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Abstract

We investigate a problem which arises in computational biology: Given a constant-size alpha-
bet A with a weight function � :A → N, $nd an e:cient data structure and query algorithm
solving the following problem: For a string � over A and a weight M ∈N, decide whether �
contains a substring with weight M , where the weight of a string is the sum of the weights of
its letters (ONE-STRING MASS FINDING PROBLEM). If the answer is yes, then we may in addition
require a witness, i.e., indices i6 j such that the substring beginning at position i and ending
at position j has weight M . We allow preprocessing of the string and measure e:ciency in two
parameters: storage space required for the preprocessed data and running time of the query al-
gorithm for given M . We are interested in data structures and algorithms requiring subquadratic
storage space and sublinear query time, where we measure the input size as the length n of the
input string �. Among others, we present two non-trivial e:cient algorithms: LOOKUP solves the
problem with O(n) storage space and O(n=log n) time; INTERVAL solves the problem for binary
alphabets with O(n) storage space in O(log n) query time. We introduce other variants of the
problem and sketch how our algorithms may be extended for these variants. Finally, we discuss
combinatorial properties of weighted strings.
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1. Introduction

In the present paper, we introduce a combinatorial problem which originates from
computational biology: Given a string � over a weighted alphabet A, $nd a data
structure and a query algorithm which, for a given weight M ∈N, decides whether �
has a (contiguous) substring of weight M , where the weight of a string is the sum
of the weights of its letters. If the answer is yes, we may in addition ask for a wit-
ness, i.e., two positions within � where a substring with weight M begins and ends.
The actual problem in computational biology is to $nd several masses M1; : : : ; Mm in
a database of strings. We concentrate on the one-string problem because algorithms
can be easily extended to the multiple-string problem. We formally de$ne the other
problem variants in Section 5 and sketch how extensions may be designed. There are
two simple algorithms which solve the one-string problem: One uses linear time for
a query and no additional storage space; the other has logarithmic query time, but
requires a preprocessing step and additional storage space for the resulting data struc-
ture which may be quadratic. Hereby, space and time complexities are measured in
the length of the input string. We are interested in algorithms that are better than
these two simple algorithms: i.e., we allow preprocessing and look for an algorithm
where the data structure needs subquadratic space and the running time for a query is
sublinear.
Formulated in this way, the problem becomes a purely combinatorial and algorithmic

problem: Are there algorithms which allow searching in weighted strings of length n
with o(n2) additional storage space and o(n) query time? If so, can we $nd a tradeoM
between space and time?
The problem diMers from traditional string searching problems in one important as-

pect: While those look for substructures of strings (substrings, non-contiguous sub-
sequences, particular types of substrings such as repeats, palindromes, etc.), we are
interested only in weights of substrings. This means that, on the one hand, we lose a
lot of the structure of strings: e.g., the weight of a string is invariant under permutation
of letters; on the other, we gain the additional structure of the weight function, such
as its additivity. For instance, the problem of searching in X + Y , where X and Y
are two sets of numbers, turns out to be closely related to our problem (see [9,14]).
However, we have been able to extend negative results which have been reached for
that problem [5]: We can show that this approach (using the naRSve solution without
preprocessing) cannot lead to an e:cient algorithm for our problem. Likewise, using
su:x trees, which can be applied to e:ciently solve a large number of complex string
problems, does not seem to help. Note, for instance, that the longest common sub-
string problem [13], although at $rst sight related, has very diMerent characteristics.
A problem that may also appear to be close to the present one is maximum segment
sum [4]; however, it appears that it does not lead to good solutions, either. Encoding
biological strings on a binary alphabet is not feasible here, because that would only
allow very restricted mass functions. The only result related to our problem that we
have found in the vast amount of literature on strings (e.g. [1,13,17,24,6]) is one that
does not deal with combinatorics, but rather with language classes (see Section 6 for
more details).
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Our problem is positioned between the areas of string algorithms, search algorithms,
and algebra. We believe that it is not only relevant for computational biology, but that
it is also of theoretical interest to the $eld of combinatorial searching. As far as we
are aware, no e:cient algorithms have so far been presented for this problem.
We would like to stress at this point that, even though the source of our problem is a

biological question, the results we present here are primarily of theoretical interest. The
reason is twofold: First, none of the algorithms we present are e:ciently applicable in
their current form. LOOKUP requires sublinear query time, but this is a mainly asymp-
totic result, since the query time only improves for very long input strings. Algorithm
INTERVAL, on the other hand, is very e:cient both in query time and storage space, but
it only works for alphabets of size 2, a case which does not occur in the usual biological
setting. The second reason is that all biological data are prone to errors; in fact, there
is no such thing as error-free data. Thus, all applications in computational biology need
to be highly fault tolerant. Our algorithms can be straightforwardly adapted to become
tolerant to measurement errors. However, this aspect is not included in this paper.
Thus, the present paper demonstrates that e:cient algorithms for the problem pre-

sented are possible; due to side constraints from the experimental side and di:cult
problems regarding the de$nition of a realistic similarity measure on mass spectra, it
remains a great challenge to actually $nd algorithms that are also of more practical
value, though.

1.1. Biological motivation

Proteomics is the $eld that investigates the proteins expressed at a certain time in a
speci$c cell type. Due to the development of novel techniques for protein identi$cation
that are compatible with high throughput approaches, large amounts of data are be-
ing accumulated at present, which presents particular computational and mathematical
challenges.
Proteins are large molecules that play a fundamental role in all living organisms.

They are made up of smaller molecules (amino acids) that are linked together in a
certain order by peptide bonds. The sequence of amino acids constitutes the so-called
primary structure of a protein. Protein size ranges from below 100 to several thousand
amino acids, where a typical protein has length 300–600. Most proteins are made up
of the 20 most common amino acids. For the purposes of this paper, we will view a
protein as a $nite string over an alphabet of size 20.
The information about the primary structure of known proteins is stored in large

databases, such as SWISS-PROT (approximately 100 000 proteins) or PIR (more than
200 000 proteins). When a protein is isolated, one would like to know whether it is
already known and if so, to identify it. An obvious way is to establish its primary struc-
ture: This is called de novo protein sequencing. However, protein sequencing, unlike
DNA sequencing, is very expensive (both in time and money!). E.g. identifying one
amino acid with Edman degradation, one standard method for protein sequencing, takes
about 45 minutes, which makes this approach unfeasible in a high-throughput context.
Therefore, methods are required that test the protein against a database without

having to sequence it $rst. One such method—which we will investigate here—makes
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use of the diMerences in molecular weights of amino acids: The protein is broken up
into smaller pieces and the molecular mass of these pieces is then determined by a
process called mass spectrometry. This yields a “$ngerprint” of the protein that can
then be tested against the database: The goal is to $nd a protein in the database that
has substrings matching each of the input masses.
The method used for breaking up the protein into smaller pieces is referred to as

digestion: a site-speci$c cleavage agent such as an enzyme, e.g. trypsin, is used that
literally cuts the protein in certain well-de$ned places. Using digestion is algorithmi-
cally rather simple, at least with error-free data, since the breakup points are known
in advance; it is thus possible to preprocess the database in an appropriate way. The
complications arise due to measurement errors and post-translational modi$cations that
alter the molecular mass of the amino acids. There is a large amount of literature
on mass spectrometry [8,15,16,18,20,29]; some papers dealing with diMerent aspects
and modi$cations of the problem, e.g. the minimum number of masses needed to
identify a protein [20], combinatorial [22] or probabilistic [3] models for scoring the
diMerence of two mass spectra, or approaches for a correct identi$cation even in the
presence of post-translational modi$cations of the protein [19,23,28]. The review [27]
as well as Chapter 11 of the book [21] contain more detailed introductions to this
topic. For an introduction to computational biology in general, see [25]; for more
on molecular biology [26]; while [12] is an easy-going introduction to genetics for
non-biologists.
In this paper, we deal with algorithmic questions that arise if nothing is known

about the breaking points, i.e., we assume random fragmentation. Testing for random
weights is algorithmically far more complex than the digestion method, because the
cutting places are not known in advance, and hence, it is impossible to compute the
expected mass spectrum from the sequence. This approach allows combination of sev-
eral cleavage agents and it eliminates problems caused by incomplete digestion. In
addition, since we never make any assumptions about the probability distribution of
breaking points, any algorithm for the random fragmentation method can be used for
digested inputs, too. In the long run, however, for the biological application, algorithms
are needed that are not only e:cient, but also fault tolerant: They need to be tolerant
both to measurement errors (M ± 
; missing or additional masses in the spectrum) and
to sequencing errors of the database entries.

1.2. Overview

The paper is organized as follows. We $rst introduce the problem and all necessary
de$nitions in Section 2, where we also present some simple ideas that motivate our
e:ciency requirements. In Section 3, we design an algorithm (LOOKUP) that is asymp-
totically e:cient, with linear storage space and sublinear query running time. LOOKUP

thus serves to demonstrate that the requirements we de$ned earlier can be met. Section
4 contains an algorithm (INTERVAL) that solves the problem for alphabets of size 2 and
has a very good performance. However, we do not think that it can be generalized to
larger alphabets. In Section 5, we present two other problem variants and discuss how
algorithms for the original problem can be extended to these. In addition, we sketch
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improvements of our algorithms for special cases. Section 6 investigates combinatorial
properties of weighted strings.

2. Problem and simple solutions

Fix an alphabet A of size |A| = s and a mass function � :A → N. Let � =
�(1) : : : �(n) be a string over A of length |�| = n¿ 1. We denote by �(i; j), where
16 i6 j6 n, the substring of � starting at position i and ending at position j, i.e.,
�(i; j)= �(i) : : : �(j). Thus, a non-empty string � is a substring of �, denoted � � �, if
there are 16 i6 j6 n s.t. �=�(i; j). Note that we do not consider the empty string to
be a substring. The mass (or the weight) of � is de$ned as the sum of the individual
masses �(�) :=

∑n
i=1 �(�(i)). For a mass M ∈N, we say that M is a submass of � if

� has a substring of mass M . Finally, for a∈A, let us denote the multiplicity of a in
� by |�|a := |{i | �(i) = a}|. If the alphabet is A = {a1; : : : ; as}, then the multiplicity
vector of a string � over A is mult(�) := (|�|a1 ; : : : ; |�|as).
The ONE-STRING MASS FINDING PROBLEM is de$ned as follows:

Given a string � of length |�|= n and a mass M , is M a submass of �?

A simple algorithm to solve the problem is LINSEARCH, which performs a linear search
through the string: For given �, start at position �(1) and add up masses until reaching
the $rst position j s.t. �(�(1; j))¿M . If the mass of the substring �(1; j) equals M ,
then output yes and stop; else start subtracting masses from the beginning of the string
until the smallest index i s.t. �(�(i; j))6M is reached. Repeat until $nding a pair of
indices (i; j) s.t. �(�(i; j))=M , or until reaching the end of the string (i.e., until the cur-
rent substring is �(i; n) for some i and �(�(i; n))¡M). The algorithm can be visualized
as shifting two pointers ‘ and r through the string, where ‘ points to the beginning of
the current substring and r to its end. LINSEARCH takes O(n) time, since it looks at each
position of � at most twice. If we do not allow any preprocessing, this is asymptotically
optimal, since it may be necessary to look at each position of � at least once.
On the other hand, if preprocessing of � is allowed, then there is another simple

algorithm for the ONE-STRING MASS FINDING PROBLEM which uses binary search: in a
preprocessing step, it calculates the set of all possible submasses of � (i.e., �(�(i; j))
for all 16 i6 j6 n) and stores them in a sorted array. Given a query mass M , it
performs binary search for M in this array. We will refer to this algorithm as BINSEARCH.
The space required to store the sorted array is proportional to the number of diMerent
submasses in �, which is bounded by O(n2). The time for answering a query is thus
O(log n).
Since submasses are integers, we can use a hash table instead of a sorted array to

store all submasses of �. In [10], hashing schemes are presented which require storage
space linear in the number of elements to be stored, and which allow membership
queries in constant time. For the ONE-STRING MASS FINDING PROBLEM, this yields an al-
gorithm with space proportional to the number of diMerent submasses in �, and constant
query time.
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We assume integer weights because in the biological setting, only rational mea-
surements are returned, which can be scaled canonically to integers, and because no
irrational numbers can be processed computationally. However, from a mathematical
point of view, assuming real weights would be more natural, and we will discuss
special cases with real weights where applicable.
From now on, an algorithm for the ONE-STRING MASS FINDING PROBLEM will consist

of three components: a preprocessing phase, a data structure in which the result of the
preprocessing is stored, and a query method. For a string �, the preprocessing will be
done only once, while the query step will typically be repeated many times. For this
reason, we are interested in algorithms with fast query methods, whereas we ignore time
and space required for the preprocessing step (as long as they are within reasonable
bounds). Space e:ciency is measured in storage space required by the data structure.
We are looking for algorithms that are better than LINSEARCH and BINSEARCH, i.e.,

require storage space o(n2) for the data structure, and query time o(n). We will call
an algorithm skinny if the associated data structure requires o(n2) space, and speedy
if the query method runs in time o(n).
Another simple algorithm for the ONE-STRING MASS FINDING PROBLEM, which we

will call BOOLEANARRAY, works as follows: In the preprocessing phase, de$ne W :=
max{�(a) | a∈A}, and let B be a Boolean array of length �(�). Set B[k] to true
if and only if k is a submass of �. Given a query mass M , we output B[M ]. This
algorithm has query time O(1), while the data structure B requires �(�)6 nW bits.
Thus, the algorithm is speedy and, if W = o(n), it is skinny, too. However, this does
not solve the ONE-STRING MASS FINDING PROBLEM in general, since we do not want to
restrict the size of W .
In the following, we assume that the alphabet A is of constant size and we do not

restrict the maximum weight W of a letter. We assume a machine model with word
size L := �(log n + logW ) in which arithmetic operations on numbers with L bits
can be executed in constant time; storage space is measured in terms of the number
of machine words used. Without this assumption, we would get an extra factor L in
the query time and in the storage space. Since the alphabet is of constant size, an
input string � of length n could be stored in O(n=L) machine words. However, we will
assume that the input string occupies n machine words.

3. An algorithm that is both skinny and speedy

In this section, we present algorithm LOOKUP that solves the ONE-STRING MASS FINDING
PROBLEM with storage space O(n) and query time O(n=log n). The idea is as follows.
Similar to the simple linear search algorithm LINSEARCH introduced in Section 2, LOOKUP

shifts two pointers along the sequence which point to the potential beginning and end
of a substring with mass M . However, c(n) steps of the simple algorithm are bundled
into one step here. If c(n) is chosen appropriately, i.e., approximately log n, then this
will reduce the number of steps from O(n) to O(n=log n), while each step will still
require only constant time. The storage space required will be O(n). We will hereby
heavily exploit the fact that the alphabet has constant size.
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Fig. 1. Example 1—LOOKUP searching for M = 14.

3.1. An example

Example 1. Let A= {a; b; c}; �(a)=1; �(b)=2; �(c)=5. Let us assume that we are
looking for M = 14 in � = abbcabccaabb. LINSEARCH would shift two pointers ‘ and
r through the sequence until reaching positions 5 and 9, respectively. Here, it would
stop because the substring �(5; 9)= abcca has weight 14. Let us assume that c(n)= 3.
We divide the sequence � into blocks of size c(n). Now, rather than shifting the two
pointers letter by letter, we will shift them by a complete block at a time. In order to
do this, for each block we store a pointer to an index I corresponding to the substring
which starts with the $rst letter of the block and ends with the last. Let us assume
now that ‘ is at the beginning of the $rst block, and r is at the end of the second
block, as indicated in Fig. 1. We are interested in the possible changes to the current
submass if we shift the two pointers at most c(n) positions to the right. Given a list
of these, we could search for M −�(�(‘; r)). For example, the current submass in Fig.
1 is �(�(1; 6)) = 13, and we want to know whether, by moving ‘ and r at most 3
positions to the right, we can achieve a change of 14− 13 = 1.
We can calculate these possible changes and store them in a (c(n)+ 1)× (c(n)+ 1)

matrix whose (i; j)-entry holds the submass change when ‘ is moved i − 1 positions
to the right, and r is moved j − 1 positions to the right:

T [abb; cca] :




0 5 10 11

−1 4 9 10

−3 2 7 8

−5 0 5 6


 :

Using this matrix, we can $nd out whether the diMerence we are looking for is there.
In addition, we will store the entries of the matrix in a hash table that will allow us to
make this decision in constant time. In the present case, 1 is not in the matrix, which
tells us that we have to move one of the two pointers to the next block.
To determine which pointer to move, we consider what the linear search algorithm

LINSEARCH would do when searching for M and starting in the current positions of the
left resp. right pointer. Since M is not present within these two blocks, at least one of
the two pointers would reach the end of its current block. Here, we want to move the
pointer which would $rst reach the end of its block. We can determine which pointer
this is if we compare the diMerence M−�(�(‘; r)) with the matrix entry corresponding
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to c(n)−1 moves of both the left and the right pointer (in this case 7). If the diMerence
is smaller, we move the left pointer to the next block, otherwise we move the right
one. In our example, we have a diMerence of 1, thus we move the left pointer to the
next block.
This will change the current submass by −5 (the minimum of the array), yielding

�(�(4; 6))=13−5=8. Thus, we now look for M −�(�(4; 6))=14−8=6. The matrix
for this pair of positions is as follows:

T [cab; cca] :




0 5 10 11

−5 0 5 6

−6 −1 4 5

−8 −3 2 3


 :

Value 6 is in the matrix: By looking in the matrix, we can see that a diMerence of
6 can be achieved by moving the left pointer by 1 position and the right pointer by
three positions. The algorithm outputs positions 5 and 9 and then terminates.

3.2. Algorithm LOOKUP

We postpone the exact choice of the function c(n) to the analysis, but assume
for now that it is approximately log n. For simplicity, we assume that c(n) is a divisor
of n.
Preprocessing: Given � of length n, $rst compute c(n). Next, build a table T of

size |A|c(n) × |A|c(n). Each row resp. column of T will be indexed by a string from
Ac(n). For I; J ∈Ac(n), the table entry T [I; J ] contains the matrix of all diMerences
�(pre$x(J )) − �(pre$x(I)) as described above. Furthermore, we store a hash table
which contains the set of all entries of the matrix. Note that the table T depends only
on n and A, and not on the sequence � itself. Next, divide � into blocks of length
c(n). For each block, store a pointer to an index I that will be used to look up table
T . Each such index I represents one string from Ac(n).

Query algorithm: Given M , set ‘ := 1 and r := 0. Repeat the following steps until
M has been found or r ¿n:

1. Say ‘ is set to the beginning of the ith block and r to the end of the (j − 1)th
block. The pointer of block i resp. j points to index I resp. J . Use the hash table
stored in T [I; J ] to $nd whether diMerence M − �(�(‘; r)) is in the corresponding
matrix, i.e., whether the diMerence can be achieved by moving ‘ resp. r at most
c(n) positions to the right.

2. If a diMerence of M − �(�(‘; r)) can be found, search for an entry (k; l) in the
matrix stored in T (I; J ) which equals M − �(�(‘; r)) by exhaustive search, 1 and
return yes, along with the witness i′ := (i − 1)c(n) + k; j′ := (j − 1)c(n) + (l− 1),
since �(�(i′; j′)) has mass M .

1 Alternatively, we could have stored (k; l) during the preprocessing, too.
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3. Otherwise, M − �(�(‘; r)) cannot be found. If M − �(�(‘; r)) is less than the ma-
trix entry at position (c(n); c(n)), then increment ‘ by c(n) and set �(�(‘; r)) :=
�(�(‘; r)) + min(array); otherwise, increment r by c(n) and set �(�(‘; r)) :=
�(�(‘; r)) + max(array).

Analysis: First we derive formulas for space and time, and then we show how to
choose c(n). To store one entry of table T , we have to store a matrix with (c(n)+1)2

diMerences, and the corresponding hash table. We use a hashing scheme which requires
space O(c(n)2) and which allows membership queries in constant time (such hashing
schemes exist for a $nite universe U of integers, see e.g. [10]).

The space needed for storing the entire table T is

(number of entries in T ) ·O(c(n)2)
= |A|2c(n) ·O(c(n)2)
=O(|A|2c(n) · c(n)2):

The number of bits needed for storing the pointer at each block is

number of blocks · log (number of elements in Ac(n))

=
n
c(n)

· log(|A|c(n)) = O(n):

For the last equality, recall that A is of constant size. For the query time, observe
that after each iteration (consisting of Steps 1–3), either ‘ or r is advanced to the
next block. As each of the pointers can advance at most n=c(n) times, there can be at
most 2n=c(n) iterations. Each iteration except the last one takes constant time. The last
iteration may take time O(c(n)2).

In total, the algorithm requires storage space O(n+|A|2c(n)c(n)2) and time O(n=c(n)+
c(n)2). Now, if we choose c(n)=(log|A| m)=4, then we obtain |A|c(n)=n1=4. This yields
a storage space of O(n+ n1=2 log2 n) =O(n) and query time O(n=log n), which is both
skinny and speedy. Other choices of c(n) do not asymptotically improve time and
space at the same time.

Theorem 1. Algorithm LOOKUP solves the ONE-STRING MASS FINDING PROBLEM with stor-
age space O(n) and query time O(n=log n).

Algorithm LOOKUP can be modi$ed to work on real weights rather than on integers.
Here, instead of storing the distances in hash tables, we can use sorted arrays. Each
membership query to a hash table is replaced by binary search in the corresponding
array. Since each array has size O(c(n)2), this results in an additional factor O(log c(n))
in the query time. Again, with c(n) chosen as above, this yields storage space O(n)
and query time O((n=log n) log log n).
LOOKUP beats both the query time of LINSEARCH and the storage space of BINSEARCH.

However, its practical use is limited to very long sequences: In order to obtain a block
size of, say, c(n) = 10, the input string would have to have length n = |A|40. In the
next section we present a practical algorithm for binary alphabets.
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4. A speedier algorithm for binary alphabets

In this section, we present algorithm INTERVAL which solves the ONE-STRING MASS

FINDING PROBLEM for an alphabet of size 2. It uses storage space O(n) and has query
time O(log n). The algorithm decides whether a given mass is a submass of �, but
does not return a witness.
Let � be a string over A = {a; b} of length n and $x k6 n. Observe that, when

sliding a window of size k over �, then in one step, the multiplicities of a and b
within the window change at most by one. We represent substrings of � by points in
the Z× Z lattice, where the two coordinates signify the multiplicities of a and b:

Sk := {(i; j)∈Z× Z | i + j = k; there is a substring � of �: |�|a = i; |�|b = j}:
All points in Sk will lie on a line (a diagonal), and moreover, they will be neighbours.

We will refer to such a set of neighbours on a line as an interval. Each such interval
has two extremal points.

Example 2. � = aaaaabaabb. The $gure shows the representation of all substrings of
length k = 8. Extremal points of this interval are (5; 3) and (7; 1).

(6,2)
(7,1)

a

b

(5,3)

Assume for a moment that we know the multiplicities of a and b in M , e.g., M =
i�(a) + j�(b). Then we can easily $nd out whether M is a submass of �: We store
the Sk ’s, for 16 k6 n by their extremal points during the preprocessing phase. Now
we only have to check whether (i; j)∈ Si+j, which takes O(1) time. This requires
storage space linear in n. If, in addition, i and j were known to be the only feasible
multiplicities of a and b (i.e., the unique solution of the equation x�(a)+y�(b)=M),
then this algorithm would even decide whether M is a submass of �, and we would
be done.
Unfortunately, we do not know the multiplicities of a and b in M . We de$ne d :=

�(b)−�(a) (w.l.o.g., assume �(a)¡�(b)) and use the residue of M mod d to look up
a table. The table, generated during the preprocessing phase, contains representations
of all submasses of �.
Let Mk := {�(�) | � is a k-length substring of �}. Observe that consecutive elements

of Mk (when sorted) diMer by exactly d. Therefore, we can write Mk = {ck + ‘d | ‘=
0; : : : ; nk − 1}, where ck = minMk and nk = |Mk |. Furthermore, Mk = {rk + ‘d | ‘ =
ak ; : : : ; bk}, where rk = (ck mod d); ak = �ck=d� and bk = ak + nk − 1. This says that all
submasses of the same length have the same residue modulo d.
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Example 2 cont’d. Let � = aaaaabaabb and �(a) = 2 and �(b) = 7. Then d= 5, and

S10 = {(7; 3)}, M10 = {35}, r10 = 0; a10 = 7; b10 = 7
S9 = {(7; 2); (6; 3)}, M9 = {28; 33}, r9 = 3; a9 = 5; b9 = 6,
S8 = {(7; 1); (6; 2); (5; 3)}, M8 = {21; 26; 31} r8 = 1; a8 = 4; b8 = 6
S7 = {(6; 1); (5; 2); (4; 3)} M7 = {19; 24; 29} r7 = 4; a7 = 3; b7 = 5
S6 = {(5; 1); (4; 2); (3; 3)} M6 = {17; 22; 27} r6 = 2; a6 = 3; b6 = 5
S5 = {(5; 0); (4; 1); (3; 2); (2; 3)} M5 = {10; 15; 20; 25} r5 = 0; a5 = 2; b5 = 5
S4 = {(4; 0); (3; 1); (2; 2)} M4 = {8; 13; 18} r4 = 3; a4 = 1; b4 = 3
S3 = {(3; 0); (2; 1); (1; 2)} M3 = {6; 11; 16} r3 = 1; a3 = 1; b3 = 3
S2 = {(2; 0); (1; 1); (0; 2)} M2 = {4; 9; 14} r2 = 4; a2 = 0; b2 = 2
S1 = {(1; 0); (0; 1)} M1 = {2; 7} r1 = 2; a1 = 0; b1 = 1

Observe that rk = (k�(a)mod d). Thus, we may have the same residue modulo d
for diMerent values of k. Instead of storing ak and bk for each rk individually (which
could result in linear query time), we will store the union of all intervals which belong
to the same residue r, sorted by their endpoints.

Example 2 cont’d. In the example, this yields the following preprocessed data. For
residues 1 and 4, the intervals have been merged.

Residue modulo d Union of intervals

0 [2; 5]; [7; 7]
1 [1; 6]
2 [0; 1]; [3; 5]
3 [1; 3]; [5; 6]
4 [0; 5]

4.1. Algorithm INTERVAL

In the preprocessing phase, we calculate the rk ’s, ak ’s, and bk ’s as above. We then
sort the rk ’s, thus obtaining a sorted array q1; : : : ; qm, where m6 n (since diMerent Sk ’s
may have the same residue). For each ql, we compute a list of interval endpoints which
represents the union of all intervals [ak ; bk ] with rk = ql. This list consists of one or
more disjoint intervals, which we store in sorted order in an array Al.

Now, when querying whether a given mass M is contained in �:

1. decompose M = gd+ r, where r = (M mod d) and g∈N;
2. $nd index l∈{1; : : : ; m} such that r= ql, using binary search; if no such index can

be found, then M is not a submass of �, and the algorithm outputs no;
3. otherwise, $nd whether there is an interval [a; b] in array Al such that g∈ [a; b],

using binary search on (the left endpoints of) the intervals; M is a submass of � if
and only if such an interval exists.
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Since the total number of intervals to be stored is n, the storage space needed is
O(n). The $rst step of the query algorithm takes time O(1). The second step takes
time O(log n), since the number of diMerent residues is at most n. The third step takes
time O(log n), since the maximum number of intervals stored in one array Al is n. We
obtain a total query time O(log n).

Theorem 2. Algorithm INTERVAL solves the ONE-STRING MASS FINDING PROBLEM for bi-
nary alphabets with storage space O(n) and query time O(log n).

The problem in generalizing this approach to larger alphabets is that the algorithm
relies on the crucial fact that points representing substrings of the same length lie on
a line and form an interval. This does not generalize to higher dimensions, since there
we only know that the points representing substrings of the same length are connected.

5. Problem variants

The MULTIPLE-STRING MASS FINDING PROBLEM is de$ned as follows:

Given k strings �1; : : : ; �k and a mass M ∈N, return a list i1; : : : ; ir of those strings
�ij which have M as a submass.

An algorithm ( for the ONE-STRING MASS FINDING PROBLEM can be extended to an
algorithm for the MULTIPLE-STRING MASS FINDING PROBLEM by running ( on each string
�i one by one. Required storage space and query time simply sum up.
Alternatively, we can adapt an approach from Group Testing (cf. [7]): We de$ne

a new string � := �1!�2! : : : !�k , where ! is a new letter with mass �(!) :=
max{�(�i) | 16 i6 k} + 1. Before applying ( to �, we check whether M¿ �(!).
If so, then M cannot be a submass of any of the strings, and we are done. Otherwise,
we know that whenever ( $nds mass M in �, then it is a submass of �i for some index
i. If algorithm ( can output all positions of M in �, this solves the MULTIPLE-STRING
MASS FINDING PROBLEM. If ( only decides whether M is a submass of � (i.e., it out-
puts only yes or no), we use a kind of “binary tree search” BINTREESEARCH to $nd
all �i with submass M as follows. First, we run ( on � as described above. If it
outputs no, then no string �i has submass M , and we are done. Otherwise, we divide
� into two new strings �l := �1! : : : !��k=2� and �r := ��k=2�+1! : : : !�k and run (
on both strings separately. We repeat the division step until the new strings cover ex-
actly one �i, in which case the answer of ( determines whether �i has a submass M .
Analysis of BINTREESEARCH depends heavily on storage space and query time required
by (. For instance, if algorithm ( requires storage space linear in the length of the
string, then the storage space of BINTREESEARCH is O((log k)

∑k
i=1 |�i|). Query time of

BINTREESEARCH depends on the number of strings with submass M , in contrast to the
simple idea of applying ( to each string separately.
Given a speci$c algorithm for the ONE-STRING MASS FINDING PROBLEM, there might

be even better ways to extend it to the MULTIPLE-STRING MASS FINDING PROBLEM: E.g.
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for BINSEARCH, we can use one sorted array to store all submasses of all strings. For
each submass x we store the set of indices Ix of all those strings which have a sub-
mass x. Given mass M , we perform binary search in the array and output all indices
stored in IM . Required storage space remains unchanged, but the running time becomes
O(log (

∑k
i=1 |�i|) + |IM |), where |IM |6 k is the size of the output. A similar idea ap-

plies to LOOKUP, where we could store only one table T of size |A|cmax ×|A|cmax where
cmax = maxki=1 c(|�i|), and use it for all runs of the algorithm. However, this does not
decrease the asymptotic space required, which still remains linear.
We de$ne a third problem variant, the MULTIPLE-STRING MULTIPLE-MASS FINDING

PROBLEM:

Given k strings �1; : : : ; �k ; m masses M1; : : : Mm ∈N, and a threshold 16 t6m,
return a list i1; : : : ; ir of those strings �ij which have at least t of the masses as
submasses.

In the setting of our application in computational biology, this will be a more realistic
formulation, since typically, one breaks a given protein in several pieces and wants
to $nd the protein in the database which contains all (or at least many) of these
pieces. Obviously, the MULTIPLE-STRING MULTIPLE-MASS FINDING PROBLEM can be solved
by applying algorithms for the MULTIPLE-STRING MASS FINDING PROBLEM m times. We
are investigating the question whether concurrently searching for m masses can be
performed more e:ciently.
Finally, we present an improvement of all our algorithms for “short masses”: Let

the length of a mass M be de$ned as +(M) := max({|�| | �∈A∗; �(�) =M} ∪ {−1}).
Here, +(M)=−1 means that there is no string with mass M . Suppose that we know in
advance that all query masses are short in comparison to n, i.e., that there is a function
f(n) such that +(M)6f(n)=o(n) for all queries M . Then there is a simple algorithm
to solve the ONE-STRING MASS FINDING PROBLEM, which is a variant of BINSEARCH: In
the preprocessing, we store all submasses of � of length ‘6f(n) in a sorted array.
This requires storage space O(nf(n)), since for each position i in �, at most f(n)
substrings of length ‘6f(n) start in i. For a query, we do binary search in this array.
This takes time O(log n), which is speedy. Since f(n)= o(n), the algorithm is skinny,
too. We can use this approach to improve our algorithms in the sense that they will
run faster on short masses.

6. Weighted strings

A question closely related to the analysis of algorithms for the ONE-STRING MASS

FINDING PROBLEM is the following: Given a string � of length n, how many diMerent
submasses does � have? For example, the storage space required by BINSEARCH is
proportional to this number. Let A= {a1; : : : ; as}. Given a string �, let us de$ne three
combinatorial functions on �. Recall that we denote the multiplicity vector of a string
� by mult(�) (also referred to as Parikh-vector, see [2]).

1. S(�) := |{� | � � �}|, the number of diMerent substrings of �,
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2. P(�) := |{mult(�) | � � �}|, the number of diMerent multiplicity vectors of substrings
of �, and

3. M(�) := |{�(�) | � � �}|, the number of diMerent submasses of �.

Note again that these de$nitions exclude the empty string. An obvious relation be-
tween these three functions is

n6M(�)6P(�)6S(�)6
n(n+ 1)

2
:

For n∈N, de$ne strings �n and �n:

�n := am1
1 a

m2
2 : : : amss ;

�n := (a1 : : : as)ka1 : : : ar ;

where
∑s

i=1 mi = n s.t. for all i=1; : : : ; s; mi = �n=s� or mi = �n=s�+1, i.e., all mi are
approximately equal, and k = �n=s�; r = nmod s. In particular, if n is a multiple of s,
then mi = k for all i = 1; : : : ; s, and n= ks. Then

�n = ak1a
k
2 : : : a

k
s ;

�n = (a1 : : : as)k :

The following theorems state that the strings �n and �n maximize resp. minimize
these three functions up to a factor of 2.

Theorem 3 (Asymptotically maximal strings w.r.t. S;P;M). Let n∈N and ni ∈N for
i = 1; : : : ; s such that

∑s
i=1 ni = n.

1. �n has quadratic values S;P;M: S(�n);P(�n) = Z(n2), and for certain classes of
weight functions, M(�n) = Z(n2).

2. �n maximizes S up to a factor of 2 for n= ks and equal multiplicities:
S(�n)¿ 1

2max{S(�) | ∀i = 1; : : : ; s : |�|ai = k}.
3. �n maximizes P: P(�n) = max{P(�) | |�| = n}. Moreover, the string an11 a

n2
2 : : : a

ns
s

maximizes P for >xed multiplicities ni: P(an11 a
n2
2 : : : a

ns
s ) =max{P(�) | ∀i= 1; : : : ; s :

|�|ai = ni}.
4. There are classes of weight functions s.t. �n maximizes M: M(�n) =

max{M(�)| |�| = n}. Moreover, the string an11 a
n2
2 : : : a

ns
s maximizes M for >xed

multiplicities ni: M(an11 a
n2
2 : : : a

ns
s ) = max{M(�) | ∀i = 1; : : : ; s : |�|ai = ni}.

Theorem 4 (Asymptotically minimal strings w.r.t. S;P;M). Let n∈N.

1. �n has linear values S;P;M :S(�n);P(�n);M(�n) = Z(n).
2. �n minimizes S up to a factor of 2 for n = ks and equal multiplicities: S(�n)6

2min{S(�) | ∀i = 1; : : : ; s : |�|ai = k}.
3. �n minimizes P up to a factor of 2 for n = ks and equal multiplicities: P(�n)6

2min{P(�) | ∀i = 1; : : : ; s : |�|ai = k}.
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4. There are classes of weight functions s.t. �n minimizes M up to a factor of 2 for
n= ks and equal multiplicities: M(�n)6 2min{M(�) | ∀i = 1; : : : ; s : |�|ai = k}.
We devote the rest of this section to the proof of these theorems.

6.1. Number of di?erent substrings

Obviously, n6S(�)6 n(n+1)=2. The lower bound is attained exactly by the strings
an for arbitrary a∈A. The upper bound can only be attained if all letters are diMerent,
i.e., S(�)=n(n+1)=2 implies n6 s. The number S(�) can be computed using a su:x
tree: In a su:x tree, each substring is represented by a unique path from the root.
Thus, adding up the label lengths of the edges of the su:x tree of � will yield just
S(�). The su:x tree of � can be computed in time O(n), see e.g. [13]. The number
of edges is linear in n, thus S(�) can also be computed in linear time. Moreover,
we can enumerate all substrings of � in time O(S(�)), if we only output tuple (i; j)
for substring � = �(i; j). If we output the sequence of letters of � instead, we obtain
O(
∑

��� |�|).
Lemma 5 (Linear and quadratic examples for S). For all n∈N, there exist strings
�; �∈An s.t. S(�) = Z(n) and S(�) = Z(n2) and |�|a; |�|a¿ 1 for all a∈A. In par-
ticular, for k; r; n1; : : : ; ns ∈N s.t. r ¡ s and

∑s
i=1 ni = n,

1. (a) S((a1 : : : as)k) = (k − 1)s2 + 1
2 (s

2 + s),
(b) S((a1 : : : as)ka1 : : : ar) = (k − 1)s2 + 1

2 (s
2 + s) + rs,

2. S(an11 a
n2
2 : : : a

ns
s ) = n+

∑
16i¡j6s ninj.

Proof. 1. (a) For $xed length m6 (k − 1)s, there are s diMerent substrings of length
m, namely �(i; i+m) for i=1; : : : ; s. There are s substrings of length (k−1)s+1; s−1
substrings of length (k−1)s+2, and so on, and $nally, exactly one substring of length
ks= n. Thus, S((a1 : : : as)k) = (k − 1)s · s+∑s

i=1 i.
1. (b) In addition to substrings of (a1 : : : as)k , each of the $nal r positions of �

contributes s diMerent new substrings, namely those beginning within the $rst block
a1 : : : as and ending in this position.
2. First consider substrings that start and end with the same letter ai. For $xed

16 i6 s, there are ni diMerent substrings of this type, yielding
∑s

i=1 ni = n diMerent
substrings. All other substrings start with some letter ai and end with a diMerent letter
aj, where i¡ j. For each pair i; j, there are ninj diMerent choices of the $rst and
$nal positions, which all generate diMerent substrings. Thus, S(an11 a

n2
2 : : : a

ns
s ) = n +∑

16i¡j6s ninj.
Since the alphabet size s is constant and k = �n=s�, we have S((a1 : : : as)ka1 : : : ar)=

Z(n). On the other hand, if for all i=1; : : : ; s; ni=�n=s� or ni=�n=s�+1 s.t.
∑s

i=1 ni=n,
i.e., all ni are roughly equal, this yields S(an11 a

n2
2 : : : a

ns
s ) =

∑s
i=1 ni +

∑
16i¡j6s ninj ≈

n+
( s
2

)
( ns )

2 ≈ n+ 1
2n

2 = Z(n2).

For n=ks, the string �n=ak1a
k
2 : : : a

k
s is thus maximal up to a factor of 2 w.r.t. S, since

S(�n)= n+((s− 1)=(2s))n2¿ 1
2n(n+1)=2. In the next section, we will prove a lower
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bound on P(�) (Lemma 6), which depends on the multiplicities |�|ai of the diMerent
letters. For equal multiplicities |�|ai = k = n=s for all i, this lower bound is (k=2)(s2 +
s), implying S(�)¿P(�)¿ (k=2)(s2 + s). Since S((a1 : : : as)k) = (k − 1)s2 + 1

2 (s
2 +

s)6 2(k=2)(s2 + s), the string �n = (a1 : : : as)k is minimal up to a factor of 2 w.r.t. S.

6.2. Number of di?erent multiplicities

The question of the value of P(�) for a given string � is equivalent to the question
of how many diMerent multiplicity vectors mult(�) the set L� := {� | � � �} has. If
we denote by A⊕ the free commutative monoid over A, then any language L ⊆ A∗

induces a subset L⊕ of A⊕, namely L⊕ := {∏a∈A a|�|a | �∈L} (see [2]). Now, we
have P(�) = |L⊕� |. We are not aware that |L⊕� | has been characterized in the literature.
We can compute P(�) trivially by enumerating all substrings of �, computing their

multiplicity vectors, and ordering them. This can be done in time O(S(�) log(S(�))).
For a lower bound on P, we de$ne the index of the $rst occurrence of a letter a∈A

in a string � as Firsta(�) := min({i | �(i) = a} ∪ {|�|+ 1}).
Lemma 6 (Lower bound on P). Let n∈N and �∈An. Then P(�)¿

∑
a∈A

|�|a ·Firsta(�). In particular, if |�|a= k=n=s for all a∈A, then P(�)¿ (k=2)(s2 + s).

Proof. Let x = �(n). If x does not occur in �(1; n− 1), then appending x to �(1; n−
1) generates n new multiplicities, i.e., P(�) = P(�(1; n − 1)) + n = P(�(1; n − 1)) +
Firstx(�(1; n− 1)). On the other hand, if x does occur in �(1; n− 1), then it generates
at least Firstx(�(1; n−1)) new multiplicities, since those substrings starting in positions
i=1; : : : ;Firstx(�(1; n−1)) and ending in �(n)=x will have |�(i; n)|x=|�(1; n−1)|x+1.
Thus, in both cases we obtain P(�)¿P(�(1; n − 1)) + Firstx(�(1; n − 1)). Applying
this n− 1 times, we obtain

P(�)¿ 1 +
n∑
i=2

First�(i)(�(1; i − 1)):

Let i∈{2; : : : ; n}. If �(i) occurs in �(1; i−1), then First�(i)(�(1; i−1))=First�(i)(�).
In the sum above, this happens |�|�(i) − 1 times. For the $rst occurrence of letter �(i)
in �; First�(i)(�(1;First�(i)(�) − 1)) = First�(i)(�) by de$nition. Since First�(1)(�) = 1,
we can write 1 +

∑n
i=2 First�(i)(�(1; i − 1)) =

∑
a∈A Firsta(�)|�|a.

For $xed multiplicities n1; : : : ; ns, the sum
∑

a∈A Firsta(�)|�|a is minimized over all
strings with these multiplicities if all diMerent letters occurring in � are positioned in
the $rst positions of �, ordered ascending according to their multiplicities. In particular,
if each letter occurs exactly k times, we obtain P(�)¿ k

∑s
i=1 i = (k=2)(s2 + s).

Lemma 7 (Linear and quadratic examples for P). For all n∈N, there exist strings
�; �∈An s.t. P(�) = Z(n) and P(�) = Z(n2) and |�|a; |�|a¿ 1 for all a∈A. In par-
ticular, for k; r; n1; : : : ; ns ∈N s.t. r ¡ s and

∑s
i=1 ni = n,

1. (a) P((a1 : : : as)k) = (k − 1)(s2 + 1− s) + 1
2 (s

2 + s),
(b) P((a1 : : : as)ka1 : : : ar) = (k − 1)(s2 + 1− s) + 1

2 (s
2 + s) + r(s− 1),

2. P(an11 a
n2
2 : : : a

ns
s ) = n+

∑
16i¡j6s ninj.
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Proof. 1. (a) Let � := (a1 : : : as)k . First consider only substrings with length m6 (k−
1)s and observe that for m= ‘s, there is exactly one multiplicity vector (‘; : : : ; ‘) for
all substrings of length m. Otherwise, if m = ‘s + p where 0¡p¡s, then for each
16 j6 s, there is a substring � with multiplicities

|�|ai =
{
‘ + 1 if there is q∈{0; : : : ; p− 1} s:t: i = (j + q)mod s;

‘ otherwise:

Putting this together yields (k − 1)(1 + (s− 1)s). Finally, for lengths m¿ (k − 1)s,
the numbers of diMerent multiplicity vectors decrease one by one: There are s diMerent
multiplicity vectors of substrings with length (k − 1)s + 1; s − 1 with length (k −
1)s + 2 and so on, yielding

∑1
i=s i =

1
2(s

2 + s) diMerent multiplicity vectors. Thus,
P((a1 : : : as)k) = (k − 1)(s2 + 1− s) + 1

2 (s
2 + s).

1. (b) This is a simple extension of 1(a), noting that each of the last r positions of
� will contribute s− 1 new multiplicity vectors for substrings ending in this position:
For aj; 16 j6 r, the multiplicity vector of the substring �(i; ks+ j) will be new for
all i∈{1; : : : ; j; j + 2; : : : ; s}.
2. Observe that for string �=an11 : : : a

ns
s ; P(�)=S(�), and thus, P(�)=n+

∑
16i¡j6s ninj

by Lemma 5.
Similar to the proof of Lemma 5, we have P((a1 : : : as)k) =Z(n) for constant s and

P(an11 a
n2
2 : : : a

ns
s ) = Z(n2) for roughly equal multiplicities ni.

For equal multiplicities |�|ai=k=n=s for all i, the lower bound on P is (k=2)(s2+s).
Since P((a1 : : : as)k)=(k−1)(s2+1−s)+ 1

2 (s
2+s)6 2 k2 (s

2+s), the string �n=(a1 : : : as)k

is minimal up to a factor of 2 w.r.t. P.
The next two lemmas are used to prove a tight upper bound on P (Lemma 10).

Hereby, we denote by [.] the characteristic value of a proposition ., i.e., [.] = 1 if
. is true, and [.] = 0 otherwise.

Lemma 8 (Maximal growth of P). Let n∈N; x∈A and �∈An.

1. If � does not contain letter x, then P(�x) = P(�) + (n+ 1).
2. If � contains letter x, then P(�x)6P(�) + n− |�|x + [�(n) = x].

Proof. 1. Obvious.
2. There are P(�) diMerent multiplicity vectors of substrings starting and ending

within �. Furthermore, n substrings of �x start within � and end in x. For each index
16 i6 n−1 s.t. �(i)=x, we have mult(�(i; n))=mult(�(i+1; n)x). Thus, none of these
substrings has a new multiplicity vector. There are |�|x such substrings if �(n) �= x,
and |�|x − 1 otherwise.

The next lemma shows that concentrating each letter in blocks maximizes the number
of multiplicity vectors.
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Lemma 9 (P-maximal strings). Let n∈N and >x 06 n1; : : : ; ns ∈N s.t.
∑s

i=1 ni = n.
Then,

P(an11 : : : a
ns
s ) = max{P(�) | ∀i = 1; : : : ; s : |�|ai = ni}:

Proof. By induction on n: For n = 1, the claim is obvious. Choose �∈An+1 and
denote by ni := |�|ai for i = 1; : : : ; s. Up to relabeling (which leaves P invariant), we
may assume that the last letter of � is as, thus we can write � = �′as. If ns = 1, then

P(�) =P(�′) + (n+ 1) by Lemma 8;

6P(an11 : : : a
ns−1
s−1 ) + (n+ 1) by the induction hypothesis;

=P(an11 : : : a
ns
s ) by Lemma 7;

otherwise, ns ¿ 1, and

P(�) 6P(�′) + n− |�′|as + 1 by Lemma 8;

6P(an11 : : : a
ns−1
s ) + n− (ns − 1) + 1 by the induc−

tion hypothesis

=n+
∑

16i¡j¡s

ninj +
s−1∑
i=1

ni(ns − 1) + n− (ns − 1) + 1 by Lemma 7;

=n+
∑

16i¡j¡s

ninj +
s−1∑
i=1

ni(ns − 1) +
s−1∑
i=1

ni + 1

=(n+ 1) +
∑

16i¡j6s

ninj = P(an11 : : : a
ns
s ):

Lemma 10 (Tight upper bound on P). Let �∈An. Then P(�)6 n+
∑

16i¡j6s mimj,
where mi = �n=s� or mi = �n=s�+ 1 for i = 1; : : : ; s and

∑s
i=1 mi = n. In particular, if

n is a multiple of s, then P(�)6 ((s− 1)=(2s))n2 + n. This bound is tight.

Proof. Let �∈An. Denote by ni := |�|ai for i= 1; : : : ; s. Then, by Lemma 9, P(�)6
P(an11 : : : a

ns
s ) = n +

∑
16i¡j6s ninj. Let f(x1; : : : ; xs) :=

∑
16i¡j6s xixj. Function f

attains its maximum on the set Bn := {(x1; : : : ; xs) |
∑s

i=1 xi = n} if all values are
approximately equal, i.e., max{f(Bn)} = f(m1; : : : ; ms) where for all i; mi = �n=s� or
mi = �n=s�+ 1 and

∑s
i=1 mi = n. Moreover, since P(am1

1 : : : amss ) = n+
∑

16i¡j6s mimj,
this bound is tight. If n is a multiple of s, then mi = n=s for all i, and thus:

max{P(�) | |�|= n}= n+
(
s

2

)(n
s

)2
=
s− 1
2s

n2 + n:

6.3. Number of di?erent submasses

A trivial tight lower bound for M(�) is n; strings of the form an for any a∈A have
exactly n diMerent submasses, since �(a)¿ 0. If we have M(�) = P(�), we also have
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a tight upper bound and can specify strings with a quadratic number of submasses. We
therefore de$ne the UNIQUE DECOMPOSITION PROPERTY:

A mass function � has the UNIQUE DECOMPOSITION PROPERTY (UDP) if, for all
strings � and �:

�(�) = �(�) ⇔ ∀a∈A: |�|a = |�|a:
This just means that the masses are linearly independent over the integers. With the

UDP, a mass M has at most one decomposition M=
∑

a∈A /(a)�(a) where /(a)∈N. In
this context, the question naturally arises whether a given mass M can be the weight
of a string. If the size of the alphabet is variable, then this question is a variant of
the INTEGER KNAPSACK PROBLEM, and is NP-complete (cf. [11]). If the alphabet size is
constant, the question can be solved with a simple integer linear program.
With the UDP, we have M(�) =P(�) for all �. Note that this condition never holds

if the masses are integers or rational numbers. If, however, we allow real numbers as
masses, i.e., if � :A → R+, then the masses can be chosen to satisfy the UDP. For
example, if A= {a; b}, then � with �(a) = 1 and �(b) = 0 has the UDP.
We can even achieve that M(�) = P(�) with integers if the masses may depend on

the input size. Then, we can set �(ai) := (n+ 1)i−1 for all i = 1; : : : ; s. However, this
results in exponentially large masses.
If M(�)=P(�) holds for all strings �, then all results from the previous section on

P carry over to M.

7. Conclusion

With LOOKUP, we presented an algorithm for the ONE-STRING MASS FINDING PROBLEM
that is both skinny and speedy. This proves that it is asymptotically possible to beat
both LINSEARCH and BINSEARCH at the same time. This raises the question whether there
are more practical algorithms that are skinny and speedy. In the long run, we are
interested in the tradeoM between query time and storage space for the ONE-STRING
MASS FINDING PROBLEM. Do algorithms exist that can be parametrized to allow for
adjustment of this tradeoM?
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