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Temporal precision of the encoding of motion information by

visual interneurons

Anne-Kathrin Warzecha, Jutta Kretzberg and Martin Egelhaaf

Background: There is much controversy about the timescale on which neurons
process and transmit information. On the one hand, a vast amount of
information can be processed by the nervous system if the precise timing of
individual spikes on a millisecond timescale is important. On the other hand,
neuronal responses to identical stimuli often vary considerably and stochastic
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response fluctuations can exceed the mean response amplitude. Here, we

examined the timescale on which neural responses could be locked to visual

motion stimuli.

Results: Spikes of motion-sensitive neurons in the visual system of the blowfly
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are time-locked to visual motion with a precision in the range of several tens of
milliseconds. Nevertheless, different motion-sensitive neurons with largely
overlapping receptive fields generate a large proportion of spikes almost
synchronously. This precision is brought about by stochastic rather than by
motion-induced membrane-potential fluctuations elicited by the common
peripheral input. The stochastic membrane-potential fluctuations contain more
power at frequencies above 30—40 Hz than the motion-induced potential
changes. A model of spike generation indicates that such fast membrane-
potential changes are a major determinant of the precise timing of spikes.

Conclusions: The timing of spikes in neurons of the motion pathway of the
blowfly is controlled on a millisecond timescale by fast membrane-potential
fluctuations. Despite this precision, spikes do not lock to motion stimuli on this
timescale because visual motion does not induce sufficiently rapid changes in

the membrane potential.

Background

All information represented by the brain about the outside
world is somehow encoded in the electrical activity of
nerve cells. As action potentials are perceived as all-or-
nothing events, there is a general agreement that most
information is contained in their temporal sequence. The
question regarding on which timescale the relevant infor-
mation is encoded is still under debate, however. On the
one hand, the precise timing of individual action poten-
tials might be important or, on the other hand, relevant
information might simply be conveyed by the mean spike
rate within some extended time interval [1-5]. Obviously,
the first possibility offers a large information capacity.
Indeed, in various types of visual interneurons, sensory
information has been concluded to be represented accu-
rately on a millisecond timescale [6-8]. The accuracy of
the representation of sensory information by nerve cells
on a fine timescale is limited by stochastic sources which
lead to variability in neuronal responses. Individual
responses of visual interneurons often have variances up
to the order of the mean response amplitude [9-12]. From
this perspective, it is hard to imagine that neurons operate
with a temporal precision in the range of milliseconds.

Here, we have investigated the timescale on which neural
responses can be locked to sensory stimuli. In contrast to
most previous studies on the reliability of neural coding,
we have accounted for the fact that the timing of action
potentials is constrained by the biophysical properties of
nerve cells. In particular, slow changes in membrane
potential are less effective than fast ones in eliciting action
potentials (for example, see [13]). Hence, spikes are
expected to be precisely time-locked only to sufficiently
fast synaptic input.

Our experimental analysis was performed on specific
motion-sensitive neurons in the visual system of the fly
(for review, see [14,15]). In the fly, certain aspects of neu-
ronal reliability have been investigated at several levels of
information processing, ranging from the photoreceptors
and their postsynaptic elements to neurons in the main
centre of motion computation (the posterior part of the
third visual neuropile) [5,8,12,16-22]. In this area of the
brain, about 60 so-called tangential neurons use their
extended dendrites to pool the signals of many local exci-
tatory and inhibitory motion-sensitive nerve cells which
have opposite preferred directions [14,15,23]. Tangential
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neurons respond to motion within large parts of the visual
field. The various tangential cells differ in their preferred
direction of motion, in their receptive field properties and
in their response mode. Some of them generate regular
spikes, some respond with graded changes of their mem-
brane potential and others respond mainly in the graded
fashion but also exhibit small spike-like depolarisations
[24-26]. Here, we used several tangential neurons in elec-
trophysiological experiments to investigate the timescale
on which action potentials are locked to visual motion and
the constraints that limit the accuracy of their timing.

Results

Time-locking of responses to motion stimuli

The question of how well the spike activity of one of the
tangential cells, the H1 neuron, is time-locked to time-
varying visual motion was investigated by presenting
motion stimuli with a randomly modulated velocity. For
part of the experiments, a constant velocity baseline was
superimposed on these motion stimuli (Figure 1a) in order
to increase the overall neuronal activity. The amplitude
spectrum of the motion stimulus (Figure 1d) covered large

Figure 1

parts of the complete dynamic range of motion stimuli
that is encountered by the fly in natural situations. By
deducing the average of many individual response traces,
the motion-induced response component was obtained
(Figure 1b). The motion-induced response component
strongly modulates with the pattern motion, occasionally
reaching momentary peak frequencies of more than
300 spikes per second. With respect to these peak activi-
ties and to the strongly modulated activity profile, the
motion-induced response component appears to be quite
similar to that published in another study on the H1 cell
[8]. The H1 cell is excited by back-to-front motion, its
preferred direction, and inhibited during front-to-back
motion, its null direction. Since the spontaneous activity
of the H1 neuron is low, the cell stops firing when the
pattern moves in the null direction. As a consequence of
inevitable time constants of the processes underlying
motion computation (reviewed in [23,27]), the power
spectrum of the motion-induced response component of
the H1 neuron tails off earlier than that of the motion
stimulus (Figure 1d). Nevertheless, the time-dependent
response of the H1 cell is coupled to visual motion — at

Time-locking of responses of the H1 cell to ‘
motion stimuli. (&) Section of a motion trace @ |
with random velocity fluctuations
superimposed on a constant velocity baseline
in the cells preferred direction. Positive
velocities indicate back-to-front motion and
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shown in (c) corresponds to the section of the ‘
spike frequency histogram shown in (b). The
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indicated by small vertical bars. (d) The black
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Averaged cross-correlogram (CCG) between
100 pairs of individual response traces of one

H1 cell. Pairs were chosen pseudorandomly
ensuring that every individual response trace
was used and that no trace was correlated
with itself. An ordinate value of 1 indicates that
subsequent responses are identical at a
temporal resolution of 1.1 msec. The CCG was
quantified by determining the height above the
level of random activity (dashed lines) and the
width at half-maximum height above this level.

For this analysis, all possible combinations of
individual response traces were taken into
account excluding autocorrelations. The time
interval evaluated for the correlograms started
221 msec after the onset of motion and lasted
for 2709 msec. The mean spike activity within
this interval was 94 spikes/sec. The width and
height of CCGs for different cells and stimulus
conditions are shown in (f) and (g),

respectively. Open symbols correspond to
randomly modulated velocity fluctuations that
were superimposed on a constant velocity
baseline, and closed symbols correspond to
fluctuations that were not superimposed.
Symbols of the same colour correspond to
data obtained from the same cell and animal.
Between 100 and 450 individual response
traces were evaluated for each CCG.
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least on a coarse timescale. This coupling is also obvious
from the individual response traces (Figure 1c¢). Despite
some variability in the temporal fine structure of the indi-
vidual responses, the overall pattern of spike activity looks
rather similar in each of the individual responses elicited
by identical motion stimulation.

To quantify the similarity of the individual responses and
thus their time-locking to the stimulus, the individual
response traces were cross-correlated with each other. If
there were no jitter in the timing of action potentials across
trials and the spikes were precisely locked to the stimulus
on a millisecond timescale, the cross-correlogram (CCG)
should exhibit a sharp peak at time zero with an amplitude
close to 1 when normalised to the height of the correspond-
ing autocorrelograms. In Figure le, a normalised sample
CCG is shown and this is characterised by a rather broad
peak around time zero. The width and height of this peak
were quantified by relating the CCG of the individual
response traces to the CCG of the responses of a hypotheti-
cal, randomly firing neuron with the same mean spike rate.
Of course, the latter CCG is entirely flat (Figure 1e). The
height of the CCG of the neuronal responses in Figure le
above the level of random activity amounts to 0.074. The
width of the CCG is determined at half-maximum height
above the random level and is 42.2 milliseconds for the

Figure 2
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example shown in Figure le. The width and the height of
the CCG depend on whether or not a constant velocity
baseline was superimposed on the random motion stimu-
lus, but they never decreased below 30 milliseconds or
increased above 0.1, respectively, for the stimulus condi-
tions tested here (Figure 1f,g). Hence, most spikes gener-
ated by the H1 neuron are not precisely locked to visual
motion on a millisecond timescale. A similar conclusion can
be drawn for another spiking tangential neuron of the fly,
the H2 cell, as shown in Figure 2a, although here the width
of the CCG is somewhat smaller than that obtained for the
H1 neuron (animal 1, under contrast condition II / animal 2,
under contrast condition I: random motion without super-
imposed constant velocity — H2 cell, width 18.9/30 msec,
height 0.038/0.063, H1 cell, width 38.9/52.2 msec, height
0.043/0.051; random motion with superimposed constant
velocity H2 cell, width 16.7/21.1 msec, height
0.046/0.053, H1 cell, width 35.6/37.8 msec, height
0.036/0.029). In any case, spikes of either tangential neuron
are locked to motion stimuli on a timescale of several tens
of milliseconds.

Both measurements of the precision with which spikes are
time-locked to visual motion, that is the width and the
height of the CCG, depend on the dynamics of the motion
stimulus. When the velocity is constant, the CCG of the

Synchronisation of spikes in neurons with
common synaptic input. Dashed horizontal lines
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of the same number of pseudorandomly
chosen H1 and H2 responses that were not
recorded simultaneously but obtained from
repetitive stimulation with the same motion
trace (black lines). The responses to (c)
random velocity fluctuations and (d) constant
velocity motion are shown. CCGs were
normalised to the square root of the product of
the peak values in the autocorrelograms of the
H1 and H2 cell. An ordinate value of 1
indicates that the responses of both cells are
identical at a temporal resolution of 1.1 msec.
This value cannot be reached, even if all spikes
of the H2 cell were to coincide with a spike of
the H1 cell because the H2 cell fires less
frequently than the H1 cell. (a,c) The time
interval evaluated for the CCGs started

162 msec after the onset of motion and lasted
for 3104 msec. The mean spike activity within
this interval was 63.3 spikes/sec for the H1 cell
and 20.5 spikes/sec for the H2 cell:
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were evaluated. Contrast condition Il was used
in this experiment. (b,d) The time interval
evaluated for the CCGs started 1666 msec
after the onset of motion and lasted for

1600 msec. The mean spike activity within this

interval was 94.5 spikes/sec for the H1 cell
and 35.8 spikes/sec for the H2 cell:

60 individual response traces of both cells
were evaluated. Contrast condition | was used
in this experiment.
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corresponding responses is basically flat on the timescale
analysed here for both the H1 and the H2 cell (Figure 2b).
Accordingly, when the amplitudes of the random velocity
fluctuations are reduced, the width of the CCG of the cor-
responding responses tends to increase and its height
decreases (Figure 1f,g). Hence, increasingly less action
potentials are time-locked to the motion stimulus if the
velocity changes get smaller. Much larger stimulus ampli-
tudes and a larger frequency range than those used here
could not be tested with our present stimulation equip-
ment (see Materials and methods). Nonetheless, there are
likely to be few instances in the normal world where visual
motion encompasses a wider dynamic range than that
which could be tested here. Hence, visual motion tran-
sients in a behaviourally relevant range affect the timing
of action potentials essentially on a timescale of several
tens of milliseconds.

Synchronisation of spikes in neurons with common
synaptic input

"The jitter in the timing of spikes of tangential neurons is not
due to inaccuracies of the spike generation mechanism. This
conclusion can be drawn from experiments in which the
spike activity of two tangential neurons, the H1 and the H2
cell, is monitored simultaneously. Both neurons have largely
overlapping receptive fields and the same preferred direc-
tion of motion. The H1 and H2 cell are thought to share
large parts of their local motion-sensitive input elements and
not to be synaptically coupled to each other [28]. The mean
activity of the H2 cell is smaller than that of the H1 cell. If
the temporal jitter of spikes were primarily caused by noise
originating in the common pathway peripheral to the two
cells or in the stochastic nature of light rather than by noise
intrinsic to the spike generation mechanism itself, most H2
spikes should coincide with an H1 spike. Indeed, the CCG
of simultaneously recorded responses of the two neurons to
white-noise velocity modulations superimposed on a con-
stant velocity baseline reveals a narrow peak (Figure 2c¢)
with a width of 2.2 milliseconds and a height of 0.14 above
the level expected from random spike occurrence. The peak
is slightly shifted indicating that the H1 spikes tend to
precede spikes of the H2 neuron by about 1.1 milliseconds.
The same width of the CCG was obtained for white-noise
velocity modulations with and without superimposed con-
stant velocity in a different animal (data not shown). The
narrow peak indicates that a large proportion of the spikes of
both neurons occur almost synchronously: 31.8% of H2
spikes are generated precisely 1.1 milliseconds after an H1
spike and, thus, virtually synchronously. Only 7% of such
near-coincidences are expected if both cells were generating
action potentials randomly.

As the mean spike activity of the H1 neuron is about
three times larger than that of the H2 neuron, most H1
spikes do not have a counterpart in the H2 cell, which
leads to a rather high baseline level of the CCG and,

owing to the normalisation procedure used (see legend of
Figure 2), to a peak amplitude of only 0.18. Obviously,
the H1 and H2 neurons are able to generate spikes with a
great temporal precision, despite the fact that their
spikes are not as tightly coupled to the stimulus. The
latter conclusion is corroborated by the shuffled CCG of
H1 and H2 responses elicited with the same stimulus but
not recorded simultaneously. This shuffled CCG has a
width of 28.9 milliseconds and a height of 0.036
(Figure 2c¢). Similar values were obtained for another
H1-H2 pair (width: 32.2 msec; height: 0.033). The width
of the shuffled CCG thus falls between the widths of the
CCGs obtained from the responses of either neuron
alone (compare with Figure 2a). As the near-synchronic-
ity of spikes is not induced by the velocity fluctuations of
the motion stimuli, we conclude that the origin of this
near-synchronicity is either in a common noise source in
the peripheral motion pathway of the cells or in the sto-
chastic nature of light. This conclusion is further corrobo-
rated by simultaneous recordings from the H1 and H2
cell during stimulation with constant-velocity motion.
The CCG of the simultaneously recorded activity reveals
a similar peak as obtained for transient motion stimula-
tion (width: 1.1 msec; height: 0.117; Figure 2d), whereas
the shuffled CCG is flat (Figure 2d). A CCG of the
simultaneously recorded activity of similar width
(1.1 msec, 1.1 msec, 2.2 msec) and height (0.109, 0.092,
0.084) was obtained in three other H1-H2 pairs stimu-
lated with constant velocity motion. Essentially the same
result was obtained for the resting activity of both
neurons (data not shown).

Dynamical properties of the motion-induced and the
stochastic response component

As concluded above, the timing of spikes on a millisecond
scale is due to stochastic rather than to motion-induced
membrane-potential fluctuations. Since the timing of spikes
is mainly determined by the membrane potential and its
temporal changes at the spike initiation zone, the motion-
induced and stochastic fluctuations in the postsynaptic
membrane potential can be expected to differ from each
other. Therefore, we determined the dynamic properties of
the motion-induced and stochastic fluctuations of the post-
synaptic membrane potential. In spiking tangential neurons,
however, the postsynaptic membrane potential elicited by
the motion-sensitive input elements cannot be easily
derived from intracellular recordings, because the postsy-
naptic potentials are superimposed by spikes. Fortunately,
there are other tangential neurons in which the postsynaptic
membrane-potential changes are much less affected by
active membrane processes. These cells can be used to
characterise, to a first approximation, the postsynaptic
potentials elicited by motion-sensitive input elements.

The HS cells are one class of these cells [25,29] and
respond mainly with graded membrane-potential changes
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Figure 3
Dynamic properties of the motion-induced and
the stochastic response component. The (@ 10 (d)
graded membrane-potential changes of an o 1014
HSN cell, one of the HS cells, are used as a g £ 0 o
model for the synaptically driven postsynaptic £ 2E ’j'\_'? 1004 ~
potentials of spiking neurons. The resting =2 10 I 10-1]
potential of the HSN cell was -53.4 mV. (a) (b) 10 E o
Section of a sample record of an individual = 1021
response trace. (b) Motion-induced response %Tg,\ ‘ M ‘B
component as obtained from averaging the S5¢ 0 " ﬁ/ “m Vi, A /V \ N M § 10731
responses to 101 presentations of the same §g= WU W/ = 1041
motion trace. (c) Sample trace of the == 10 n—lOl g
stochastic response component as obtained (c) 10 £ 1051
from the differences between the motion- o
induced response component shown in (b) g%g 0 J\ Ww kmw,_wuv%‘qw wﬂ\m(’ \W gl 1061
and the single response shown in (a). (d) €9E ' ! 1 10 100
Power spectrum of the stochastic response 2 2 _10 Fre
S quency (Hz)
component averaged over 101 individual o 250 500 750 1000
power spectra (green line) and power )
spectrum of the motion-induced response Time (msec) Current Biology

component (red line). The time interval
evaluated for the power spectra started

77 msec after the onset of motion and lasted
for 3034 msec.

which may be superimposed by only small spike-like
depolarisations. The receptive fields of the HS cells
largely overlap with those of the H1 and H2 cell. As a con-
sequence, the CCG of the graded membrane-potential
changes in the HS cell and the spike response of the H1
cell shows a pronounced peak. Since HS cells are hyper-
polarised by motion which leads to an excitation in the H1
cell, the CCG has a negative peak (A-K.W., unpublished
observations). The motion-induced response components
of the H1 cell and the HS cell induced by random motion
stimuli have similar power spectra (compare Figure 1d
with Figure 3d). Because of these properties, HS cells are
well suited for characterising the synaptically-induced
membrane-potential fluctuations.

White-noise velocity fluctuations (Figure 3a) were used to
determine the dynamic response properties of the post-
synaptic potentials elicited in one of the HS cells, the
HSN cell. The difference between a single response trace
and the motion-induced response component yields the
stochastic response component of the respective response
trace (Figure 3a—c). The dynamic properties of the sto-
chastic and motion-induced response component are char-
acterised by their power spectra (Figure 3d). The
motion-induced response component contains most power
at frequencies below 20 Hz. In this frequency range, the
power of the motion-induced response component is
larger than that of the stochastic response component.
Towards higher frequencies, the power of the motion-
induced response component steeply decreases. For fre-
quencies above 30-40 Hz, the stochastic response
component contains more power than the motion-induced
component. Similar power spectra were obtained in two
other HS cells as well as in a previous study [30]. As the

noise power is larger than the power of the motion-
induced membrane-potential fluctuations at high frequen-
cies, we suggest that these high-frequency stochastic
fluctuations are responsible for spike synchronisation in
tangential neurons with overlapping receptive fields.

Model simulations of the timing of spikes

Simulations were used to test whether the difference in
the dynamics of motion-induced and stochastic mem-
brane-potential fluctuations is the relevant determinant for
spike generation. A phenomenological model of the timing
of spikes [31,32] was adapted to the spike statistics of the
fly tangential neurons (J.K., unpublished observations).
The model transforms membrane-potential fluctuations
into a sequence of spikes, depending on parameters such
as the firing threshold or the refractory time. To account
for the stochastic properties of the spike generation mech-
anism, a noise source is inherent in the model. The mem-
brane-potential fluctuations of the HS cell were used as
input signals for a pair of model neurons, and the spike
activity of these neurons was simulated. We then exam-
ined, in a similar way as for the H1 and H2 cells, under
which conditions these model neurons generate action
potentials synchronously: we did not intend to mimic the
experimentally determined responses quantitatively. The
responses of the HS cell were inverted, because it has the
opposite preferred direction to the H1 and H2 cell. This
procedure allowed us to obtain a good estimate of the post-
synaptic potential elicited in the tangential cells by their
presynaptic input elements without distortions due to
superimposed active processes intrinsic to the HS neuron.
When the same individual response trace of the HS cell
was inverted and fed into the two model neurons, the
CCG of the resulting spike trains displays a pronounced
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Figure 4

Model simulations of the timing of spikes.
Either (a) the individual or (b) the motion-
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temporal resolution of CCGs was 1.1 msec.
In (a), the red line corresponds to the average
CCG between simulated spike responses of
two model neurons that receive the same
intracellularly recorded membrane-potential
fluctuations as input signals. The black line
corresponds to the shuffled CCG of

pseudorandomly chosen responses of the
model neurons that were elicited by different
individual HSN responses. The mean spike
activity of both model neurons was 66
spikes/sec. In (b), the average CCG between

simulated responses of two model neurons
that each received the motion-induced
response component as input signal is shown.
The mean spike activity of both model
neurons was 61 spikes/sec.

peak (Figure 4a). Thus, spike activity in the two model
neurons is to a large extent synchronous, similar to that
found in real neurons which receive common input. If dif-
ferent individual response traces were fed into the two
model neurons, there was no such peak (Figure 4a).
Instead, the CCG was similar to the shuffled CCG in
Figure 2c. Hence, the stochastic membrane-potential fluc-
tuations in the common input of the model neurons rather
than the motion-induced membrane-potential fluctuations
are able to synchronise the spikes.

Instead of feeding individual response traces into the
model for spike generation, it is also possible to use the
motion-induced response component as an input signal in
order to find out whether the motion-induced membrane-
potential fluctuations contain sufficiently high frequencies
to elicit synchronous spikes in pairs of simulated tangential
neurons. The CCG of the simulated spike trains resulting
from the motion-induced response component has a much
smaller and broader peak around time zero (Figure 4b)
than that resulting from the corresponding individual
response traces (Figure 4a). This result corroborates our
conclusion that the differences in the dynamic properties
of the motion-induced and the stochastic membrane-
potential fluctuations are the reason why most spikes are
not locked to motion stimuli on a millisecond timescale.

Discussion

The frequency of action potentials of the directionally
selective motion-sensitive tangential cells in the motion
pathway of the fly is modulated by velocity changes of
moving stimulus patterns. These modulations in spike fre-
quency provide reliable information about pattern motion

on a timescale of several tens of milliseconds. The exact
timing of spikes on a millisecond scale is mainly deter-
mined by fast stochastic membrane-potential fluctuations.
The intrinsic noise in spiking tangential cells is suffi-
ciently small to allow action potentials to time-lock to sto-
chastic membrane-potential fluctuations mediated by the
synaptic input of the cell.

The accuracy by which action potentials are time-locked
to sensory stimuli depends on at least three constraints,
which will be discussed below: the biophysical mecha-
nisms underlying the generation of action potentials; the
computations performed in the neuronal pathway from the
receptors up to the neuron under consideration; and the
properties of neuronal noise.

Constraints imposed by the biophysical mechanisms
underlying spike generation

Action potentials are elicited more efficiently by rapid
depolarisations than by slow membrane-potential changes.
This well-known feature is a consequence of the acti-
vation and inactivation kinetics and of the voltage depen-
dence of the ionic conductances underlying action
potentials (for example, see [13]). Hence, action potentials
are expected to be precisely locked to membrane-poten-
tial fluctuations on a millisecond timescale only when
these fluctuations are sufficiently fast. Indeed, the occur-
rence of spikes was found to be tightly time-locked to
fluctuations of intracellularly injected current, if this
current contained frequencies above approximately 30 Hz
[33-35].  Since motion-induced membrane-potential
fluctuations in fly tangential neurons elicited by white-
noise motion stimuli have less power at frequencies above
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30-40 Hz than stochastic membrane-potential fluctua-
tions, these results support our conclusion that most
motion-induced membrane-potential fluctuations do not
elicit spikes with an accuracy in the millisecond range.
This conclusion is not meant to suggest that high-fre-
quency membrane-potential changes larger than the noise
cannot be elicited by specific visual stimuli in fly motion-
sensitive neurons. Preliminary results indicate that, for
instance, bright flashes in the entire visual field or instan-
taneous step-wise displacements of a high-contrast pattern
lead to rapid membrane-potential changes and, accord-
ingly, to a precise time-locking of action potentials (B.
Kimmerle, personal communication). It should be noted,
however, that these non-motion stimuli will rarely be
encountered by an animal outside the laboratory. In con-
clusion, motion stimuli covering a broad frequency range,
which comprises virtually all frequencies of biologically
relevant motion, are represented reliably only on a
timescale in the range of several tens of milliseconds.

Constraints imposed by the computational properties of
the motion pathway

Why do the tangential cells not follow with large gain veloc-
ity fluctuations above approximately 20 Hz, even though
light-adapted photoreceptors have a cut-off frequency of
approximately 100 Hz [36,37]? Any motion detection mech-
anism needs to compare the brightness changes in neigh-
bouring regions of the visual field. This comparison
inevitably involves time constants, in order to provide
directionally selective responses (for example, see [27]).
These time constants determine the operating range of the
motion detection system. Although the time constants in
the motion pathway of the fly were found to adapt to the
prevailing motion stimuli [38-40], they were estimated to
lie in the range between tens and hundreds of milliseconds
(reviewed in [23]). Consequently, motion-sensitive neurons
do not represent high-frequency components in the motion
signal, even if these are well transmitted by the photore-
ceptors. Hence, the temporal precision by which motion-
sensitive neurons generate action potentials is largely
limited by the dynamic properties of the computations
underlying directional selective-motion detection.

Constraints imposed by neuronal noise

The precision of encoding motion information by action
potentials is affected by the stochastic signal fluctuations
that are superimposed on the motion-induced responses.
As stochastic membrane-potential fluctuations in fly tan-
gential neurons were found to be larger than the motion-
induced membrane-potential fluctuations at frequencies
above 30-40 Hz, most action potentials are eventually
time-locked on a millisecond scale to stochastic rather than
to motion-induced membrane-potential fluctuations. As
revealed by the near-synchronicity of action potentials of
neurons with largely overlapping receptive fields, these
stochastic membrane-potential fluctuations are to a large
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extent transmitted by the local motion-sensitive input ele-
ments of the spiking tangential neurons. The mechanisms
underlying spike generation in the tangential cells there-
fore appear to be precise enough to allow this near-syn-
chronicity. This result is in contrast to an earlier notion
based on rather indirect evidence [12,41]. Obviously, there
are various potential noise sources which may limit the pre-
cision with which motion information is encoded. These
sources range from the stochastic nature of light to all sorts
of biophysical mechanisms that underly the electrical activ-
ity of nerve cells. We are currently investigating the noise
sources in the visual system of the fly which are most deci-
sive in limiting the reliability of motion computation.

The finding that spikes in fly tangential cells with greatly
overlapping receptive fields are highly synchronised is
reminiscent of similar findings in retinal ganglion cells of
various vertebrate species [42,43] and the lateral geniculate
nucleus of the cat [44]. The synchronisation of spike activ-
ity in these systems has been suggested to be significant
for solving certain computational tasks. The synchronisa-
tion might equally well be a simple by-product of the
common synaptic input of the synchronised cells, however.

In related studies on the H1 neuron of the fly [8,30], the
variability of neuronal responses to dynamic stimuli has
been concluded to be much smaller than the variability of
responses to constant stimuli. One of these studies makes
this claim without any quantitative analysis [30]. The
other study [8] uses the variance of the spike count across
trials as a measure of response variability. As the data
obtained with constant and with dynamic stimuli were
evaluated and plotted in different ways [8], it is hard to
compare the corresponding variances. In the plot depict-
ing the variance of the responses to constant velocity
stimuli, the spike count was increased in two ways, that is
by increasing the stimulus velocity and by increasing the
time windows within which spikes were counted. By con-
trast, in the plots showing the variance for the dynamic
stimuli the time window was constant, so that variations of
the spike count are only due to the velocity changes inher-
ent in the dynamic stimuli. If only those data points which
were presumably determined with the same counting
window are compared, it is obvious that the variances of
the responses to constant and dynamic stimuli differ by
less than an order of magnitude. We are currently investi-
gating whether these small differences between two
single experiments turn out to be significant. First results
indicate that the variances obtained for constant and
dynamic motion stimuli are very similar when both types
of stimuli are alternately presented to the same fly
(A-K.W. and M.E., unpublished observations).

A much more precise time-locking of spikes to stimuli
than in the motion pathway of the fly is found for other
sensory modalities, such as the electrosensory system of
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certain species of fish [45], the auditory system of verte-
brates [46] and the mechanosensory system of the fly [47].
The stimulus-induced membrane-potential changes in
these systems are much faster than those in motion vision
systems and resolve stimulus frequencies up to several
hundred Hz. It should be noted that, in these other
systems, extremely precise time-locking of spikes to the
sensory input is a basic requirement for solving the respec-
tive computational tasks of these systems. In contrast to
these systems, there might be no computational require-
ments for precise time-locking of spikes to visual motion
stimuli. Biological motion vision systems are required
either to sense objects moving in the animal’s visual field
or to sense the animal’s self-motion. In either case, behav-
iourally relevant motion stimuli might hardly change their
direction at frequencies that would demand a temporal
precision in the millisecond range. Whether this notion is
true needs to be elucidated in experiments in which the
dynamics of the natural motion input of animals is
analysed. At least in the fly, first attempts have been made
in this respect by analysing the coding of motion stimuli
that were generated in a flight simulator by the fly’s own
actions and reactions. In the context of optomotor course
stabilisation, the resulting velocity fluctuations had most
power at frequencies below 5 Hz [48]. Accordingly, on the
basis of the H1 neuron response, these behaviourally gen-
erated motion stimuli can be decoded most reliably at a
timescale of some tens of milliseconds, that is on a
timescale in which the timing of individual spikes does
not matter [22]. Even when male flies virtuosically chase
females in the context of mating behaviour, only up to ten
changes of direction of the animal’s path of flight per
second are observed [49,50]. Hence, it might not be a dis-
advantage for an animal to have a motion pathway that
does not represent stimuli with a precision in the milli-
second range.

Conclusions

Motion-sensitive neurons in the fly are capable of sig-
nalling presynaptic events by the timing of their spikes
with a temporal precision in the order of a millisecond,
but only if the presynaptic signals are sufficiently tran-
sient. Most spikes are not locked to motion stimuli with a
temporal precision in the millisecond range because, as a
consequence of the computations underlying motion
detection, the membrane-potential fluctuations induced
by visual motion are usually not fast enough. Instead, the
timing of most spikes on a fine timescale is determined
by stochastic signal fluctuations mediated by the presy-
naptic elements of the motion-sensitive neuron. Even if
the velocity fluctuations are very fast, the spike activity
is modulated by visual motion only on a less fine
timescale. As motion detection in most animals underlies
similar computational constraints, it is expected that the
precision of spike timing is similar in other
motion—vision systems.

Materials and methods

Preparation and electrophysiology

Experiments were performed on 1-8 day old female blowflies (Cal-
liphora erythrocephala). Animals were dissected as described previ-
ously [51]. The experiments were performed at temperatures between
20 and 25°C. The probed tangential neurons could be identified indi-
vidually by the location and size of their receptive fields as well as the
shape of their signals and preferred direction of motion. The spike
activity of the H1 and H2 neurons, which have similar receptive fields
and the same preferred direction of motion, were recorded from their
respective telodendrons which reside in different parts of the brain
[28]. Action potentials from these two neurons were recorded extra-
cellularly. The HS neurons that respond mainly with graded changes
of their membrane potential were recorded intracellularly. For extracel-
lular recordings, either tungsten electrodes or glass capillaries filled
with 1 M KCI were used. The electrodes had resistances ranging from
3 to 10 MQ. For intracellular recording, glass micropipettes (Clark
Electromedical) were pulled on a Brown-Flaming puller (Sutter Instru-
ments). The micropipettes were filled with 1 M KCI and had resis-
tances between 40 and 80 MQ. Recorded signals were monitored by
standard electrophysiological equipment. The noise band of intracellu-
lar electrodes was at least two orders of magnitude smaller than the
smallest response component. Extracellularly recorded spikes were
converted into pulses of fixed amplitude and duration. Signals were
fed into a 486-PC through an AD-converter of an I/O card (Data
Translation) at a rate of 900 Hz (Figure 2) or 2700 Hz (all other experi-
ments). For comparison of the CCGs, responses sampled at 2700 Hz
were reduced to an elementary time bin of 1.1 msec before further
data evaluation. The programs for data acquisition and evaluation as
well as for the control of stimulus movements were written in ASYST
(Keithley Instruments).

Visual stimulation

For visual stimulation, a vertically oriented square-wave grating was
generated on a monitor (Tektronix 608) by an image synthesiser
(Picasso) at a frame rate of 183 Hz. The position of the grating was
controlled via the image synthesiser by a PC. The horizontal and verti-
cal angular extent of the screen ranged from 15°—77° and from —24° to
+24°, respectively, with 0° referring to the frontal midline of the animal.
The monitor screen was oriented perpendicular to the horizontal plane
of the animal's head. Pattern wavelength amounted to either 7.8°
(Figure 2) or 6.2° (all other experiments). The mean luminance and con-
trast was either 4 cd/m2 and 95% (termed contrast condition I) or
49 cd/m2 and 45% (termed contrast condition Il). If not otherwise
specified, contrast condition | was used. During the experiments the
grating moved either at a constant temporal frequency of 4 Hz
(Figure 2b,d) or with white-noise velocity fluctuations that were modu-
lated randomly according to a Gaussian distribution with a standard
deviation of 0.122° (Figure 2a,c) or 0.097° (Figures 1,3) per time bin.
For the responses obtained with an acquisition rate of 900 Hz, stimulus
control and data acquisition could be achieved by the same PC. The
time bin thus amounted to 1.1 msec. For the other experiments in
which data were sampled at a higher frequency, two PCs were used
for data acquisition and stimulus control. In these experiments, the time
bin for stimulus control was 0.56 ms. In part of the experiments the
random velocity fluctuations were superimposed by a constant velocity
with a temporal frequency of 2 Hz in the preferred direction of the H1
and H2 cell and thus in the null direction of the HS cells. Despite the
fast output modulations of the signal controlling the pattern velocity, the
frame rate of the image synthesiser was considerably slower (i.e.
183 Hz), thus limiting the dynamic range of the motion stimuli. To be
able to characterise the frequency content of the stimulus, the velocity
trace was lowpass-filtered with a cut-off at 80 Hz for the experiments in
which the time-locking on different stimuli was investigated systemati-
cally (Figure 1). This procedure did not much affect the neuronal
responses (compare Figure 1le—g with Figure 2a and Figure 1d with
Figure 3d). The luminance modulations as well as the elementary
pattern displacements introduced by the display of each new frame did
not induce a pronounced time-locking of the responses: the peak in the
power spectrum of Figure 3d at 183 Hz is only rather small and at most
half as large as the corresponding stochastic response component at
the same frequency. This shows that the stimuli employed in the
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present study are a good approximation to ‘smooth’ motion. The experi-
mental protocol consisted of a series of consecutive sweeps. At the
beginning of each sweep, the data acquisition was triggered by the
frame synchronisation signal of the image synthesiser. It was ensured
that at the end of each sweep data acquisition and stimulus control
were still synchronised within 1.1 msec for the experiments illustrated
in Figure 2 and 0.7 msec for all other experiments. Between consecu-
tive presentations the stimulus pattern was stationary for about 2 sec.
The spatial phase of the stimulus was identical for each stimulus pre-
sentation. Neuronal responses were recorded for 4.1 sec (4.4 sec for
experiment shown in Figure 2) starting 1 sec (1.1 sec) before the onset
of motion.

Model simulations

Spike generation was modelled by the following procedure modified
from Gerstner [31,32]. For each elementary time step, the following
procedure was employed. The actual threshold for spike generation
was calculated, the spike propability was determined, and it was
decided whether a spike was generated or not.

The threshold of the membrane potential at which a spike is elicited,
O(t), was calculated for the actual instance in time, t. It was assumed
that the spike threshold depends on the time, s, elapsed after the last
action potential. With an absolute refractory time, vy, the threshold
was modelled according to the following formula:

_|® for s< Yrer
ol ={5+ ) &y
S—Vrer TOr $>VYref

6(t) converges towards 6, when the last action potential has been gen-
erated a long time ago: n determines how fast 6(t) converges.

In the next step, the probability for a spike, P(h,08), was calculated. It
depends on the difference between the actual threshold value 6(t) and
the membrane potential h(t): the h(t) value was taken from the inverted
intracellular responses of the HS cell. Then the probability for a spike is
given by

P(h6)=1-e " %%%eﬁ[h(t) <] @

with 1, being the mean response time for h=6,  being a weighting
factor that determines to what extent the model is affected by noise
and At being the elementary time step.

Eventually P(h,8) was compared to a uniformly distributed random
number between 0 and 1. If P(h,0) was larger than this random number
a spike was generated. In this way a sequence of spikes can be gener-
ated for consecutive elementary time steps. Parameters were adjusted
to the spike statistics of fly tangential neurons (J.K., unpublished obser-
vations).

The parameters used to simulate the spike trains for Figure 4 were:
6,=2mV (above the resting potential); y =0.175 msec;
n =19.8 mVemsec; 1, = 1.5 msec; B = 1.5 mv-1; At = 0.37 msec.

The programs for simulation of the spike generating mechanism were
written in NEO, a software package developed by Helge Ritter, Depart-
ment of Neuroinformatics, University of Bielefeld, Germany.
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