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Direction-selective cells in the fly visual system that have large
receptive fields play a decisive role in encoding the time-
dependent optic flow the animal encounters during locomotion.
Recent experiments on the computations performed by these
cells have highlighted the significance of dendritic integration
and have addressed the role of spikes versus graded
membrane potential changes in encoding optic flow information.
It is becoming increasingly clear that the way optic flow is
encoded in real time is constrained both by the computational
needs of the animal in visually guided behaviour as well as by
the specific properties of the underlying neuronal hardware.
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Abbreviation
TC tangential cell

Introduction
Images of the surrounding environment on the retina often
change rapidly. Retinal image changes are partly attributable
to changes in the outside world, such as when a moving
object crosses the visual field. Even if the outside world is
stationary, however, there is a continuous image flow on the
retina when the observer, be it humans or other animals,
moves about in the environment. This so-called optic flow is
a rich source of information about both the outside world and
the path and speed of locomotion. Before this information
can be used to control visually guided orientating behaviour,
it needs to be extracted from the activity profile of the array
of photoreceptors and processed by the nervous system.

Although humans and other animals usually seem to solve
this task without much effort, the ability to process com-
plex, time-dependent sensory signals is by no means trivial
given the properties of the neuronal hardware. In particu-
lar, when fast reactions are required, unreliable neuronal
computations may become a major problem. The indeter-
minacy of neuronal responses is reflected in their often
large variability. When a given stimulus is presented
repeatedly to a neuron, the responses are not identical and
may vary substantially. Often the variance of neuronal
responses is on the order of the average response ampli-
tude (see e.g. [1,2]). Hence, just by looking at the activity
of a neuron, say in a sequence of action potentials, it is
hardly possible to tell without additional information
whether fluctuations in the interspike intervals are
induced by a sensory stimulus or result from noise.

By what mechanisms, and how reliably, time-dependent
stimuli are encoded by the nervous system is currently
being investigated intensively in the context of optic
flow processing in the visual systems of various animals,
such as monkeys, pigeons and flies. The fly is highly
specialised to evaluate time-dependent optic flow to
control its often virtuosic visually guided orientation
behaviour. In the fly, it is possible to track motion infor-
mation processing physiologically from the retina to
visual orientation behaviour [3].

Optic flow is initially processed in the first and second
visual areas of the fly’s brain by successive layers of retino-
topically arranged columnar neurons. There is detailed
knowledge on the first visual area, the lamina, both at the
ultrastructural and functional level. Much attention has
been paid in recent years to the strategies for encoding nat-
ural, time-dependent input signals by lamina neurons and
the functional significance of these strategies (reviewed in
[4,5]). Adaptive neural filtering in the lamina is thought to
remove spatial and temporal redundancies from the incom-
ing retinal signals and, thus, to maximise the transfer of
information about time-dependent retinal images [6]. In
contrast to this understanding of information processing in
the lamina, little is known about information processing in
the second visual area, the medulla. There is a great deal
of anatomical knowledge on the medulla [7–10], and elec-
trophysiological recordings are available from an increasing
collection of medullar neurons [11–15]. Owing to the small
size of these neurons and the difficulty of recording their
activity for an adequate interval of time, their functional
characterisation is still incomplete; interpretations of their
role in motion detection must be regarded as tentative. At
least there is evidence that direction selectivity is first
computed on a local retinotopic basis in the most proximal
layers of the medulla [12–14,16].

In the posterior part of the third visual area, the lobula
plate, the local motion information is spatially pooled by
the large dendrites of a set of neurons, the so-called tan-
gential cells (TCs) [17,18]. Two types of retinotopic input
elements with opposite preferred direction of motion —
one inhibitory and one excitatory — converge onto the
dendritic tree of the TCs ([19]; for a review, see [20]). As
a consequence, the TCs respond selectively to the direc-
tion of motion. Owing to the spatial properties of their
input organisation and to synaptic interactions with other
TCs in the ipsi- and contralateral half of the brain, the
TCs are ideally suited to process optic flow. Some TCs
respond best to coherent motion in large parts of the visu-
al field, such as when an animal turns about one of its
body axes. Other TCs are tuned to relative motion
between an object and its background, such as when the
fly flies past a nearby object [3,17,18].
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In the following sections, we concentrate on three spe-
cific aspects of real-time motion encoding that have
attracted particular attention in recent months: first, the
role of dendritic integration by TCs in processing of
optic flow; second, the performance of spiking and graded
potential neurons in encoding of visual motion; and
third, the constraints imposed by the neuronal hardware
on the temporal precision with which visual motion can
be encoded.

The role of dendritic integration in processing
of optic flow
Optic flow information cannot be derived by computations
operating on a local basis alone. Rather, motion informa-
tion from different areas of the visual field must be
compared. Here, dendritic integration plays a prominent
role. Three functional consequences of dendritic integra-
tion will be reviewed below. 

Firstly, the preferred directions of the local motion
inputs to the TCs are not the same across the entire
receptive field, but change in a way characteristic of each
cell type. The spatial patterns of local preferred direc-
tions of the different TCs form the basis of their specific
sensitivity to optic flow [21,22••] (Figure 1a). The
sophisticated spatial distributions of preferred directions

in the receptive fields of TCs are not modified by visual
experience but appear to have resulted from phyloge-
netic adaptations [23].

Secondly, because the local motion input elements of the
TCs have only small receptive fields, their responses are
temporally modulated even when the stimulus pattern
moves with a constant velocity. Therefore, the signals of
these local elements, which ‘look’ at different areas of the
surround, are phase-shifted with respect to each other.
Spatial pooling of these local signals by the dendrites of
the TCs reduces the temporal response modulations to a
large extent [24,25•] (Figure 1b). Hence, dendritic integra-
tion produces a signal that is, to some extent, proportional
to the time course of pattern velocity.

Thirdly, dendritic integration of the local movement-
sensitive elements is a highly nonlinear process. When
the signals of an increasing number of input elements
are pooled, saturation nonlinearities make the response
largely independent of pattern size. As a consequence of
the opponent local motion inputs, the response satu-
rates at different levels for different velocities
(Figure 1c). Hence, the responses, while still encoding
velocity, are almost invariant against changes in pattern
size [26,27]. 

Figure 1

Consequences of dendritic integration on the
representation of visual motion. Schematic of
a fly TC in the third visual area, with two
dendritic branches, an axon and an axon
terminal. The TC receives retinotopically
organised, local motion-sensitive inputs:
vertical lines terminating with ‘synapses’
(black dots) on the dendrites. (a) The local
input elements do not exhibit the same
preferred direction of motion within the entire
receptive field of the TC. Instead, the
preferred direction of motion changes in a
characteristic way (indicated by arrows in the
plane above the dendrites). Data courtesy of
H Krapp. For the TC shown here, the
preferred directions correspond to the
directions of motion (indicated by the arrows
on the sphere) as experienced by the animal
when turning about its long axis. (b) Even
when the velocity of motion is constant, the
activity of the local input elements of the TCs
is modulated depending on the texture of the
surround in the receptive fields of the local
elements. Traces on the right indicate the
time-dependent signals of three local input
elements of the TC. By dendritic pooling of
many local elements, this pattern dependence
in the time course of the responses is
eliminated to a large extent (left trace).
(c) Gain control in the TC makes its
responses relatively independent of the
number of activated input elements and, thus,
of pattern size, whereas the response
amplitude still depends on pattern velocity.

(i) The enlargement illustrates that each point
in the visual space is subserved by a pair of
input elements of the TCs, one of them being
cholinergic (ACh) and excitatory, the other
GABAergic and inhibitory [19]. (ii) Even
during motion in the local preferred direction
of the TC, both types of local input elements

are activated, though to a different extent
depending on the velocity of motion (black
and white columns). As a consequence, the
membrane potential approaches different
saturation levels for different velocities when
the number of activated local input elements
increases. GABA, γ-aminobutyric acid.
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It should be noted that a wealth of active processes have
been identified in the dendritic membranes of TCs, such
as voltage-dependent sodium, potassium and calcium
channels [28–30]. The functional significance of these
active processes for encoding the time course of visual
motion is still not well understood.

The performance of spiking and graded
potential neurons in encoding visual motion
In the TCs, the postsynaptic signals originating from the
retinotopic input elements superimpose, and, depending
on the direction of motion, the cell either depolarises or
hyperpolarises in a graded fashion. In some of the TCs,
graded membrane potential changes in the cells’ output
region are thought to lead to transmitter release. In other
TCs, the distance between input and output regions is too
large for this mode of signal conduction, and the graded
membrane potentials are transformed into spike trains that
are actively propagated to the presynaptic terminal.
However, there is no clear distinction between these two
response modes. In many cells in which graded membrane
potential changes reach the presynaptic terminal, they are
superimposed and modified by various sorts of active sig-
nals [29,31,32]. Whether the different signalling modes
differ with respect to information capacity and whether
one of them may be superior over the other have been a
matter of considerable debate in recent years.

As some TCs differ in their signalling mode but receive
basically the same type of retinotopic input, they are well
suited for comparing the performance of spiking and
graded potential neurons. The reliability with which con-
stant velocity motion can be discriminated from no
motion has been found to be basically the same for both
response modes [33,34]. The same conclusion has been
drawn concerning the time required to detect motion
onset as well as for the number of stimuli that can be dis-
criminated reliably [33,34]. Moreover, it has been found
that the velocity of a randomly fluctuating motion stimu-
lus is represented by spiking and graded potential TCs
similarly well — as long as the pattern moves in the cell’s
preferred direction. Velocity fluctuations above 10–20 Hz
are encoded only poorly by TCs of either signalling mode
[35]. This feature is only partly attributable to neuronal
noise. It is also the consequence of the fact that the stim-
ulus-induced responses of TCs do not only depend on
pattern velocity but also on its higher temporal deriva-
tives [35,36]. In a recent study of a TC that generates
both graded potential changes and spike-like events, it
was concluded that more information about stimulus
velocity is encoded by the graded response than by the
spike-like events [37•]. However, one should be cautious
about generalising this result to a principal difference in
the performance of graded potential cells and spiking
neurons. This difference is partly attributable to the rela-
tively low frequency of the spike-like events and partly to
the fact that the cell ceases firing spike-like events dur-
ing null-direction motion [37•]. In contrast, the graded

potentials transmit information about the velocity also
during null-direction motion, because their membrane
potential modulates below its resting level. Apart from
this trivial difference, spiking and graded potential TCs
perform similarly in encoding motion stimuli. In addition,
metabolic costs for information transmission do not seem
to favour the graded over the spiking response mode
[38••]. Hence, the significance of cells that do not gener-
ate action potentials is still open to debate.

Constraints imposed by the neuronal
hardware on the temporal precision of
encoding of visual motion
The precision with which single neurons can encode infor-
mation about the outside world is constrained by the
variability of neuronal responses (Figure 2a). This is partic-
ularly true if time-dependent signals are to be encoded, as
is the case in motion vision during normal behavioural situ-
ations. Across most of the cells’ activity range, response
variability (as given by the across-trial variance of the
responses of spiking TCs to repetitive presentation of iden-
tical motion stimuli) is considerably smaller than the mean
response amplitude. This is also true for constant stimuli
[39•], despite an earlier claim to the contrary [40]. Although
many questions remain regarding the biophysical and neu-
ronal determinants of response variability, fly TCs appear
to differ considerably with respect to variability from mam-
malian cortical neurons, such as in the motion pathway of
monkeys [2]. The difference in variability between the dif-
ferent systems might be attributable to a different input
organisation. Whereas fly TCs receive most of their input
from the peripheral visual system, a considerable portion of
synaptic input appears to originate from higher-order pro-
cessing stages in the mammalian visual system.

Despite the relatively low level of variability of fly TC
action potentials, most of their spikes do not lock to veloc-
ity fluctuations of a moving pattern on a millisecond
timescale, even when these fluctuations contain high fre-
quencies. On the basis of double recordings from pairs of
cells with largely overlapping receptive fields, we [41••]
concluded that the timing of spikes on such a fine
timescale is, to a large extent, the consequence of stochas-
tic membrane potential fluctuations at the cells’ spike
initiation zone (Figure 2 b,c). Time constants intrinsic to
the process of motion computation [20] attenuate high-fre-
quency velocity fluctuations. As a consequence,
motion-sensitive neurons do not represent high-frequency
velocity fluctuations particularly well. At frequencies
above approximately 20 Hz, stochastic membrane poten-
tial fluctuations predominate over the motion-induced
fluctuations when the cell is stimulated with white-noise
velocity fluctuations [35,41••]. As a consequence of the
biophysical properties of nerve cells, this frequency range
of membrane potential changes, rather than the one in
which velocity fluctuations are transmitted especially well,
is particularly efficient in eliciting action potentials with a
high temporal precision [42–44]. 
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Hence, in contrast to other systems and sensory modalities,
in which different computational problems are being
solved [45], stimulus-induced membrane potential
changes in motion-sensitive neurons are usually not fast
enough to elicit spikes with a high temporal precision.
This limitation would be disadvantageous only if the fly
needed to encode rapid velocity changes. However, veloc-
ity changes of the retinal image are attributable either to
object motion in the visual field or to self-motion of the
animal. In either case, velocity transients are limited by
physical constraints such as inertia and friction and thus
cannot be arbitrarily fast under natural conditions. With a
recently developed magnetic coil technique by Schilstra
and van Hateren [46••–48••], the motion transients elicited
by body and head rotations of the animal can be estimated
for free flight without the dynamical limitations of video
analysis. Even the fastest head movements that could be
observed take at least 10–15 ms for their execution, whereas

the rapid saccade-like turns of the body take even longer.
As a consequence, it is not surprising that motion can be
decoded best from the instantaneous responses of spiking
TCs if the responses are smoothed to some extent,
depending on the dynamics of motion (Figure 2d)
[34,49,50]. In any case, the timescale of behaviourally rel-
evant motion information can be assessed only if the optic
flow experienced by the animal in normal behavioural sit-
uations has been reconstructed.

Conclusions
The processing of the spatio-temporal retinal brightness
changes that are characteristic of optic flow is constrained
by the spatial and dynamical nature of the motion stimuli
as well as by the biophysical properties of the neuronal
hardware. Although this conclusion may appear almost
trivial, its implications for further analyses have been
explored only recently.
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Figure 2

Reliability of encoding of visual motion
information. (a) Section of a velocity trace
that was generated in a flight simulator by a
fly by its own actions and reactions, and six
single responses of a spiking TC, the H1-
neuron, to this motion stimulus. Each vertical
line denotes the occurrence of a spike. The
H1-neuron responds selectively to the
direction of motion. Although the responses
are very similar on a coarse timescale, they
differ considerably when inspected more
closely. (b) Schematic of the dendrites of
two spiking TCs, the H1- and the H2-neuron,
that are thought to receive their input signals
from largely the same population of
presynaptic elements. (c) Cross-correlogram
of the responses of the H1- and H2-neuron
to random velocity fluctuations. The cross-
correlogram displays a pronounced peak
when simultaneously recorded responses
are evaluated (grey line), indicating that a
large proportion of the spikes of the two
neurons occurs within the same millisecond.
The cross-correlogram is broad when
responses elicited by the same motion
stimulus are correlated that were not
recorded simultaneously (black line). Hence,
the synchronicity of the spike responses of
both neurons is not induced by the motion
stimulus but by stochastic response
fluctuations transmitted by common inputs.
An ordinate value of ‘1’ would be obtained, if
the correlated responses were identical at a
timescale of 1.1 ms. (27 individual responses
to the same dynamic motion stimulus each
lasting 3.1 s; mean spike activity of the H1-
cell: 29.2 spikes/s; mean spike activity of the
H2-cell: 8.7 spikes/s.) Data from [41••].
(d) Information transmitted for each instant
of time by the individual responses about the
motion-induced response component
(‘transinformation’). The motion-induced
response is obtained by averaging many

individual responses to identical motion
stimulation, thereby eliminating stochastic
signals. Motion stimuli were generated in
behavioural experiments by the actions and
reactions of tethered flying flies and
subsequently replayed to the H1-neuron in
electrophysiological experiments [50].
Individual responses were obtained by
smoothing the individual spike trains. The
smoothing was done by sliding a time
window across each spike train and counting
the spikes within that window. The width of
the time window was varied between 5 ms
and 640 ms (abscissa). The transinformation
is largest when the individual responses are

smoothed with relatively large time windows
of about 40–100 ms. With time windows
smaller than about 40 ms, the instantaneous
motion-induced response cannot be
estimated as reliably because the stochastic
response component is smoothed out to a
lesser extent than with larger windows. With
time windows larger than about 100 ms, fast
motion-induced response components are
smoothed out, thus preventing their reliable
estimation. An ordinate value of ‘1’ would be
obtained if each individual response was
identical to the motion-induced response.
Data from [50].
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On one hand, much research on motion computation was
previously performed under in vivo conditions, with elec-
trophysiological, pharmacological and optical recording
techniques primarily aimed at elucidating the cellular
mechanisms underlying motion computation (for a review,
see [3]). Because these studies were focused on the mech-
anisms themselves, they do not allow us to predict easily
how these mechanisms encode the often complex optic
flow typical of behavioural situations.

On the other hand, the reliability of motion encoding has
now been quantified using data analysis approaches derived
from signal detection and information theory [33–35,
39•,40,41••,49–52,53•,54]. Although these approaches have
been important for analysing neuronal performance, their
limitations have to be kept in mind. In particular, the mea-
sures that are used to quantify the performance of neurons
are just measures of the variability of neuronal responses or
the relationship between the diversity of the stimulus and
the variability found in the corresponding responses. These
measures, though very useful to quantify the relationship
between stimulus-induced neuronal signals and noise, and
thus the reliability of an information channel, do not reveal
anything about the functional significance of the informa-
tion being processed.

Because visual systems evolved in specific environments,
the functional significance of the information being
processed can only be assessed by analysing neuronal per-
formance under conditions that come as close as possible to
natural situations. Hence, it will be a most important task
for future research on neural computation to take an eco-
logical perspective. This perspective requires, on the one
hand, analyses using visual stimuli that the animal encoun-
ters in everyday life. On the other hand, the internal state
of the animal in different behavioural situations needs to be
taken into account. For instance, the motion–vision system
of the fly adapts to the prevailing dynamical conditions of
the optic flow with which it is confronted [55–58]. These
conditions may vary considerably, such as when the animal
is walking or flying. Moreover, in poikilothermic animals
such as the fly, body temperature depends on the tempera-
ture of the environment [59], as well as on the activity of
the animal [60]. Indeed, over a range of plausible operating
temperatures in the fly (about 20–30°C), the response
latency decreases considerably and the signal-to-noise ratio
of neuronal responses increases [61]. Hence, the animal’s
internal state affects the real-time performance in process-
ing optic flow under natural conditions.

With respect to the processing of behaviourally relevant
optic flow, two complementary approaches are currently
being employed. In an attempt to understand the specific
differences in neuronal performance as adaptations to the
respective computational needs, O’Carroll et al. [62,63]
have compared various insect species that differ consider-
ably in their visually guided orientation behaviour. The
largest challenge to this type of project will be to assess

quantitatively the spatio-temporal properties of the behav-
iourally relevant stimuli.

Another approach to analyse the encoding of behavioural-
ly relevant motion stimuli is to reconstruct and replay
time-dependent optic flow as experienced in behavioural
situations to motion-sensitive neurons. This approach has
been successful so far in analysing tethered flight in a
flight simulator, in which the visual system is confronted
with the visual consequences of the animal’s behaviour,
which is similar to real flight (Figure 2d) [50,64]. In the
meantime, sufficiently fast stimulus equipment has been
developed to replay to neurons optic flow reconstructed
from the trajectories of freely moving animals [65]. 

In the fly, sophisticated behavioural approaches allowing
quantification of natural optic flow can now be combined with
in vivo electrophysiology and optical recording. Therefore,
this model system is exquisitely suited to investigate how
behaviourally relevant motion information is encoded in real
time. By applying this kind of multidisciplinary approach, it
will be possible to understand which neural codes are used by
specific neural circuits to solve a given task.
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