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Variability in Spike Trains
During Constant and Dynamic

Stimulation
Anne-Kathrin Warzecha* and Martin Egelhaaf

In a recent study, it was concluded that natural time-varying stimuli are
represented more reliably in the brain than constant stimuli are. The results
presented here disagree with this conclusion, although they were obtained from
the same identified neuron (H1) in the fly’s visual system. For large parts of the
neuron’s activity range, the variability of the responses was very similar for
constant and time-varying stimuli and was considerably smaller than that in
many visual interneurons of vertebrates.

The reliability of behavioral responses to exter-
nal events is limited by neuronal variability.
Neuronal variability is commonly quantified by
the variance in the number of spikes in response
to repetitive presentations of identical stimuli.
Variances across trials have often been found to
be on the order of the mean spike count (1–7).
Recently, the idea has been put forward (1, 8)
that neuronal variability is only as large as the
mean spike count if the responses are elicited
by more or less constant stimuli. In contrast, it
was concluded that more naturalistic dynamic
stimuli elicit spike trains that are much more
reproducible and thus have considerably small-
er variances. Although it is thought that the
reliability of neural coding is especially adapted
to stimuli encountered by an animal in its nat-
ural behavioral context (1), our study does not
support this hypothesis. Our experimental anal-
ysis was carried out on an identified neuron in
the fly visual system, the H1 neuron, which has
often been used to analyze the reliability of
processing visual motion (1, 9–16).

The H1 neuron responds selectively to the
direction of motion in large parts of the visual
field by integrating the output signals of
many local motion-sensitive elements. It in-
creases its spike rate above the resting level
during back-to-front motion (preferred direc-
tion) and decreases the spike rate during mo-
tion in the opposite direction (null direction).
Because the spontaneous activity of the H1
cell is low, it usually stops firing when the
pattern moves in the null direction (9, 16).
Examples of how visual motion is represent-
ed by the H1 neuron are shown in Fig. 1 (17).
The fly was stimulated by motion with dif-
ferent dynamical properties, that is, either by
a pattern moving at a constant velocity or by
random velocity fluctuations (18). At the on-
set of constant-velocity stimulation, the spike
activity of the H1 neuron increased and, after

a transient phase, reached a more or less
constant level. During dynamic stimulation,
the spike activity fluctuated strongly, follow-
ing (to some extent) the time course of pat-
tern velocity (Fig. 1D) (11, 15, 19). The
timing of spikes was not entirely determined
by the motion stimulus. It was also controlled
by stimulus-independent sources, which be-
comes obvious when comparing individual
response traces that were elicited by identical
motion stimuli (Fig. 1, E and F). The vari-
ability was quantified by determining the
variance in the number of spikes within a
given time window in relation to the stimulus
onset. For constant- and dynamic-velocity
stimulation, the variance across trials was
determined for a range of window sizes and
was plotted as a function of the mean spike
count. Because the stimulus-induced re-
sponse to constant-velocity motion did not
modulate much over time, only a small range
of activities was elicited by a given stimulus
(Fig. 1C). Therefore, the stimulus strength
was altered by changing the vertical extent of
the pattern. In contrast, during dynamic stim-
ulation, the spike frequency was strongly
modulated over the entire activity range of
the H1 neuron (Fig. 1D). The variances ob-
tained within 10-ms time windows were very
similar for the two different stimulus dynam-
ics. For constant as well as for dynamic stim-
ulation, the plot of variance versus mean
spike count was scalloped (Fig. 2). The vari-
ance was very small when the mean spike
count was close to an integer number, and the
variance was largest for intermediate spike
counts. The scalloped distribution of data
points is due to the discreteness of spikes [for
a detailed explanation, see (1)]. The scallops
closely followed the minimal variance that
could be obtained in a spiking neuron (dotted
lines in Fig. 2, A and B). The qualitative
features of the single-cell example (Fig. 2, A
and B) were corroborated by the mean vari-
ance averaged over several cells (Fig. 2, C
and D). Hence, the variability of responses of
the H1 cell was not influenced by the stimu-
lus dynamics when it was evaluated within
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such small time windows (20). Moreover, for
constant-velocity stimuli, the variance did not
equal the mean spike count, in contrast to a
previous conclusion on the H1 cell (1), but
remained markedly smaller. The variance
was also not equal to the mean spike count
for constant-velocity stimuli when the re-
sponses were evaluated within 100-ms time
windows (Fig. 3, A and C). Instead, with
increasing mean activity, the variance first
decreased slightly and then increased again.
A decrease in variance with an increasing

mean spike count was also obtained in anoth-
er set of experiments where the pattern
moved at different constant velocities (21).
For dynamic stimuli, the variance within 100-
ms time windows somewhat increased with
an increasing spike count. Regardless of
stimulus dynamics, scallops were hardly vis-
ible (20). Moreover, for spike counts above
about five spikes per time window, the vari-
ances of responses elicited by both types of
stimulus dynamics did not differ much (Fig.
3, C and D). Only in the low-activity range of

the cell was the variance of responses to
constant-velocity stimuli larger than that of
responses to dynamic stimuli. In any case, the
variances of the responses to the tested dy-
namic- and constant-velocity stimuli were
considerably smaller than the mean spike
count.

This conclusion generally applies to a
wide range of time windows and all dynam-
ic- and constant-stimulus conditions that
we tested. In Fig. 4, the Fano factor (the
ratio of the variance and the mean spike
count) is plotted as a function of the size of
the time window that was used for counting
spikes. For all constant-velocity stimuli and
for the dynamic stimulus, the Fano factor
first slightly decreased with an increasing
time window, reached a minimum for in-
termediate windows, and then slightly in-
creased again [for analysis with small time
windows, see (20)]. Yet, the Fano factor
was considerably less than 1 for all con-
stant and dynamic stimuli and for all time
windows that we tested. Thus, the variance
was smaller than the mean spike count for
both types of stimulus dynamics and for all
window sizes tested.

These findings disagree with (1), which
concluded (i) that, for constant-velocity but
not for dynamical-velocity stimuli, the
variance is on the order of the mean spike
count and (ii) that dynamic stimuli result in
a much smaller neuronal variability than
constant stimuli. These conclusions are at
least partly the consequence of a mislead-
ing presentation of the experimental data.
In diagrams showing the variance of re-

Fig. 1. Responses of the
H1 cell to constant-
and dynamic-velocity
stimuli. (A and B) Ve-
locity profile of a sec-
tion of the stimuli used
in the experiments. Pos-
itive (negative) velocities
denote motion in the
cell’s preferred (null) di-
rection. deg/s, degrees
per second. (C and D)
Spike frequency histo-
gram obtained from the
responses of five H1
cells to repetitive pre-
sentation of the motion
trace shown in (A) and
(B). For each of the five
neurons, between 140
and 300 responses were
averaged. The responses
were shifted by 30 ms to
compensate for the latency. Temporal resolution, 1 ms; vertical extent of the pattern, 76.6°; sp/s, spikes per
second. (E and F) Subsequent sample traces of individual responses to repetitive presentation of the same
motion trace. Vertical lines indicate the occurrence of spikes. The section of the responses shown in (E) and
(F) corresponds to the section of the spike frequency histogram shown in (C) and (D), respectively.

Fig. 2. Variance of the spike count of the H1 cell as a function
of the mean count for (A and C) constant- and (B and D)
dynamic-velocity stimuli. For each of eight cells, 60 individual
responses to each stimulus condition were evaluated (18). For
constant-velocity stimulation, different response levels were
obtained by presenting five stimuli that differed in their vertical
extent (A and C). The pattern segments with different vertical
extent [see symbol legend in (A)] were centered at the equato-
rial plane of the fly’s eye. Mean spike counts and variances were
evaluated in 100 consecutive nonoverlapping 10-ms intervals,
starting 1.5 s after the motion onset. Because dynamic-velocity
stimulation results in pronounced response modulations (see
Fig. 1D), the whole activity range of the H1 cell was covered by
the motion of a given stimulus pattern (vertical extent, 76.6°) (B
and D). Starting 100 ms after the motion onset, we evaluated
490 consecutive nonoverlapping 10-ms intervals. Data of one
cell are shown in (A) and (B). Each symbol indicates the mean
spike count and corresponding variance within a 10-ms interval
that is time-locked to the onset of motion. Dotted lines illus-
trate the minimal variance that can be obtained in a spiking
neuron (20). Data, as illustrated in (A) and (B), were combined
from eight cells (C and D); the mean spike count was subdivided
into activity classes with a width of 0.2 spikes. For each cell,
variances were averaged when the corresponding mean spike
count was in the same activity class. Thus, for the analysis done
for (C), the variances of responses elicited by stimuli of different
sizes were averaged. Then the mean variances of up to eight
cells were averaged for each activity class. Only those activity
classes and corresponding variances to which at least four cells
contributed were illustrated. Error bars, SEM from up to eight
cells.
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sponses to constant velocities as a function
of the mean spike count, the mean spike
count has been mainly increased by in-
creasing the time window used for counting
spikes [figure 1E in (1)], whereas for dy-
namic stimuli, the spike count has been
increased by altering the stimulus strength
only [figure 2, E and F, in (1)]. The differ-
ent ways of evaluating the variances elicit-
ed by constant and dynamic stimuli result
in different dependences of the variance on
the mean spike count. These differences
cannot demonstrate a difference in the re-
liabilities with which constant and dynamic
stimuli are represented. A potential differ-
ence can only be revealed when the data are
evaluated in exactly the same way. Howev-
er, we did not find a principal difference
when we evaluated our data, which were
obtained for constant and dynamical stim-
uli, in an identical manner. When scrutiniz-
ing the constant-velocity data shown in (1),
it can be inferred that, for all time windows
other than the 3-ms window (20), the vari-
ances of responses to constant stimuli eval-
uated within a given time window do not lie
along the line of “variance 5 mean” but
increase with a much shallower slope than
that line [see figure 1E in (1)]. In fact, the
variance of the responses then depends on
the mean spike count in a manner that is
similar to the dependence of the variance
that has been obtained for dynamic stimuli
and the variances that were determined in
our study. Moreover, for the 10-ms time
window, the variances obtained in (1) for
constant-velocity stimuli quantitatively
agree with those obtained for the other
experiments [that is, for dynamic stimuli in
(1) and for constant and dynamic stimuli in
our study]. However, the variances ob-
tained in (1) for constant-velocity stimuli
with window sizes of 100 ms are somewhat
larger than those determined in the other
experiments. Various explanations for this
quantitative difference are possible. The
responses elicited by constant-velocity
stimuli in (1) covered only about the lower
one-third of the cell’s activity range,
whereas the responses elicited in the other
experiments more or less covered the entire
activity range of the cell. Because the vari-
ance depends on the activity of the cell, the
different activity ranges might be a reason
for the quantitative deviations in the vari-
ances obtained in the different experiments
(22). Another reason for the quantitative
deviations might be that the previous study
(1) was based on the responses of only one
cell for constant and one cell for dynamic
stimuli. Although none of the eight cells
analyzed in our study had a mean variance
(within a 100-ms window) as large as that
of the H1 cell analyzed in (1) for constant
stimuli, the difference does not seem to be

more than what can be expected on the
basis of interindividual variability (23). In
addition, we related only responses to con-
stant and dynamic stimuli to each other,
which were obtained from the same cells by
presenting the different stimuli in a pseu-
dorandom order, and we excluded nonsta-
tionary data (18). Both measures reduced
the possibility that differences in the vari-
ances occurred for the two different stimu-
lus dynamics because of processes that
were not induced by visual stimulation.

There is no good evidence to assume
that, in general, dynamic-velocity stimuli
are processed in the fly’s motion pathway

more reliably than constant-velocity stimu-
li. Our data demonstrate that the variability
of responses to constant and dynamic stim-
uli are basically the same when evaluated
in exactly the same way. This finding might
be surprising because, as is known from
cellular neurophysiology, spikes are gener-
ated with greater reliability if the mem-
brane potential at the spike initiation zone
changes rapidly rather than slowly. Indeed,
the occurrence of spikes was found to be
tightly time locked to fluctuations of intra-
cellularly injected current if this current
contained frequencies above ;30 Hz (24 –
26 ). However, the motion-induced mem-

Fig. 3. Variance of the spike count of the H1 cell as a function of the mean count for time windows
of 100 ms. (A and C) Mean responses and variances elicited by constant-velocity motion were
evaluated in 91 consecutive time windows starting 1.5 s after the motion onset. Consecutive time
windows overlapped by 90 ms. (B and D) Mean responses and variances elicited by dynamic
stimulation were evaluated in 481 time windows with the same overlap and starting 100 ms after
the motion onset. The same data set and conventions as in Fig. 2 were used. Data of one cell are
shown in (A) and (B). Average variance of up to eight cells for constant-and dynamic-velocity
stimuli was determined within activity classes with a width of 2.5 spikes [(C) and (D)]. Averages
were obtained as described in the caption of Fig. 2. Error bars, SEM from up to eight cells.

Fig. 4. Dependence of the Fano factor
on the size of the time window within
which spikes were counted. For each
stimulus condition, for each cell, and for
each of seven time windows ranging
between 10 and 1000 ms, the mean
variance and the corresponding mean
spike count were determined, and the
Fano factor was calculated. Fano factors
were averaged over eight cells. Spike
counts and corresponding variances
were obtained in consecutive time win-
dows that were shifted by 10 ms, irre-
spective of the size of the time window.
The same data set as in Figs. 2 and 3 was used. Error bars, SEM from eight cells.
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brane potential fluctuations in fly motion-
sensitive neurons have less power at fre-
quencies above 30 to 40 Hz than the sto-
chastic membrane potential fluctuations
(14). This observation even applies to the
very transient dynamic stimuli used in our
study. Therefore, it has been concluded that
most motion-induced membrane potential
changes are not transient enough to elicit
spikes with a large reliability (14). Hence,
there is no reason to expect that dynamic-
velocity stimuli result in a smaller spike-
count variance than constant-velocity mo-
tion. It seems likely that refractoriness plays an
important role in regularizing spike generation
at high activities (27) and thus may reduce,
independent of stimulus dynamics, the variance
at high spike frequencies as compared to low
spike frequencies.

In accordance with our data on the fly H1
neuron, in motion-sensitive neurons in the
middle temporal area (MT) of the monkey,
the variances of responses to stimuli with
different dynamical properties are fairly sim-
ilar (7). However, whereas our study has
demonstrated that, in the fly, the variance is
smaller than the mean spike count, the vari-
ances of neurons in the visual cortex of cats
and monkeys were found to be slightly larger
than the mean [(5, 6, 28, 29); see, however,
(30)]. Accordingly, the Fano factor in MT
neurons has been found to be larger than
unity irrespective of the time window and the
stimulus conditions (7). Thus, the relation
between mean spike count and variance of
these neurons appears to differ from that
found in fly motion-sensitive neurons.
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