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Abstract
Background: Ambiguity is a problem in biosequence analysis that arises in various analysis tasks
solved via dynamic programming, and in particular, in the modeling of families of RNA secondary
structures with stochastic context free grammars. Several types of analysis are invalidated by the
presence of ambiguity. As this problem inherits undecidability (as we show here) from the namely
problem for context free languages, there is no complete algorithmic solution to the problem of
ambiguity checking.

Results: We explain frequently observed sources of ambiguity, and show how to avoid them. We
suggest four testing procedures that may help to detect ambiguity when present, including a just-in-
time test that permits to work safely with a potentially ambiguous grammar. We introduce, for the
special case of stochastic context free grammars and RNA structure modeling, an automated partial
procedure for proving non-ambiguity. It is used to demonstrate non-ambiguity for several relevant
grammars.

Conclusion: Our mechanical proof procedure and our testing methods provide a powerful
arsenal of methods to ensure non-ambiguity.

Background
The ambiguity problem in biosequence analysis
Biosequence analysis problems are typically optimization
problems – we seek the best alignment of two protein
sequences under a similarity score, or the most stable sec-
ondary structure of an RNA molecule under a thermody-
namic model. In such a problem, there is a "good" and a
"bad" type of ambiguity. The good one is that there are
many solutions to choose from. The bad one is that our
algorithm may find the same solution several times, or
even worse, it may study seemingly different solutions,
which in fact represent the same object of interest. The
cause of all these phenomenona has been called ambigu-

ity, because it is closely related to the ambiguity problem
of formal languages. It is not quite the same problem,
however. In striving for avoidance of ambiguity, we want
to get rid of the bad type and retain the good.

Ambiguity is not a problem with a dynamic programming
(DP) algorithm that returns a single, optimal score,
together with a solution that achieves this score, and does
not make assertions about other solutions in the search
space. Then, it does not matter whether this solution is
analyzed several times, or that there are other solutions
achieving the optimal score. In other cases, ambiguity can
cause a DP algorithm to return an "optimal" answer
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which is plainly wrong. In the presence of ambiguity, the
Viterbi algorithm cannot report the most likely structure
[1], a folding program cannot produce a complete and
non-redundant set of suboptimal structures [2], and sta-
tistics like counts, sum over all scores (by an Inside-type
algorithm), or expected number of feasible or canonical
structures [3] cannot be computed.

Previous work
The phenomenon of ambiguity has been formalized and
studied in [3] in a quite general framework of dynamic
programming over sequence data. There, it is shown that
for a proof of non-ambiguity, a canonical model of the
studied domain is required. The canonical model plays an
essential role. It is the mathematical formalization of the
real-world domain we want to study, and "canonical"
means one-to-one correspondence. Any formal proof can
only deal with the formalization of the real-world
domain, and when the one-to-one correspondence does
not hold, all proofs of (non-) ambiguity would be mean-
ingless for the real world. In general, it may be quite diffi-
cult to find a canonical model for some real-world
domains. Our case, however, is easy. When RNA second-
ary structure is our domain of study, base pair sets or the
familiar dot-bracket strings can serve as a canonical
model, as they uniquely represent secondary structures.
To ensure non-ambiguity, there must exist an injective
(i.e. one-to-one) mapping from derivation trees (accord-
ing to the grammar underlying the DP algorithm) to the
canonical model. While such a mapping may be easy to
specify, the proof of its injectivity remains a problem.

Recently, Dowell and Eddy have re-addressed this prob-
lem [1] in the framework of stochastic context free gram-
mars (SCFGs). In a probabilistic framework, ambiguity
matters when a best, i.e. most likely solution is computed.
This solution is wrong if several "different" solutions rep-
resent the same real-world object. Dowell and Eddy exper-
imented with two ambiguous SCFGs, and showed that the
quality of results may range from just slightly wrong to
totally useless. After having shown that one cannot get by
with ignoring ambiguity, they provide four non-ambigu-
ous SCFGs for RNA structure analysis; however, a proof of
their non-ambiguity is not given. Instead, they suggest a
testing approach to check for the presence of ambiguity,
which, of course, cannot prove its absence.

In this contribution, we first review the ambiguity prob-
lem in the framework of SCFG modeling, explain some of
its sources, prove its algorithmic undecidability, and sug-
gest three ways to deal with it: ambiguity avoidance, test-
ing for ambiguity, and, best of all when successful, a
mechanical proof of absence.

Formalization of ambiguity
We formalize the problem at hand in two steps, going
from context free grammars (CFGs) to stochastic context
free grammars, and then differentiating between syntactic
and semantic ambiguity.

Formal grammars
A formal language is a subset of the set of all strings over
a finite alphabet. Formal languages are typically described
by formal grammars. In general, a formal grammar con-
sists of an alphabet, a set of nonterminal symbols, and a
set of production rules. There exist various grammar types,
differing in the laws for construction of these production
rules. The expressive power of a grammar type depends on
these laws. In 1956, Noam Chomsky introduced a hierar-
chy of formal grammars that ranks grammar types by their
expressive power, the Chomsky hierarchy [4]. It consists
of four levels: regular grammars, context-free grammars,
context-sensitive grammars, and unrestricted grammars.
Here, we only address context-free grammars. These are
suitable to describe the pseudoknot-free secondary struc-
ture of RNA. When considering pseudoknots, context-sen-
sitive grammars are needed.

Context free grammars
A context free language is described by a context free
grammar G, given by a set of terminal symbols (the alpha-
bet), a set of nonterminal symbols, including a designated
axiom symbol, and a set of production rules of the form X
→ α, where X is a nonterminal symbol, and a is a string of
terminal and nonterminal symbols, α may be the empty
string, denoted ε. Starting with the axiom symbol, by suc-
cessive replacement of nonterminal symbols by right-
hand sides of corresponding productions, we can derive a
set of terminal strings. They constitute the language of the
grammar, denoted L(G) Without loss of generality, deriva-
tions are canonized by replacing, in each step, the leftmost
nonterminal symbol in the string obtained so far. Each
such derivation can uniquely be represented as a deriva-
tion tree, and if the same terminal string has two different
derivation trees, the grammar is called ambiguous.

Our first example is Dowell and Eddy's grammar G1 [1] to
describe RNA secondary structures:

G1: S → aSu | uSa | cSg | gSc | gSu | uSg

S → aS | cS | gS | uS

S → Sa | Sc | Sg | Su

S → SS

S → ε
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In the following, we shall use a shorthand notation, where

a stands for any base A,C,G,U, while α and  occurring in
the same rule stand for either one of the base pairs (A,U),
(U,A), (C,G), (G,C), (G,U), or (U,G).

G1: S → aS | aS | Sa | SS | ε

Four different derivation trees of the grammar G1 are
shown in Figure 1. As they all emerge from the same ter-
minal string acaggaaacuguacggugcaaccg, this grammar is
ambiguous.

Stochastic context free grammars
Stochastic context free grammars associate a (nonzero)
probability with each production, such that the probabil-
ities for all alternative productions emerging from the

same nonterminal symbol add up to 1. As a string is
derived, probabilities of the involved rules multiply.

We extend the CFG G1 to a SCFG by the following exam-
ple probabilities:

PS→aS  = 0.2

PS→aS = 0.2

PS→Sa = 0.2

PS→SS = 0.2

PS→ε = 0.2

Four derivation treesFigure 1
Four derivation trees. Four derivation trees for RNA sequence "acaggaaacuguacggugcaaccg", two (left) representing the 
annotation sequence ((((....)))).((((...)))) and two (right) the annotation sequence .(((....)))((...)).......
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For simplicity, we chose probabilities independent of cer-
tain bases. In SCFG design, often also non-canonical base
pairings are allowed with a low probability.

For grammar G1, the derivations shown in Figure 1 have
probabilities of 5.24·10-14, 2.1·10-15, 4.19·10-16 and
4.19·10-16 (from left to right).

All derivations for a string can be constructed by a CYK-
type parser [5]. The parser may compute the overall prob-
ability of a given string, summing up probabilities over all
its derivations, in which case it is called the Inside algo-
rithm. Or, the parser can return the most likely derivation
of the input string, in which case it is known as the Viterbi
algorithm. For grammar G1, the corresponding CYK-
based Viterbi algorithm is shown here:

Input: Sequence x = x1 ... xn

Initialization: for 1 ≤ i ≤ n

S(i, i) = PS→ε

Iteration: for 1 ≤ i ≤ j ≤ n

Syntactic versus semantic ambiguity
Above, we introduced the formal language-theoretic
notion of ambiguity: if the same symbol sequence has two
or more different derivation trees, the grammar is called
ambiguous. For clarity, we will refer to it as fl-ambiguity. In
this sense, grammar G1 (and every other grammar in this
manuscript) is in any case fl-ambiguous. This is demon-
strated by the fact that the four derivation trees of Figure 1
all belong to the same symbol sequence. We now need to
refine this notion of ambiguity.

In modeling with SCFGs, derivations do not merely pro-
duce strings, but they represent objects of interest them-
selves. With RNA, a derivation of an RNA sequence
represents a possible secondary structure of this sequence.
A more compact representation of a secondary structure is
the widely used dot-bracket notation, as shown at the bot-
tom of Figure 1. In the following, we will use the term
annotation sequence for the dot-bracket string representing
one secondary structure of the underlying RNA sequence.
The one-to-one correspondence between (molecular)
structures and (in silico) annotation sequences qualifies
the latter as a canonical model of the grammar.

By the term syntactic ambiguity we denote the fact that typ-
ically an RNA sequence has many secondary structures,
i.e. annotation sequences, hence many derivations. Figure
1 shows two example annotation sequences of the same
RNA sequence.

Semantic ambiguity exists when there are, for some
sequence, several derivations that represent the same
annotation sequence, and hence, the same secondary
structure. This is our point of study. In this case, the prob-
ability of a certain annotation sequence is split up into the
probabilities of its multiple derivations. In Figure 1, this is
exemplified by the two derivations on the left that both
represent the annotation sequence ((((....)))).((((...)))),
and the two derivations on the right, that both represent
the annotation sequence .(((....)))((...))....... Thus, gram-
mar G1 is syntactically as well as semantically ambiguous.

Semantic ambiguity is the "bad", syntactic ambiguity the
"good" type of ambiguity in SCFG modeling and dynamic
programming that was mentioned above. On the pure for-
mal language level, they cannot be distinguished – both
are manifest as fl-ambiguity. The bad ambiguity hides
with the good, which is why its presence is sometimes
overlooked.

Semantic ambiguity is not a problem with the Inside algo-
rithm, as a probability sum over all derivations is com-
puted anyway. With the Viterbi algorithm, we can
certainly obtain the most likely derivation, but we do not
know whether it represents the most likely annotation
sequence. Some other annotation sequence may be more
likely, but as its probability is the sum of many different
derivations, none of these derivations may come out opti-
mal. And even if the most likely annotation sequence is
returned by the Viterbi algorithm, its computed probabil-
ity is too small when there are further derivations of this
annotation sequence.

As Dowell and Eddy have shown, this happens in practice
and the effects are severe. For correct modeling with
SCFGs, we need grammars that are syntactically, but not
semantically ambiguous.

Semantic ambiguity in dynamic programming
Our treatment here extends to all dynamic programming
algorithms that fall into the class known as algebraic
dynamic programming (ADP) [6]. However, some defini-
tions must be refined, as the ADP approach uses so-called
yield grammars rather than (S)CFGs. We will not intro-
duce the ADP formalism here, but remain within the
SCFG terminology. Still, we shall refer to some DP algo-
rithms that are not based on SCFGs, where our treatment
also applies.
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SCFGs for RNA secondary structure analysis
We will further exemplify the above using the grammars
G1 to G6 studied by Dowell and Eddy:

Dowell and Eddy showed that grammars G1 and G2 are
semantically ambiguous, while G3 to G6 passed a partial
test for non-ambiguity.

Results and discussion
In this section, we first review some sources of ambiguity
and suggest three ways to deal with it: ambiguity avoid-
ance, testing for ambiguity, and, best of all when success-
ful, a mechanical proof of absence.

Sources of ambiguity, and how to avoid them
We first study some standard patterns that give rise to
ambiguity in our grammars. Thereafter, we make some
observations with respect to the potential of testing
procedures.

Three simple cases
Ambiguity does not sneak into our grammars by chance
and non-awareness. There are two competing goals in
grammar design, and both may foster ambiguity.

Small grammars have the advantage that they require
fewer parameters and can be trained more quickly. Larger
grammars allow a more sophisticated distinction of cases,
hence providing a more fine-tuned model. However, if the
underlying "distinct" cases lead to the same annotation
sequence, then the grammar is ambiguous. This case is
witnessed by grammar G2, where along with the introduc-
tion of base pair specific rules, another source of ambigu-
ity is introduced.

Often, non-ambiguous grammars require more space in
their implementation via a CYK parser. For example, the
non-ambiguous Wuchty algorithm (RNAsubopt, [2])

requires four tables for storing intermediate results, while
the ambiguous Zuker-Stiegler recurrences (Mfold, [7])
require only two. Two other cases in point are (a) and (b)
below, while (c) shows that the non-ambiguous grammar
can also be smaller.

Ambiguity can have many sources. Here, we present three
common situations that lead us to write ambiguous rules,
but can be easily avoided.

(a) Lists of adjacent elements of the same type, {Sn}:

Consider S → SS|U versus L → LS|S, S → U. The left-hand
rule generates the language {Sn} in an ambiguous way.
For example, S3 has the two derivations S → SS → SSS and
S → SS → SSS, where the generating nonterminal symbol
is written in bold face. By contrast, with the right-hand
rules there is only the derivation L → LS → LSS → SSS.
The price for non-ambiguity is the new nonterminal sym-
bol L, more parameters in the training set, and possibly
another DP table in the implementation.

(b) Embedded elements, {amTan}:

Consider R → aR|Ra|T versus R → aR|V, V → Va|T.

For a given string amTan, the first two alternatives of the
left-hand rule produce the initial string am and the termi-
nal an in arbitrary order, while the right-hand rules pro-
duce amcompletely before an, allowing for only one
derivation. An analog case is the embedding {amTbn}. As
above, an extra nonterminal symbol is required to achieve
non-ambiguity.

(c) ε-rules, L → ε:

Sometimes it is tempting to add a special case by using ε.
Consider L → LS|S|ε, which generates {Sn |n ≥ 0} by add-
ing an ε-rule to the non-ambiguous rules in (a). Now,
each string of length > 0 has two derivations, e.g. L → LS
→ S and L → S. The solution here is to drop the middle
alternative, L → S.

The general case of ε-rules may be more tricky to handle.
In general, all context free languages can be described
without ε-rules, except possibly one for the axiom symbol.
However, if ε-rules were used relentlessly, eliminating
them without affecting the language may require a major
redesign of the grammar.

Degree of ambiguity and consequences for testing
Dowell and Eddy showed that semantic ambiguity pro-
duces sometimes mildly, sometimes drastically false
results. In one experiment, they showed that the CYK
algorithm for the semantically ambiguous grammar G1
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does not give the optimal secondary structure for about
20% of a sample set of 2455 sequences. The same experi-
ment for grammar G2 even gave a rate of 98% false results.
The explanation of the difference in effect lies with the
degree of ambiguity. The degree of ambiguity of a given
annotation sequence is the number of its derivations, i.e.
a degree of 1 means that this annotation sequence is not
ambiguous. Depending on the involved productions, a
particular string can have a constant, polynomial, or expo-
nential number of derivations. The latter is the rule rather
than the exception. It is easy to calculate for the left pro-
duction rule of case (b) above that the sequence {amTan}

has  derivations starting from S. Moreover, if der-

ivations emerging from T are also ambiguous, the degrees
of ambiguity multiply.

Studying sources of ambiguity helps to better understand
the nature of the error. Depending on the grammar, cer-
tain types of RNA structures may have their probability
split up over a large number of derivations, while others
are unaffected. This makes it difficult to judge the amount
of testing required, and the confidence achieved with the
approaches presented in the next section.

Testing for ambiguity
Performing a test for semantic ambiguity allows us to
obtain more confidence in the grammar, although testing
cannot prove non-ambiguity, but only ambiguity.

Algorithmic arsenal for ambiguity testing
First, we create several variants of the Inside and Viterbi
algorithms, which are our algorithmic arsenal for testing.
Gl serves as the expository example here; for any other
grammar, recurrences can be given in an analogous way:

Input: Sequence x = x1 ... xn

Initialization: for 1 ≤ i ≤ n

S (i, i) = PS→ε

Iteration: for 1 ≤ i ≤ j ≤ n

Scoring schemes:

 = 1

PV→α = 0 for all other rules

By different interpretations of the operations H, o and P,
different scoring schemes can be plugged in. The recur-
rences may also be "conditioned" by annotating the sym-
bol sequence x with a given annotation sequence s [1]. In

that case, the rule S → aS  is only allowed when the bases
involved are anno-tated to form a base pair in s. This ver-
sion of the recurrences will be denoted by Gs.

Using the first two scoring schemes, we obtain the Viterbi
and the Inside algorithm. Using the other two, we obtain
an algorithm for counting the number of derivations for
the input string, and an algorithm for base pair maximiza-
tion. Base pair maximization will not be used in the
sequel, it is included only to indicate the swiftness of tran-
sition from SCFG modeling to other DP-based analyses.
These algorithms are available at the accompanying web-
site [8], where readers are welcome to practice their
insight on ambiguity matters.

In the following, we write G (σ, x) for running the CYK
parser based on grammar G with scoring scheme σ on
input x.
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We recalled above that the formal treatment of semantic
ambiguity requires a canonical representation of the
objects under study. For RNA secondary structures, there
is an obvious choice, our annotation sequences in the
widely used dot-bracket notation (cf. Figure 1). Each sec-
ondary structure (excluding pseudoknots) is uniquely rep-
resented by such a string. The scoring scheme Dotbracket
makes the CYK algorithm report all the structures it has
analyzed for a given input sequence by producing their
annotation sequences.

Here, the objective function H merely collects lists of dot-
bracket strings, each PV→α is a function adding dots or

brackets to strings.  is string concatenation. PS→SS is also
string concatenation, but has the unusual type String →
(String → String), in order to fit into our recurrences
smoothly. Here, o expects a dot-bracket string as its left
argument, a function as its right argument, and applies the
latter to the former. For example, the function calls PS→SS

(PS→gSu (PS→ε)) (PS→aS (PS→ε)) generate the annotation
sequence ". ()" for the symbol sequence "agu". The reader
may verify (using the aforementioned website) that G1
(Dotbracket, "agu") = ["(.)","(.)",".()","...","...", etc.],
where the duplicate entries result from the ambiguity of
G1.For example, the annotation sequence "..." is found 48
times.

Using these algorithms in concert for some RNA sequence
x, we obtain from G(Viterbi, x) the probability of the most
likely derivation for x, from G(Counting, x) the number of
possible derivations, and from G(Dotbracket, x) the com-
plete list of the annotation sequences associated with
these derivations – possibly containing duplicates in the
case of semantic ambiguity.

Testing procedures
Brute force testing
Checking for duplicates in G(Dotbracket, x). We can sim-
ply enumerate the dot-bracket representation of all struc-
tures exhaustively for a given input string and check for
any repeats. There are some duplicates in G(Dotbracket, x)
if and only if x can fold into an ambiguous annotation
sequence (which may be precluded by its nucleotide con-
tent). Performing this test on a large number of inputs x

should give a good hint whether ambiguity is present. Of
course, enumerating the annotation sequences for all pos-
sible derivation trees creates voluminous output, and the
automated check for duplicates requires some careful pro-
gramming. Hence, this test is practical only for short
sequences.

Sampling structures from sample sequences
Test G(Viterbi, x) = Gs(Inside, x)? Dowell and Eddy sug-
gested a testing procedure that relies on a comparison of
the results from the Viterbi and the Inside algorithms,
where the latter is conditioned on the most likely annota-
tion sequence s returned by the Viterbi run. Gs(Inside, x)
sums up probabilities over all derivations representing
annotation sequence s. The tested equation therefore
holds if and only if the annotation sequence s has exactly
one derivation tree. If there are more than one, the Inside
algorithm will return a higher probability than the Viterbi
run, which indicates ambiguity of s (and hence G). Simi-
larly, Gs(Counting, x) directly computes the number of der-
ivations for s, where a result larger than 1 signals
ambiguity.

Dowell and Eddy suggest to run the test also for a sample
of suboptimal annotation sequences for x. As a variant, we
can do the same test based on a minimizing Viterbi run
(setting H = min). Since the minimizing Viterbi run gives
us the least probable derivation tree, we may have a higher
chance to find an ambiguous one (if present) than in the
maximizing run.

In any case, this test works with samples of sub-optimal
annotation sequences for a test set of sequences, and it is
difficult to give general guidelines how much testing is
required. The four grammars G3 - G6 passed the Dowell-
Eddy test in [1], and in the next section we shall prove
their non-ambiguity. In this sense, we can state that this
test has already worked quite well in practice. However,
the eternal dilemma of testing persists – only if we con-
firmed the above equation for all x, semantic non-ambi-
guity would be assured.

Structure counting for sample sequences
Test G(Counting, x) = R(Counting, x)? An even stronger test
is possible when we have a reference grammar R available
that generates the same language and is known to be
semantically non-ambiguous. Grammar G will produce
counts that are larger than those of R if and only if G
allows ambiguous derivations for x. Still, if this test suc-
ceeds, this does not imply non-ambiguity of G. But this
test is much more thorough than our previous one, as the
entire structure space of each tested x is analyzed. For
example, a sequence of length 30 has an expected number
of 175550 feasible structures [3]. Thus, one run of this test
has the testing power of 175550 runs of the previous one.
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Several non-ambiguous reference grammars for RNA are
known – the critical part here is to assure that our gram-
mar G to be tested describes the same language as R. Both
grammars must impose the same restrictions on loop
sizes, lonely base pairs, etc. This may be obvious in many
cases, but in general, language equivalence is an undecid-
able problem in formal language theory.

Just-in-time testing
Test G(Counting, x) = R(Counting, x)? While testing cannot
guarantee the non-ambiguity of the grammar, we can con-
vert the previous idea to a test that ensures for each appli-
cation run that the results are not affected by ambiguity.
Prior to running G(Viterbi, x) for a given x, we test whether
the property G (Couniing, x) = R(Counting, x)holds. This
costs a constant factor in runtime, but solves the problem
in the sense that when we get a positive test, we know the
Viterbi result is correct for this input. If the grammar is
ambiguous, this will be detected with the first application
where it occurs.

Proving non-ambiguity
Proving the absence of ambiguity in a grammar is of
course better than any test procedure.

Semantic ambiguity in dynamic programming is unde-cidable
Ambiguity of context free grammars is well-known to be
algorithmically undecidable [9]. There exists no program
that can determine for an arbitrary grammar G whether or
not G is fl-ambiguous. Here, the problem is to decide
whether a given SCFG is se-mantically ambiguous. It is not
surprising that this problem is not easier:

Theorem 1 Semantic ambiguity in dynamic programming is 
formally undecidable
Proof
We show that for a given CFG G there exists a DP problem
and an associated canonical model such that the DP algo-
rithm is semantically am biguous if and only if the gram-
mar is fl-ambiguous. Given an algorithm to decide
ambiguity for DP problems, we could hence decide ambi-
guity for context free grammars, which is impossible.
Details are given in the appendix. �

While this result rules out an automated proof procedure
for arbitrary grammars used in SCFG modeling, there
might still be the possibility to design such a procedure for
a restricted class of grammars, say all grammars which
describe RNA secondary structures. However, no such
method is currently known.

Hand-made proof of non-ambiguity
A hand-made de-novo proof of the non-ambiguity of a
new grammar G requires an inductive argument on the
number of parses corresponding to the same annotation

sequence. We constructed one such proof for the grammar
published in [3]. It is not mathematically deep, but rather
a tedious exercise, and the likelihood to produce errors or
oversights is high. An easier approach is the use of a
known, non-ambiguous "reference" grammar R, such that
L(G) = L(R). By showing that a one-to-one mapping
between parse trees of G and R exists, it is possible to
prove the non-ambiguity of G. Such a proof remains man-
ageable if the grammars are rather similar and the corre-
spondence between derivations is easy to maintain. For
grammars that are rather distinct, the proof is as messy as
the de-novo proof.

Mechanical proof of non-ambiguity
We now present a mechanical technique that is a partial
proof procedure for the case of modeling RNA structure
with SCFGs: If it succeeds, it proofs non-ambiguity, if it
fails, we do not know. We shall show that the method suc-
ceeds on several relevant grammars.

The technique described in the following comprises two
steps. First, we remove the syntactic ambiguity of the
grammar and reduce a possibly existent semantic ambigu-
ity to fl-ambiguity. Then we use a parser generator to
check the transformed grammar for fl-ambiguity. This test
can prove non-ambiguity of a large number of grammars.

Ambiguity reduction
Paired bases can always also be unpaired – this creates the
syntactic (good) ambiguity. For example, grammar Gl has
four rules of the form S → aS, one for each base A, C, G,

U, and six rules of the form S → aS  for the six valid base
pairs. Used in concert, they create the "good" ambiguity
that allows us to parse "CAAAG" either as "(...)" or as
".....".

Remember that the dot-bracket notation is a canonical
representation for RNA secondary structure. For any G, we
denote by G* the transformed grammar that arises when

we replace base pairs a,  by "(" and ")", and other base
symbols by ".". Take for example

G5 : S → aS | aS S | ε (11 productions), which is trans-
formed to

G5* : S → '.'S | '('S')' S | ε (3 productions).

This transformation removes the syntactic ambiguity of
G5 by differentiating between paired and unpaired bases
and reduces the semantic ambiguity -if present – to fl-
ambiguity of G5*. Note that the transformation from G to
G* works for any grammar for RNA structure, as long as
we can identify the corresponding bases of a base pair.

â

â

â
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Theorem 2 Let G* be derived from G according to the 
above rules. Then, G* is fl-ambiguous if and only if G is 
semantically ambiguous
Proof
Every dot-bracket string describes exactly one possible sec-
ondary structure. If G* is fl-ambiguous, there exist differ-
ent derivations in G* for the same dot-bracket string z.
Then, for an RNA sequence x compatible with z, using the
corresponding productions there are different derivations
in G which represent the same secondary structure z. This
is equivalent to semantic ambiguity of G. If G* is non-
ambiguous, only a single derivation exists for every z in
L(G*). A single derivation exists in G for a compatible
RNA sequence x, and hence, G is semantically non-ambig-
uous. �

Non-ambiguity proof
By the transformation described above, the task of prov-
ing semantic non-ambiguity of G is transformed to the
task of proving fl-non-ambiguity of G*. As stated above,
this question is undecidable in general. However, com-
piler technology provides a partial proof procedure: If a
deterministic parser can be generated for a grammar, then
it is non-ambiguous [5]. We shall apply a parser generator
to G*.

Simply speaking, a parser generator takes a file with a con-
text free grammar as input, and generates a program
which implements the parser for this grammar. This
parser must be deterministic, and, in contrast to our CYK
parsers, it only exists for non-ambiguous grammars. There
are many such generators available; we will focus on the

class of LR(k) grammars [10] and their parser generators.
A context free grammar is called LR(k) if a deterministic
shift reduce parser exists that uses k symbols of lookahead.
By definition, an LR(k) grammar is non-ambiguous, and
for a given k it is decidable whether a grammar is LR(k).
This decision can be assigned to a parser generator. Given
the grammar and the lookahead k, a parser generator tries
to construct a parser that uses k symbols of lookahead.
When successful, the non-ambiguity of the grammar is
proved. When the grammar is not LR(k), the generator
will not be able to create a deterministic parser and reports
this situations in form of "shift-reduce" and "reduce-
reduce"-conflicts to the user. In this case, we do not know
whether the parser generator might be successful for a
larger k, and the question of ambiguity remains
undecided.

Applications
For our experiments, we used the MSTA parser generator
of the COCOM compiler construction toolkit [11]. MSTA
is capable of generating LR(k) parsers for arbitrary k. Note
that compiler writers prefer other parser generators like
yacc [12] and bison [13], which for efficiency reasons only
implement LR(1) parsers. We, however, are not planning
to run the parser at all. Its successful construction is the
proof of non-ambiguity; for applying our SCFG, we need
the original grammar and its CYK parser.

MSTA accepts input files in the widely used yacc format.
The following shows the input file for grammar G5:

Feeding this file into MSTA with k = 1 yields a determinis-
tic shift-reduce parser for grammar G5. This proves that G5
is LR(1), has a deterministic LR(1) parser, and is therefore
non-ambiguous.

Table 1 summarizes the results for grammars G1 to G6.
For G1 and G2, the results only show that both grammars
are not LR(1), LR(2) or LR(3). Although no real proof, the
magnitude and growth of the number of conflicts with
increasing k gives a strong hint at the ambiguity of these
grammars.

Grammar G3 is LR(5) and G4 to G6 are LR(1). Therefore,
we have proved mechanically that the four "good" gram-
mars studied by Dowell and Eddy are definitely non-
ambiguous. The two additional grammars G7 and G8
from [1], not reproduced here, were also included in the
study and proved to be non- ambiguous.

Two example derivationsFigure 2
Two example derivations. Two example derivations of a 
grammar taken from [14]. The left side is part of a multiloop 
derivation, the right side part of a left bulge.
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In Table 1 we also report on the number of conflicts found
by the parser generator for increasing values of k. While
the nature of these conflicts is not relevant for us, the table
shows that various behaviors are possible. Their numbers
may grow (G3) or may remain constant (G7) before they
go to zero for some k.

Experience from a larger example
The parser generator test works quite well for the small
grammars we presented so far. However, there exist cases
where, due to the finite lookahead of the generated parser,
the parser generator reports conflicts while the grammar is
in fact non-ambiguous. In the following, we report on one
such case, and show how to deal with this situation.

In his thesis [14], Björn Voss introduced a new grammar
that promises to handle dangling bases of multiloop com-
ponents in a non-ambiguous way. With 28 nonterminal
symbols and 79 rules, the grammar is quite large. In such
a case, mechanical assistance is strongly required. Our first
approach with the parser generator succeeded, except for
one small part of the grammar for which it reports a con-
flict. Figure 2 shows two example derivations where this
conflict occurs.

The central nonterminal of the grammar is CL, which
splits up into closed structures like hairpin loops, bulges,
and multiloops. Due to the necessity to handle dangling
bases in a non-ambiguous way, the rules for multiloops
are the most complicated of this grammar. Altogether, 11
nonterminals and 35 rules are used exclusively for this

purpose. The construction of these rules guarantees, that
every derivation of a multiloop must lead to at least two
closed substructures. One of these derivations is shown
on the left side of Figure 2. Therefore, a derivation of a
multiloop can by no means conflict with a derivation of a
left bulge, which must include a single closed substructure.
However, the parser generator runs into a conflict here.
Consider the following annotation sequence:

Here, the string "((...((" appears two times in the annota-
tion sequence. The first appearance denotes a left bulge,
the second the beginning of a multiloop. The decision
which of these two is given can only be made after the first
closed substructure is completely processed. Since the
generated parser can only read a limited number of input
characters ahead (k), the parser generator is not able to
construct a deterministic parser for this situation and
reports a conflict.

However, we can circumvent this problem by extending
the alphabet of the annotation sequence by an additional
character (say, ':') for unpaired bases in left bulges1:

Since a multiloop's derivation can not conflict with that of
a bulge, this modification does not alter the ambiguity or
non-ambiguity of the grammar. The important difference
is that positional information is turned into symbolic
information.

After this modification, the parser generator runs
smoothly through the grammar, which proves its non-
ambiguity.

Conclusion
In this work, we have presented testing methods and a
partial proof procedure to analyze the semantic ambiguity
of SCFGs. We have shown that the problem is not decida-
ble for dynamic programming over sequence data in gen-
eral, and that hence there is no standard solution that
works for all cases. It remains open whether specifically
for the class of grammars that describe RNA secondary
structure, this problem is decidable. We have proposed
several tests, and a partial, mechanical proof procedure.
We mechanically proved that the six grammars that
passed Dowell and Eddy's test for non-ambiguity are actu-
ally non-ambiguous. We also reported on a proof of the
non-ambiguity of a new and large grammar for RNA sec-
ondary structures, whose sophistication makes it inadvis-
able to rely solely on human reasoning.

Table 1: Results of mechanical proof procedure. Number of shift-
reduce (SR) and reduce-reduce (RR) conflicts when feeding 
example grammars G1 to G8 into parser generator MSTA. A 0/0 
entry indicates a successful proof of non-ambiguity. Note that for 
increasing k, the number of conflicts may remain constant or 
even grow before it goes down to 0/0.

Grammar k SR/RR conflicts

G1 1 24/12
G1 2 70/36
G1 3 195/99
G2 1 25/13
G2 2 59/37
G2 3 165/98
G3 1–3 4/0
G3 4 16/0
G3 5 0/0
G4 1 0/0
G5 1 0/0
G6 1 0/0
G7 1–6 5/0
G7 7 0/0
G8 1 0/0

( ( . . . ( ( . . . ( ( . . . ) ) . . ( ( . . . ) ) . . ) ) ) )

g g a a a g g a a a g g a a a c c a a g g a a a c c a a c c c c

( ( : : : ( ( . . . ( ( . . . ) ) . . ( ( . . . ) ) . . ) ) ) )

g g a a a g g a a a g g a a a c c a a g g a a a c c a a c c c c
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We want to point out that the non-ambiguity proofs for
the grammars studied here do not solve the problem of
ambiguity for modeling of RNA secondary structures once
and for all. New scientific interests and research questions
will always demand new grammars. An example is a gram-
mar that is restricted to a special class of structures of an
RNA family. This allows us to define a thermodynamic
matcher, which uses the minimum free energy as a scoring
scheme and focuses only on a specific realm of secondary
structures. Here, for every new RNA family, a new gram-
mar must be devised. This demonstrates a continuous
need for new, specialized grammars. Every time we
develop a new grammar, the dragon of ambiguity raises its
head, but with the weapons presented here, we can be
confident to defeat it.

Methods
Our way to describe various tests by combining a gram-
mar with varying scoring schemes is derived from the alge-
braic dynamic programming method, described in detail
in [6]. The theoretical framework of this method also
underlies the proof of Theorem 1. The parser generator
MSTA used as a partial proof method is available at [11].
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RG suggested the topic and contributed the undecid-abil-
ity proof. JR worked out the testing procedures and PS the
mechanical proof procedure. All authors cooperated
closely in writing the manuscript.

Appendix: Ambiguity in DP is undecidable
Dynamic programming is a very general programming
technique, and its scope is not precisely circumscribed.
We prove our undecidability result for the well defined
class of algebraic dynamic programming [6] problems,
which of course implies undecidability in general. Simply
speaking, a DP problem is given by a grammar G and a
scoring scheme σ (not necessarily stochastic), as was
exemplified in Section Testing for ambiguity.

Theorem 1 Semantic ambiguity in dynamic 
programming is formally undecidable
Proof
For an arbitrary context free grammar G, we can construct
a DP problem where L(G) serves as the canonical model,
and show that the context free grammar G is ambiguous if
and only if the DP problem is semantically ambiguous.

Let G be a context free grammar. Without loss of general-
ity, we can assume that each production is either of the
form A → t, generating a terminal symbol, or of A0 →
A1...An, n ≥ 0, generating a series of nonterminal symbols.
We construct a scoring scheme σ for grammar G such that
G(σ, x) computes all derivation trees for x. Similar to the
scoring scheme Dotbracket, we set H = collect and xof =

f(x). For each production π we use a unique tree label Tπ.

We define ...An (an)...(a1) = ...An (a1,...,an),

and PA→t = t.

By construction, G(σ, x) constructs the list of all derivation
trees for x. The canonical mapping ν (from derivation
trees to their derived strings) is simply given by

ν( ...An (a1,...,an)) = ν(a1)...ν(an) and ν(t) = t. By

construction, the domain of v are the derivation trees of G,
its range is L(G). Hence, v is injective if and only if G is
non-ambiguous. Could we formally decide the semantic
ambiguity of an arbitrary DP problem, we could do so for
the problem given by G and σ, and hence, ambiguity of
context free languages would be decidable. �

Note
1For the same reason, this modification is also necessary
in the rules for internal loops.
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