marlboro, MA). Only
extremely well isolated H1 signals were recorded, so that our data were
free of noise introduced at the level of data acquisition. The programs for
data acquisition were written in ASYST (Keithley Instruments, Cleveland,
OH).

Visual stimulation. Moving square wave gratings were used as stimuli
(spatial wavelength, 18°; mean luminance, 7.9 cd/m 2; contrast as specified
in figure legends) and displayed on a cathode ray tube (model 608;
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Tektronix, Wilsonville, OR) at a frame rate of 183 Hz by an image
synthesizer (Picasso; Innisfree Inc., Cambridge, MA). In previous inves-
tigations, it was ensured that spikes do not time lock to this frame rate
(Warzecha et al., 1998; Warzecha and Egelhaaf, 1999). The image syn-
thesizer was controlled by a personal computer. The center of the monitor
was at an azimuth/elevation of 45°/0°, with 0°/0° referring to the frontal
midline of the fly. The front edge of the monitor screen was at an azimuthal
position of 0°. The horizontal extent of the stimulus pattern was 90°, and
its vertical extent was varied and will be given in the figure legends.
Irrespective of the vertical extent, the vertical position of the pattern was
always centered at an elevation of 0° in the receptive field of the H1
neuron. Data acquisition was started with the frame synchronization signal
of the image synthesizer. Four different data sets were obtained by varying
the vertical extent of the stimulus pattern, its contrast, and/or its velocity.
For each data set, a different sample of flies was used. For each fly, all
visual stimuli used to obtain the particular data set were presented in a
pseudorandom order, so that each stimulus was presented once before the
next sequence started. Two types of pattern motion dynamics were used:
constant and randomly fluctuating velocity. For constant velocity stimuli,
the pattern was moved in the preferred direction of the cell for 2.5 sec. To
obtain a dynamic velocity stimulus, white-noise velocity fluctuations were
generated according to a gaussian distribution. The resulting velocity trace
was low-pass filtered with a cutoff at 80 Hz to avoid aliasing caused by the
frame rate limit. After low-pass filtering, the SD of the velocity trace was
0.12°/msec. For the dynamic velocity fluctuations, pattern motion lasted for
5 sec. Presentation of motion stimuli was interrupted by an interval of 6.5
sec. During this interval, the stimulus pattern was homogeneous with a
luminance of 7.9 cd/m 2 corresponding to the mean luminance of all
moving stimuli that were used in the experiments. For the experiments
with stimuli of variable vertical extent, the mean luminance was presented
in all parts of the screen that were not covered by the motion stimulus.

Data evaluation. For constant velocity stimuli, only 1000 msec of the
response starting 1500 msec after the onset of motion were evaluated to
analyze primarily the steady-state response instead of the onset transients.
For dynamic velocity stimuli, 4900 msec starting 100 msec after the onset
of motion were evaluated. For each stimulus condition and each cell,
40–60 consecutive trials were taken for quantitative analysis.

The mean spike count as well as the spike count variance were deter-
mined within time windows of variable size. The shortest time window
used was 20 msec because shorter time windows lead to results that hardly
reflect the variability of the responses (Warzecha and Egelhaaf, 1999). On
the other hand, if the time windows are too long, they average out activity
modulations as may be elicited by dynamic motion stimuli. Because the
dependence of the variance on the mean activity of the cell may differ for
different time windows, results will be displayed for time windows of 20
and 100 msec size. We thus cover a large range of time windows used in
previous studies on the variability of the fly H1 neuron (de Ruyter van
Steveninck et al., 1997; Warzecha and Egelhaaf, 1999). The mean spike
count and the corresponding spike count variance were evaluated across
trials in consecutive time windows that were shifted by 10 msec. Hence,
consecutive 20 or 100 msec time windows overlapped by 10 or 90 msec,
respectively. This evaluation was done separately for each cell, each
stimulus condition, and each size of the time window. For dynamical
velocity stimulation, the mean spike count was assigned to activity classes
with a width of either 0.4 spikes/20 msec window or 2 spikes/100 msec
window. Variances of each cell were averaged if the corresponding mean
spike count fell into the same activity class. The variances associated with
a given activity class, pattern size, and time window were averaged,
irrespective of the response phase during which the activity was attained.
These values were then averaged over the cells contributing to one data set.
Only those activity classes and corresponding variances will be shown to
which at least four cells contributed.

During constant stimulation, the activity stays almost constant and
modulates only weakly with the temporal frequency of pattern motion. The
activity thus spreads only over very few activity classes. The variances were
therefore not averaged within different activity classes. Only a single
variance value was determined together with the corresponding mean
spike count for each stimulus condition and cell. These variances and mean
spike counts were then averaged over all cells of a data set.

The variance of the responses strongly depends on whether the neuronal
activity shows a systematic trend over the recording period. We selected by
the following procedure only those data for further analysis that did not
show a strong trend. The mean activity during stimulation with any of the
motion stimuli presented to a given cell was not allowed to change by more
than 1 spike/sec and per trial, as judged from a regression line through the
mean activities plotted over the number of trials. Therefore, 13 of 52 cells
had to be discarded.

Model simulations. To investigate the determinants of the spike count
variance, we used a phenomenological threshold model that transforms
time-dependent membrane potential fluctuations into sequences of action
potentials. These sequences will be compared with the spike responses of
the H1 cell. The details of the model have been described previously
(Kretzberg et al., 2000). In brief, for every time step, the membrane
potential is compared with a spike threshold that depends on both the time
elapsed since the previous spike occurred and the temporal changes of the

membrane potential. A spike is fired when the membrane potential crosses
threshold. The threshold is calculated according to the following equation:
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with ti indicating time step, s indicating time elapsed since the previous
spike, g ref indicating absolute refractory period, and u0 indicating constant
basis threshold.
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is the influence of the membrane potential changes within the last T data
points, with weight constant r0 and membrane potential U(ti).

For a constant membrane potential, the term h(s) causes the threshold
to decrease to the constant value u0 after the absolute refractory period
g ref. When the membrane potential varies, the resulting threshold is
influenced by the term r(t). It represents the weighted and sign-inverted
sum of the slopes between the last T membrane potential values and the
reference potential U(ti) at time ti. The threshold decreases while the
membrane potential depolarizes, and it rises while U(t) hyperpolarizes.
The steeper the membrane potential rises or falls, the more the threshold
is influenced by the term r(t). This term has been included in the model,
because fast depolarizing changes in the membrane potential are generally
found to be more effective in eliciting a spike than slow ones (Johnston and
Wu, 1995; Azouz and Gray, 2000).

The model cell was fed by membrane potential fluctuations as they were
elicited by motion stimuli with random velocity fluctuations in a fly TC (HS
cell). This neuron has a similar input organization as the H1 neuron and
responds to motion stimulation with pronounced membrane potential
changes, which are assumed to closely reflect the pooled postsynaptic
potentials of many retinotopically organized motion-sensitive elements
(for a detailed discussion of this aspect, see Kretzberg et al. 2000). These
potentials are assumed to be similar to the postsynaptic potentials of the
H1 neuron. Methodological difficulties render it impracticable to directly
record the postsynaptic potentials of the H1 neuron.

The input to the model of spike generation consisted of two compo-
nents, a deterministic and a stochastic one. (1) The deterministic compo-
nent of the membrane potential was derived from the time-dependent
membrane potential of the HS cell averaged over 100 responses to identical
dynamical motion stimulation. The averaging was assumed to eliminate
stochastic membrane potential fluctuations. The average was sign-inverted
to account for the opposite preferred directions of the HS and the H1 cell
and taken to represent the stimulus-induced response component. The
response traces of the HS cell that formed the basis of the model simula-
tions were obtained in a previous study under one given stimulus condition
(Warzecha et al., 1998, their Fig. 3).

(2) The stochastic component of the membrane potential was computed
individually for each trial as a series of gaussian distributed random
numbers that was low-pass filtered. A gaussian probability distribution
fitted quite well the experimentally determined distribution of the mem-
brane potential noise. By adopting the SD of the noise from experimental
data and by temporally filtering the series of random numbers, the power
spectrum of the stochastic component was fitted to the power spectrum of
the experimentally determined membrane potential noise of the HS cell
(Warzecha et al., 1998; Kretzberg et al., 2000). The terms “stochastic
component” and “membrane potential noise” will both be used in the
following as synonyms.

The model simulations allowed us to systematically vary the determin-
istic and the stochastic response components separately from each other.
This was done by scaling the amplitude of either component with a factor
or by stretching their time scale (for details, see Results and figure
legends). Both components were added and then fed into the spike gen-
eration mechanism. If not specified otherwise, 500 different stochastic
sequences with the same statistical properties were used for every analysis.
Each sequence lasted for 2960 msec.

The model parameters were adjusted so that the resulting spike trains fit,
on average, the spike trains of the H1 cell when stimulated with the same
dynamic motion stimuli as the HS cell (for details, see Kretzberg et al.,
2000). With the parameter sets obtained in this way, the relevant features
of the H1 cell response, such as the time-dependent spike frequency
histogram, as well as its highly correlated activity with another spiking
neuron that receives partly the same input can be readily explained
(Kretzberg et al., 2000). The model simulations presented here were done
with five parameter sets, identical to those used in a previous paper
(Kretzberg et al. 2000). All parameter sets lead to qualitatively the same
results. The data that are shown in Figures 6–9 were obtained with the
following parameters: g ref 5 2 msec, u0 5 1 mV, h0 5 20 msec z mV, r0 5
3.75, and T 5 3 data points. A temporal resolution of 2.7 kHz was used for
the model simulations.
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The simulated data were evaluated in the same way as the experimental
ones. The model simulations and all evaluation routines were implemented
in Matlab 5.3 (The MathWorks Inc., Natick, MA).

RESULTS

Experimental analysis of stimulus dependence of
the variance
The H1 neuron integrates the output signals of many local motion-
sensitive elements with basically the same direction selectivity.
Therefore, it responds selectively to motion in a particular direc-
tion in large parts of the visual field of one eye. It increases its spike
activity above the resting level during back-to-front motion (“pre-
ferred direction”) and decreases its spike rate during front-to-back
motion (“null direction”). Because the spontaneous firing rate of
the H1 neuron is low, the cell usually stops firing during null
direction motion. When stimulated with random velocity fluctua-
tions, the spike frequency of the H1 cell is modulated in time. The
time course of these response modulations follows to some extent
the velocity fluctuations, although it is not proportional to the
velocity, in particular when the direction of pattern velocity
changes rapidly (Egelhaaf and Reichardt, 1987; Haag and Borst,
1997) (for review, see Warzecha and Egelhaaf, 2000).

Variation of pattern size
Spike frequency histograms of responses to the same random
velocity fluctuations of two patterns of different size are shown in
Figure 1A. The histograms were determined with time windows of
20 msec. The response amplitude decreases with decreasing pattern
size. Nonetheless, the time course of the response is very similar
for the different pattern sizes (Fig. 1A, compare dashed lines, solid
lines). Analogous to the mean spike count, the across-trial variance
in the spike count can be plotted as a function of time (Fig. 1B).
Here the same 20 msec time windows were used as for the spike
frequency histograms in Figure 1A. The variance is not constant
during dynamic velocity stimulation but rather modulates in time.
The modulations follow, at least to some extent, the fluctuations of
the mean spike count. Nonetheless, the large differences in the
amplitudes of the time-dependent spike count obtained with small
and large stimulus patterns (Fig. 1A) are not reflected in corre-
sponding differences in the time-dependent variance profiles (Fig.
1B). Rather, the variances obtained with the different pattern sizes
are quite similar. The data were further evaluated by determining
the dependence of the across-trial variance on the mean spike
count. For the 20 msec time window, the spike count variance is
small at very low activities compared with the variance obtained in

Figure 1. Response variability of the H1 neuron obtained for the motion of stimulus patterns with variable size. See insets for the vertical extent of the
pattern. Altogether, 457 individual response traces of eight H1 cells were analyzed. The mean resting activity was 9.1 spikes/sec. Pattern contrast, 20%.
A, Section of the mean time course of responses to band-limited white-noise velocity fluctuations. Spikes were counted in each trial within consecutive time
windows of 20 msec time-locked to the onset of motion. Consecutive time windows overlapped by 10 msec. Spike counts in corresponding time bins were
averaged across trials. Time 0 denotes the onset of the stimulus. B, Mean time course of the across-trial variance of the spike count obtained within the
same section of 20 msec time windows. C, Spike count variance as a function of the mean spike count within 20 msec time windows obtained for
band-limited white-noise velocity fluctuations (see Materials and Methods). D, Spike count variance as a function of the mean spike count within 100 msec
time windows obtained for band-limited white-noise velocity fluctuations. E, Spike count variance as a function of the mean spike count within 100 msec
time windows obtained for constant velocity stimulation. The temporal frequency of pattern motion amounted to 2 Hz. C–E, Error bars denote SEMs
across trials. C, D, Although these experiments were made on eight cells, a variable number of cells (4–8) contributed to each data point because not every
cell covered the entire activity range.
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higher activity classes (Fig. 1C). For activities above ;0.6 spikes/20
msec window (i.e., 30 spikes/sec), the variance does not increase
further. Within a given activity class, the variances do not much
differ for stimulus patterns of different size (Fig. 1C). In contrast,
when calculated within 100 msec time windows, there are slight
differences in the variances of responses elicited by stimuli of
different size. In the low-activity range, the variance is smallest for
the largest stimulus pattern (Fig. 1D). For the largest pattern, the
variance increases slightly with increasing mean activity. For
smaller patterns, such an increase can only be observed in the
low-activity range. Overall, the spike count variance does not
strongly depend on the activity of the neuron. The spike count
variances obtained when the H1 neuron was activated by constant
velocity motion were in the same range as the ones elicited with the
same pattern moving at continually changing velocities (Fig. 1,
compare D, E).

Variation of pattern contrast
Changing the contrast of the pattern does not much alter the time
course of the response but influences mainly the response ampli-
tude (Fig. 2A). The time-varying variance of responses to the
high-contrast pattern assumes, for most of the time, slightly lower
values than the variance of responses to the low-contrast stimulus
(Fig. 2B). When plotting the variance as a function of the mean
activity, it becomes evident that the variance differs for different

stimulus contrasts, at least in the activity range of up to 2.6
spikes/20 msec time window (i.e., up to 130 spikes/sec) (Fig. 2C).
For a given activity class, higher contrasts lead to smaller variances
(Fig. 2C). This difference is more pronounced when the variance is
evaluated in 100 msec than when 20 msec time windows are used
(Fig. 2, compare C, D). Hence, pattern size and pattern contrast
seem to affect the spike count variance in the H1 cell in a different
way. The variances obtained when the velocity of pattern motion
was constant are in the same range as those obtained with randomly
fluctuating velocities for all three pattern contrasts tested (Fig. 2,
compare D, E).

Variation of the velocity of pattern motion
The steady-state response amplitude of the H1 cell to constant
velocity motion first increases with increasing velocity, reaches an
optimum, and then declines again (Egelhaaf and Borst, 1993b). In
the tested velocity range, the largest responses were obtained for
small velocities (Fig. 3). With increasing activity, the variance
initially increases and then decreases again. Hence, when the
velocity of a stimulus is changed to alter stimulus strength, the
spike count variance does not monotonically increase with increas-
ing activity of the cell. As is the case for the experiments in which
pattern size or contrast were varied, the spike count variance stays
much smaller than the mean spike count.

Figure 2. Response variability of the H1 neuron obtained for the motion of stimulus patterns with variable contrast. See insets for pattern contrast.
Altogether, 530 individual response traces of 9 H1 cells were analyzed. The mean resting activity of the H1 neuron of this sample of flies was 10.1
spikes/sec. Vertical extent of pattern, 20.8°. Data were evaluated in the same way as described in the legend of Figure 1. A, Section of the mean time
course of responses to band-limited white-noise velocity fluctuations within 20 msec time windows. B, Mean time course of the across-trial variance
of the spike count obtained within the same section of 20 msec time windows. C, Spike count variance as a function of the mean spike count within
20 msec time windows obtained for band-limited white-noise velocity fluctuations. D, Spike count variance as a function of the mean spike count
within 100 msec time windows obtained for band-limited white-noise velocity fluctuations. E, Spike count variance as a function of the mean spike
count within 100 msec time windows obtained for constant velocity stimulation. The temporal frequency of pattern motion amounted to 2 Hz. C–E,
Error bars denote SEMs across cells. C, D, Between four and nine cells contributed to each data point.
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Variation of pattern contrast and pattern size
In the next step of the analysis, we compared the variances ob-
tained for different stimulus conditions that were chosen to lead
with very similar spike frequency histograms. One stimulus pattern
had a larger vertical extent but a lower contrast than the other.
Both patterns were moved with the same velocity profile. The
resulting spike frequency histograms (Fig. 4A) were at least much
more similar than the spike frequency histograms that were ob-
tained when either only pattern size (Fig. 1A) or pattern contrast
(Fig. 2A) were varied. Moreover, both patterns led also to nearly
the same mean response amplitude when they were moved at a
constant velocity ( p . 0.5; t test) (Fig. 4E). Despite the close
correspondence of both the time course and the mean amplitude of
the responses, the spike count variance across trials was signifi-
cantly larger for the large low-contrast pattern than for the smaller
high-contrast pattern (Fig. 4C–E, see figure legend for statistical
details).

The results of Figure 4 go beyond those shown in Figures 1 and
2. In Figure 4, different spike count variances were obtained,
although for each time interval almost the same response ampli-
tudes were induced by the different stimuli. Hence, even for a given
mean spike count and almost the same temporal profile of the
responses, the spike count variance may greatly differ. Because
pattern size was found to influence the spike count variability only
little, it is concluded that the spike count variance is mainly influ-
enced by pattern contrast, being largest for low-contrast stimuli.

Variability between different cells
There is a large interindividual variability in the spike count
variances. Even for a given stimulus condition they may differ by a
factor of up to ;3.5 independent of stimulus dynamics. As a
consequence of the large interindividual variability of the spike
count variance, a quantitative comparison between different data
sets is problematic, at least if these are not very large. For example,
the data presented in Figures 1 and 2 were each obtained from the
individually identifiable H1 cell in a different sample of either 8 or
9 flies, respectively. One dynamical and one constant motion stim-
ulus were the same for both data sets. Nonetheless, the correspond-
ing data points shown in Figures 1C–E and 2C–E ( filled triangles)
show considerable quantitative differences. This variability of the
response properties between different animals and data sets under-
lines the importance to restrict quantitative comparisons to re-
sponses obtained from the same sample of cells.

On average, variances of responses to constant and to dynamical
stimuli lie in the same range, although there are cells for which the
variance of responses to constant stimuli is approximately twice as

large as that of responses to dynamical stimuli and vice versa (Fig.
5). There is no obvious relationship between the ratio of the
variances of responses to dynamical and constant stimuli on the
mean activity. Variances obtained with constant and those ob-
tained with dynamical stimuli do not covary for any stimulus
configuration used in the present study (t test, p . 0.05, 8#N # 14).

Relationship between membrane potential fluctuations
and spike count variability
The experimental analysis led to two major results that need to be
further investigated. (1) Apart from very low spike rates, the
across-trial variance is much smaller than the mean spike count. (2)
The response variance is affected in different ways by the size and
the contrast of the stimulus pattern. Whereas, in a given activity
class, the variance does not much depend on pattern size, it is
significantly larger at low-pattern than at high-pattern contrasts.

One way to explain these results is to relate them to the mem-
brane potential and its fluctuations at the spike initiation zone of
the H1 neuron. These membrane potential fluctuations can be split
up into two components. One component is induced deterministi-
cally by the stimulus. The other component varies across trials and
will be called stochastic. These membrane potential changes are
not easily accessible in the H1 neuron and cannot be systematically
varied in an experimental analysis. Therefore, model simulations
were performed to analyze what characteristics of the deterministic
and the stochastic component may determine the dependence of
the spike count variance on the mean spike count. In particular, we
investigated how the amplitude and the dynamics of the determin-
istic and the stochastic component of the membrane potential
influence the spike count variance.

The model simulations were based on a phenomenological time-
dependent threshold model of spike generation that transforms
membrane potential fluctuations into sequences of action poten-
tials. The model could be shown in a previous study to be sufficient
to account for the time-dependent responses as well as for the
reliability of the H1 neuron (Kretzberg et al. 2000). The determin-
istic component of the membrane potential fluctuations fed into the
model was taken from experimental data of another TC in the fly’s
brain, an HS cell. The stochastic membrane potential component
was simulated by band-limited gaussian white noise with a power
spectrum adjusted to the electrophysiologically determined mem-
brane potential noise (see Materials and Methods; Kretzberg et al.,
2000). HS cells mainly respond with graded changes in their mem-
brane potential, which, in a first approximation, represent the
summated postsynaptic potentials of their many local motion-
sensitive input elements. Apart from their response mode, HS cells
respond to motion stimuli in the preferred direction in basically the
same way as the H1 cell investigated above (Hausen, 1981; War-
zecha, 1994; Haag and Borst, 1997; Warzecha and Egelhaaf, 2000).
To analyze the determinants of the spike count variance, we
systematically varied in our model simulations the amplitude and
the time course of the deterministic membrane potential fluctua-
tions as well as the properties of the membrane potential noise.

Variation of the amplitude of the deterministic membrane
potential component
A given mean membrane potential trace of an HS cell obtained
during stimulation with random velocity fluctuations was used in
three different ways as input to the model, i.e., either in its original
form or scaled in amplitude by a factor of either 0.5 or 1.5. The
properties of the superimposed membrane potential noise were
identical for all three versions of the deterministic input compo-
nent. The resulting spike frequency histograms are modulated over
time in a similar way as the corresponding responses of the H1 cell
(data not shown) (but see Kretzberg et al., 2000). When the spike
rate, determined in 100 msec time windows, is plotted as a function
of the corresponding deterministic membrane potential compo-
nent, an almost linear relationship between both variables is ob-
tained, irrespective of whether experimental or simulated data are
evaluated (Fig. 6A). Virtually the same spike count is obtained for

Figure 3. Response variability of the H1 neuron to constant velocity
stimuli covering a range from 9 to 576°/sec. The vertical extent of the
pattern was 20.8°, and its contrast amounted to 20%. Altogether, 460
individual response traces of eight H1 cells were analyzed. The mean
resting activity was 15.3 spikes/sec. Error bars denote SEMs across eight
cells.
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a given amplitude of the deterministic component, independent of
the scaling factor. In the simulations, the cell was depolarized by up
to 10 mV. Fly HS cells do not depolarize much more when
recorded in their axon, even during strong visual stimulation.
Because of the refractory properties of the model neuron, the spike
count will start to saturate when the cell is further depolarized
(Fig. 7A). The largest hyperpolarization attained during visual
stimulation were approximately 210 mV. In the H1 cell as well as
in the model cell, spikes are elicited even when the deterministic
membrane potential component is negative relative to the resting
potential (0 mV) (Fig. 6A). In the model, such events are primarily
attributable to stochastic membrane potential fluctuations occa-
sionally passing the threshold. These results suggest that the spike
rate of the H1 neuron is approximately proportional to the mem-
brane potential at its spike initiation zone for most of the range of
postsynaptic potentials elicited during visual stimulation. A linear
relationship between membrane potential and spike rate is in
accordance with previous experimental results on fly TCs; the
spike count in the H1 neuron and the average membrane potential
of the HS cell depend in basically the same way on visual stimu-
lation (Hausen, 1981), and the mean time course of the responses
of both cell types is very similar during preferred direction motion

(Kretzberg et al., 2000, their Fig. 2). However, the linear relation-
ship between membrane potential and spike count is in contrast to
a strong saturation of spike activity that was hypothesized for
retinal ganglion cells even for relatively small depolarizations (Ber-
ry and Meister, 1998).

The across-trial variance of the simulated spike count was eval-
uated as described for the experimental data. The time-dependent
variance fluctuates in accordance with the experimental data (data
not shown). Analyzing the dependence of the variance on the
mean spike count reveals that the variance is low for small spike
counts and highest for intermediate activities. The variance is
always smaller than the mean spike count apart from the lowest
activity class (Fig. 6B). Note that the variance already starts to
decrease with increasing activity at ;2 spikes/20 msec time window
(i.e., 100 spikes/sec), when the mean spike count still steeply in-
creases with increasing depolarization. As is the case for the H1
cell, the initial increase in the variance is considerably more pro-
nounced when the spike count variance is evaluated within 20 msec
than within 100 msec time windows (Fig. 6, compare B, C). Inter-
estingly, the spike count variance is not identical for the three
inputs of different amplitude, although the properties of the mem-
brane potential noise were identical. This is particularly obvious for

Figure 4. Response variability of the H1 neuron obtained for the motion of stimulus patterns with variable contrast and vertical extent. See insets for
stimulus conditions. Altogether, 728 individual response traces of 14 H1 cells were analyzed. The mean resting activity was 11.4 spikes/sec. Data were
evaluated in the same way as described in the legend of Figure 1. A, Section of the mean time course of responses to band-limited white-noise velocity
fluctuations within 20 msec time windows. B, Mean time course of the across-trial variance of the spike count obtained within the same section of 20 msec
time windows. C, Spike count variance as a function of the mean spike count within 20 msec time windows obtained for band-limited white-noise velocity
fluctuations. To test whether the differences in the spike count variances are significant, a two-factor ANOVA was applied. The ANOVA was done for two
subsets of the data because not all cells contributed to the large activity classes. Subset 1 contained the four smallest activity classes and 14 cells; subset
2 contained the eight smallest activity classes and six cells. The spike count variances for the large low-contrast pattern are significantly larger for both
subsets ( p , 0.01). D, Spike count variance as a function of the mean spike count within 100 msec time windows obtained for white-noise velocity
fluctuations. As in C, a two-factor ANOVA was applied to two subsets of the data. Subset 1 contained the three smallest activity classes and 14 cells; subset
2 contained the seven smallest activity classes and five cells. The spike count variances for the large low-contrast pattern are significantly larger for both
subsets ( p , 0.01). E, Spike count variance as a function of the mean spike count within 100 msec time windows obtained for constant velocity stimulation.
The temporal frequency amounted to 2 Hz. The spike count variance for the large low-contrast pattern is significantly larger than the spike count variance
for the small high-contrast pattern (t test; p , 0.01). C–E, Error bars denote SEMs across cells. C, D, Between 4 and 14 cells contributed to each data point.

Warzecha et al. • Neuronal Reliability Depends on Stimulus Parameters J. Neurosci., December 1, 2000, 20(23):8886–8896 8891

praktikum2-ub
Rechteck



the 100 msec time window (Fig. 6C). The largest membrane po-
tential fluctuations are associated with the smallest spike count
variance. Thus, at least for the large time window, the spike count
variance differs for the three different input signals, although the
membrane potential noise has not changed. These model simula-
tions with physiologically plausible parameters allow us to conclude
that the spike count variance is affected, at least to a small extent,

by the overall amplitude of the deterministic, stimulus-induced
input. Therefore, it is not possible to infer, without further evi-
dence, changes in the stochastic component of the membrane
potential from changes in the spike count variance. Merely chang-
ing the amplitude of the deterministic membrane potential fluctu-
ations and leaving the stochastic membrane potential fluctuations
unaltered may suffice to explain the slight dependence of the spike
count variance on stimulus size (Fig. 1C,D).

Variation of the time course of the deterministic membrane
potential component
To test whether the dynamics of the deterministic membrane
potential component affects the variability of the spike output,
input signals that differed with respect to their dynamical proper-
ties were used as input to the model of spike generation: (1)
constant, (2) fluctuating according to the experimental results, or
fluctuating (3) twice (“fast membrane potential dynamics”) or (4)
four times as fast (“very fast membrane potential dynamics”). The
latter two stimuli were obtained by compressing the time scale of
the signal without changing its amplitude. The dynamics of the
membrane potential input does not much affect the spike count
variance determined in 20 msec time windows as long as the
membrane potential fluctuations are not faster than those elicited
by white-noise velocity stimulation (Fig. 7B). Even constant mem-
brane potentials lead to very similar spike count variances as
membrane potential fluctuations with dynamics as found when the
cell is stimulated with white-noise velocity fluctuations. Only when
the membrane potential fluctuates at least two to four times as fast
as has been elicited in motion-sensitive neurons by white-noise
velocity fluctuations, the spike count variance decreases to some
extent (Fig. 7B). The spike count variance evaluated within 100
msec time windows does not consistently depend on the membrane
potential dynamics (Fig. 7C). This inconsistency might be caused
by smoothing out the very fast fluctuations by such relatively large
time windows. Neither the variation of the amplitude (Fig. 6) nor
the variation of the dynamical properties of the mean membrane
potential (Fig. 7) yielded changes of the corresponding spike count
variances that are comparable with the experimentally determined
ones when pattern contrast was altered (Figs. 2C,D ,4C,D).

Figure 6. Dependence of the response properties of a simulated spiking neuron on the amplitude of the deterministic membrane potential component.
The deterministic component scaled with a factor of 1 corresponds to the unaltered membrane potential fluctuations of a tangential cell to dynamic motion
stimulation averaged across 100 trials. It lasted for 2960 msec. A membrane potential of 0 mV corresponds to the resting potential of the tangential cell.
The amplitude of the deterministic membrane potential component was increased and decreased by 50% (see insets). The stochastic membrane potential
component was fitted to the experimental data (see Materials and Methods). The mean spike count and the spike count variance were determined across
500 individual response traces for each input condition. A, Dependence of the spike count on the deterministic membrane potential component for
simulated and experimentally determined data (see inset). Note that different symbols superimpose. The mean deterministic component and the mean
spike count were determined in 20 msec time windows. The mean deterministic membrane potential was assigned to activity classes with a width of 2 mV.
Spike counts were averaged if the corresponding mean membrane potential fell into the same activity class. For the experimental data, 100 responses from
an H1 neuron were evaluated. The neuron was stimulated with the same dynamic motion fluctuations as the HS cell used to determine the deterministic
response component of the membrane potential. In another recording (data not shown), the mean spike count for each activity class of the membrane
potential was slightly larger than that of the model cell. B, Spike count variance as a function of the mean spike count within 20 msec time windows. As
for the experimental data (see Materials and Methods), the mean spike count was assigned to activity classes with a width of 0.4 spikes per time window.
Spike count variances were averaged if the corresponding mean spike count fell into the same activity class. C, Spike count variance as a function of the
mean spike count within 100 msec time windows. Consecutive time windows overlapped by 90 msec. The mean spike count was assigned to activity classes
with a width of two spikes per time window. Spike count variances were averaged if the corresponding mean spike count fell into the same activity class.

Figure 5. Variability between different H1 cells and stimulus conditions.
The quotient between the mean spike count variance for dynamical and
that for constant velocity stimulation is plotted as a function of the mean
spike count during constant stimulation. The mean spike count and its
variance during constant velocity stimulation were evaluated within 100
msec time windows for each cell and stimulus condition separately, as
described in Materials and Methods. To obtain the mean spike count
variances for dynamic stimulation, only those 100 msec time windows were
taken into account for which the mean activity fell into the same activity
range that was covered by constant velocity stimulation. The largest (small-
est) mean spike count variance contributing to the figure amounted to 3.14
spikes 2/100 msec (0.56 spikes 2/100 msec) for constant stimulation and to
2.70 spikes 2/100 msec (0.68 spikes 2/100 msec) for dynamical stimulation.
Data are part of those used for Figures 1, 2, and 4. Symbols indicate the
different data sets. For each cell, two or three data points (depending on the
data set) are shown, which were obtained by the different stimulus
conditions.
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Variation of the properties of the membrane potential noise
So far, all model simulations were obtained by altering the deter-
ministic membrane potential component without modifying the
properties of the membrane potential noise. In the following, the
properties of the noise are altered while the deterministic compo-
nent remains unchanged. For the simulations shown in Figure 8, the
noise amplitude was either kept as experimentally derived or it was
scaled by a factor of 0.5 or 1.5. For the simulations shown in Figure
9, the noise dynamics was altered by compressing (“fast stochastic
component”) or dilating (“slow stochastic component”) the time
scale of the experimentally determined noise signals by a factor of 2
but leaves the amplitude constant. When the properties of the
membrane potential noise are altered, the mean spike count associ-
ated with a given mean membrane potential as well as the spike
count variance are affected (Figs. 8,9). The mean spike count corre-
sponding to a given mean membrane potential increases with in-
creasing the amplitude of the noise (Fig. 8A). Similarly, larger spike
counts are obtained for fast than for slowly varying noise (Fig. 9A).
Independent of the time window used for the evaluation of the spike
count variance, the spike count variance increases considerably with
the amplitude of the membrane potential noise (Fig. 8B,C) or when

the noise fluctuates only slowly (Fig. 9B,C). When the membrane
potential noise fluctuates faster than has been determined experi-
mentally, the spike count variance decreases slightly. One reason for
the increased variability of spike responses for slow stochastic fluc-
tuations may be the following. Under this condition, the spike count
in an arbitrary time window can be rather large because the noise
lifts the membrane potential beyond the threshold for a relative long
time interval, or it can, for the same time window, be rather low
because the noise hyperpolarizes the cell. As a consequence, the
spike count variance across trials will be large. In contrast, when the
noise fluctuates more rapidly, the intervals with high and low activity
attributable to noise alternate more rapidly so that the spike count
stays statistically at more intermediate values. This leads to a rela-
tively small across-trial variance. The changes obtained in the spike
count variance when the properties of the membrane potential noise
are altered may well account for the experimental results obtained
for different pattern contrasts. This finding suggests that the stochas-
tic membrane potential fluctuations that are the basis for the vari-
ability in the spike count of the fly H1 cell cannot be regarded to add
linearly to the deterministic, stimulus-induced component of the
membrane potential. Instead, it is suggested that the stochastic

Figure 7. Dependence of the responses of a simulated spiking neuron on the dynamics of the deterministic component of membrane potential. To obtain
the constant deterministic component, the membrane potential was set to constant values. To cover the entire response range of a tangential cell, this value
was increased in steps of 0.5 mV in subsequent simulations. The deterministic component with normal dynamics was obtained from averaging 100
responses of a tangential cell to band-limited white-noise velocity fluctuations (the same as used for Fig. 6). Faster dynamics were obtained by compressing
the time scale of the deterministic membrane potential component by a factor of 2 (fast dynamics) or by a factor of 4 (very fast dynamics). Therefore, the
duration of the membrane potential fluctuations that were fed into the model and the corresponding sequences of spike trains were reduced from 2960
msec (normal dynamics) to either 1480 msec (fast dynamics) or 740 msec (very fast dynamics). The parameters of the stochastic component were fitted
to the experimental data. Data evaluation and conventions as described in the legend of Figure 6. For the dynamical membrane potential fluctuations, the
mean spike count and the spike count variance were determined across 500 individual response traces for each condition, for the constant membrane
potential; 200 response traces were taken. A, Dependence of the spike count on the deterministic component of the membrane potential. B, Spike count
variance as a function of the mean spike count within 20 msec time windows. C, Spike count variance as a function of the mean spike count within 100
msec time windows.

Figure 8. Dependence of the responses of a simulated spiking neuron on the amplitude of the stochastic component of the membrane potential.
The stochastic component scaled by a factor of 1 was derived from experimental data. To investigate the influence of the amplitude of the stochastic
membrane potential component, it was increased or decreased by 50% (see insets). The deterministic component was obtained from a tangential cell
during stimulation with band-limited white-noise velocity fluctuations (the same as used for Fig. 6). Data evaluation and conventions are as described
in the legend of Figure 6. A, Dependence of the spike count on the deterministic component of the membrane potential. B, Spike count variance
as a function of the mean spike count within 20 msec time windows. C, Spike count variance as a function of the mean spike count within 100 msec
time windows.
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component decreases in amplitude or speeds up with increasing
pattern contrast, inducing a smaller variability of the spike responses.

DISCUSSION
We investigated how the spike count variance of the H1 neuron,
a motion-sensitive TC in the fly visual system, depends on the
stimulus conditions. The following conclusions can be drawn. (1)
The spike count variance is much smaller than the mean spike
count and does not depend much on the mean activity apart
from very low activities. (2) The spike count variance is not
determined unambiguously by the activity level of the H1 neu-
ron but is also affected by the nature of the stimulus, although
differently by different stimulus parameters. Whereas the vari-
ance lies in the same range for constant and dynamic stimuli and
is not much affected by changes in stimulus size, it increases
considerably with decreasing pattern contrast. In accordance
with our experimental results, the spike count variance of sim-
ulated spike trains does not change much with increasing mean
spike activity and is much smaller than the mean spike count
apart from the low-activity range. The variance may even de-
crease in an activity range in which refractoriness does not yet
lead to saturation of the mean spike count. Whereas in the
model the spike count variance only slightly depends on the
dynamics and amplitude of the deterministic membrane poten-
tial fluctuations, the membrane potential noise affects the vari-
ance more strongly.

Relationship between membrane potential fluctuations
and spike count variance
Our model simulations revealed that there is no unambiguous
relationship between a given membrane potential noise and the
resulting spike count variance. When the deterministic membrane
potential fluctuations onto which the noise superimposes get larger,
the spike count variance slightly decreases. A similar dependence
was obtained experimentally when pattern size was increased.
Therefore, this model result suggests that the membrane potential
noise is rather independent of pattern size. Because TCs pool with
their dendrite, the outputs of many retinotopically arranged ele-
ments (for review, see Egelhaaf and Borst, 1993a; Egelhaaf and
Warzecha, 1999), this conclusion indicates that the number of
input elements activated by motion stimulation does not markedly
influence the amplitude of the membrane potential noise in TCs.
The decrease in spike count variance found for an increasing
pattern contrast is too pronounced to be explained by the change in
amplitude of the deterministic component with pattern contrast.
Rather, our model simulations suggest that the membrane potential
noise either increases in amplitude or slows down with decreasing
pattern contrast.

In addition to the amplitude of the deterministic membrane
potential component, also its dynamics was found in the model
to affect the spike count variance. When the membrane potential
transients get faster, the spike count variance slightly decreases.
This modeling result should not be confounded with an earlier
claim (de Ruyter van Steveninck et al., 1997) that constant
stimuli lead to variances of H1 cell responses in the range of the
mean spike count. In contrast, we found for the H1 neuron that
the spike count variances elicited by dynamical and by constant
stimuli are much smaller than the mean spike count, apart from
low spike activities (Warzecha and Egelhaaf, 1999). It should be
noted that the variance of model cell responses is reduced only
slightly by changes in the dynamics of the deterministic mem-
brane potential fluctuations and only if these are much more
transient than those that are elicited by white-noise velocity
fluctuations as used in the experimental analyses. Hence, the
model results are in accordance with our experimental data but
in contrast to the conclusion drawn by de Ruyter van Steveninck
et al. (1997) (for a detailed discussion of the discrepancies
between the studies, see Warzecha and Egelhaaf, 1999). In a
recent study, de Ruyter van Steveninck et al. (2000) show re-
sponses of an H1 neuron with variances elicited by constant
velocity motion that are much smaller than the mean spike
count, apart from low spike activities. This finding is in accor-
dance with our data. Nonetheless, in the example shown by de
Ruyter van Steveninck et al. (2000), the variance obtained with
dynamical stimuli is smaller than that for constant stimuli, a
finding which they interpret to support their earlier conclusions.
It should be noted, however, that de Ruyter van Steveninck et al.
(1997, 2000) argue on the basis of only a single example. Both
their variances of responses to constant and dynamical stimuli
are in the range of what we obtained in individual flies. In our
sample of data, there are individual flies with response variances
induced by constant velocity stimuli that are larger than those
elicited by dynamical stimuli and vice versa. On average, vari-
ances lie in the same range for both stimulus dynamics (Fig. 5).
Given the great interindividual variability of the H1 cell re-
sponses, no sound quantitative conclusions can be drawn on the
basis of data obtained on single examples.

Comparison with other cell types
In cortical neurons, the spike count variance is usually found to be
in the range of the mean spike count (see introductory remarks).
Similar to the fly H1 neuron, the variance of retinal ganglion cells
has been reported to be much smaller (Berry et al., 1997). How-
ever, there are some discrepancies with respect to the dependence
of the response variability of retinal ganglion cells on the activity
level and the visual stimuli. In part of the studies, it has been

Figure 9. Dependence of the responses of a simulated spiking neuron on the dynamics of the stochastic component of the membrane potential. The
stochastic component with normal dynamics was fitted to experimental data. Faster or slower dynamics of the stochastic membrane potential component
were obtained by compressing (fast dynamics) or dilating (slow dynamics) the time scale of the stochastic component by a factor of 2. The deterministic
component of the membrane potential was obtained from averaging 100 responses of a tangential cell to band-limited white-noise velocity fluctuations (the
same as used for Fig. 6). It lasted for 2960 msec. Data evaluation and conventions are as described in the legend of Figure 6. A, Dependence of the spike
count on the deterministic component of the membrane potential. B, Spike count variance as a function of the mean spike count within 20 msec time
windows. C, Spike count variance as a function of the mean spike count within 100 msec time windows.
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concluded that the spike count variance increases with the mean
spike count with approximately a power law relationship (Levine et
al., 1988, 1992). In other studies, the response variability was found
to be essentially independent of the stimulus and the activity level
of the cell (Dijk and Ringo, 1987; Troy and Robson, 1992; Croner
et al., 1993).

The differences in spike count variance in cortical neurons on
the one hand, and in retinal ganglion cells and fly TCs on the
other hand, might be attributable to different statistical proper-
ties of the membrane potential noise. In our model simulations,
the membrane potential noise had a gaussian probability distri-
bution that fitted our experimental results fairly well (Hengsten-
berg, 1982; Haag and Borst, 1997), although the experimentally
determined distributions often slightly deviate in a characteris-
tic manner from a gaussian distribution. In cortical visual inter-
neurons, the membrane potential fluctuations may deviate con-
siderably from a gaussian distribution (Ferster and Carandini,
1996; Azouz and Gray, 1999). The different statistics of mem-
brane potential fluctuations in fly TCs and retinal ganglion cells
compared with cortical neurons might be attributable to a dif-
ferent input organization. Whereas TCs as well as retinal gan-
glion cells receive their major synaptic input from neurons
originating from more peripheral processing stages, cortical
neurons receive most of their input from feedback connections
originating from higher processing stages (Barberini et al.,
2000).

Sources of response variability
Whereas the deterministic component of the membrane potential
results from the processing of the changes in light intensity elicited
during visual motion, the origin of the stochastic response compo-
nent is not as clear. The reliability of TCs has been proposed to be
limited by photoreceptor noise (de Ruyter van Steveninck, 1986;
Bialek et al., 1991). Although this possibility may apply to low light
levels, under photopic conditions the synapses between photore-
ceptors and first-order interneurons contribute considerably to the
membrane potential noise of the latter type of cells (Laughlin et
al., 1987; Juusola et al., 1994, 1995, 1996). The noise level in
neurons of the peripheral visual system depends on the temporal
properties and the luminance of the stimulus (for review, see
Laughlin, 1989; Juusola et al., 1996). It cannot easily be predicted
how these findings relate to the response variability of the TCs.
Between the first-order visual interneurons and the TCs, several
neurons are interposed (for review, see Hausen and Egelhaaf,
1989; Strausfeld, 1989). Therefore, additional noise is most likely
introduced into the system at these processing stages. Irrespective
of the precise origin of the membrane potential noise, it is clear
from the highly synchronized spike activity of TCs with primarily
overlapping receptive fields (Warzecha et al., 1998) that most of
the noise is generated peripherally to them. Only a minor part of it
is attributable to their input synapses and to ion channel noise at
the level of the motion-sensitive cells themselves (Kretzberg et al.,
2000).

It may surprise that the spike count variance does not increase
with pattern size and thus with the number of activated input
channels. It seems most likely that also those elements that are not
activated by the motion stimulus contribute considerably to the
overall variability. In fact, even without motion stimulation, the
noise level in TCs was found to increase with increasing luminance
(Hengstenberg, 1982; Warzecha, 1994).

In summary, the membrane potential noise, as it manifests itself
at the level of the TCs, cannot be regarded as a random, stimulus-
independent variable that linearly adds to the deterministic com-
ponent of the membrane potential. Rather, the properties of the
noise appear to change with pattern contrast. Because in almost all
natural habitats the contrast varies across the retinal images, this
result has important functional implications. Moreover, data eval-
uation procedures that rely on additive gaussian noise need to be
tested carefully for their applicability.
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