
BioMed CentralBMC Bioinformatics

ss
Open AcceMethodology article
Versatile and declarative dynamic programming using pair algebras
Peter Steffen* and Robert Giegerich

Address: Faculty of Technology, Bielefeld University, Postfach 10 01 31, 33501 Bielefeld, Germany

Email: Peter Steffen* - psteffen@techfak.uni-bielefeld.de; Robert Giegerich - robert@techfak.uni-bielefeld.de

* Corresponding author

Abstract
Background: Dynamic programming is a widely used programming technique in bioinformatics.
In sharp contrast to the simplicity of textbook examples, implementing a dynamic programming
algorithm for a novel and non-trivial application is a tedious and error prone task. The algebraic
dynamic programming approach seeks to alleviate this situation by clearly separating the dynamic
programming recurrences and scoring schemes.

Results: Based on this programming style, we introduce a generic product operation of scoring
schemes. This leads to a remarkable variety of applications, allowing us to achieve optimizations
under multiple objective functions, alternative solutions and backtracing, holistic search space
analysis, ambiguity checking, and more, without additional programming effort. We demonstrate
the method on several applications for RNA secondary structure prediction.

Conclusion: The product operation as introduced here adds a significant amount of flexibility to
dynamic programming. It provides a versatile testbed for the development of new algorithmic ideas,
which can immediately be put to practice.

Background
Dynamic Programming is an elementary and widely used
programming technique. Introductory textbooks on algo-
rithms usually contain a section devoted to dynamic pro-
gramming, where simple problems like matrix chain
multiplication, polygon triangulation or string compari-
son are commonly used for the exposition. This program-
ming technique is mainly taught by example. Once
designed, all dynamic programming algorithms look sim-
ilar: They are cast in terms of recurrences between table
entries that store solutions to intermediate problems,
from which the overall solution is constructed via a more
or less sophisticated case analysis. However, the simplicity
of these small programming examples is deceiving, as this
style of programming provides no abstraction mecha-

nisms, and hence it does not scale up well to more sophis-
ticated problems.

In biological sequence analysis, dynamic programming
algorithms are used on a great variety of problems, such as
protein homology search, gene structure prediction, motif
search, analysis of repetitive genomic elements, RNA sec-
ondary structure prediction, or interpretation of data from
mass spectrometry [1-3]. The higher sophistication of
these problems is reflected in a large number of recur-
rences – sometimes filling several pages – using more
complicated case distinctions, numerous tables and elab-
orate scoring schemes. Hence, implementing a novel
dynamic programming algorithm is a cumbersome task
and requires extensive testing, while the resulting pro-
grams are difficult to re-use on related problems.

Published: 12 September 2005

BMC Bioinformatics 2005, 6:224 doi:10.1186/1471-2105-6-224

Received: 24 May 2005
Accepted: 12 September 2005

This article is available from: http://www.biomedcentral.com/1471-2105/6/224

© 2005 Steffen and Giegerich; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 13
(page number not for citation purposes)

http://www.biomedcentral.com/1471-2105/6/224
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16156887
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/
praktikum2-ub
Rechteck

praktikum2-ub
Rechteck

praktikum2-ub
Rechteck

praktikum2-ub
Rechteck

BMC Bioinformatics 2005, 6:224 http://www.biomedcentral.com/1471-2105/6/224
However, these difficulties are alleviated somewhat by a
certain programming discipline: We may organize a
dynamic programming algorithm such that the typical
dynamic programming recurrences describe the problem
decomposition and case analysis, but are completely sep-
arated from the intended optimization objective. Neither
the initialization values for trivial problems, nor the scor-
ing and objective functions, nor the required number of
answers, not even the data type of the result must be visi-
ble in the recurrences. In this setting, one can simply
exchange one encapsulated scoring scheme by another –
including ones that do not solve optimizations problems,
but compute other types of useful information about the
search space. The new technique proposed here is a "prod-
uct" operation on scoring schemes, creating a new scheme
from two given ones. This product uses a non-trivial way
to combine the two objective functions. Given some
standard scoring schemes and the product operation, we
can perform a remarkable variety of applications, such as
optimizations under multiple objective functions, alter-
native solutions and backtracing, holistic search space
analysis, ambiguity checking, and more, without addi-
tional programming effort, and without creating a need of
debugging.

Overview
We set the stage for our exposition with a condensed
review of the "algebraic" approach to dynamic program-
ming. We also introduce the individual scoring schemes
that will be used in products later. We then introduce and
discuss our definition of the product operation. From
there, we proceed with a series of examples demonstrating
the versatile use of products. The new product operation
has been implemented and made available via the
Bielefeld Bioinformatics Server [4], where the reader may
run the examples presented in this paper, as well as his or
her own ones. In our own, real-world programming
projects, the product operation has become indispensa-
ble, and we report from our experience in the implemen-
tation of several recent bioinformatics tools.

Algebraic dynamic programming by example
For our presentation, we need to give a short review of the
concepts underlying the algebraic style of dynamic pro-
gramming (ADP): trees, signatures, tree grammars, and
evaluation algebras. We strive to avoid formalism as far as
possible, and give an exemplified introduction here, suffi-
cient for our present concerns. See [5] for a complete pres-
entation of the ADP method. As a running example, we
use the RNA secondary structure prediction problem. We
start with a simple approach resulting in an ADP variant
of Nussinov's algorithm [6] and move on to a more elab-
orate example to permit the demonstration of our new
concepts. Nothing of the new ideas presented here is spe-
cific to the RNA folding problem. Products can be applied

to all problems within the scope of algebraic dynamic pro-
gramming, including pairwise problems like sequence
alignment [5].

RNA secondary structure prediction
While today the prediction of RNA 3D structure is inacces-
sible to computational methods, its secondary structure,
given by the set of paired bases, can be predicted quite reli-
ably. Figure 1 gives examples of typical elements found in
RNA secondary structure, called stacking regions (or heli-
ces), bulge loops, internal loops, hairpin loops and multi-
ple loops.

The first approach to structure prediction was proposed by
Nussinov in 1978 and was based on the idea of maximiz-
ing the number of base pairs [6]. Today's algorithms are
typically based on energy minimization.

ADP methodology
When designing a dynamic programming algorithm in
algebraic style, we need to specify four constituents:

• Alphabet: How is the input sequence given?

• Search space: What are the elements of the search space
and how can they be represented?

• Scoring: Given an element of the search space, how do
we score it?

• Objective: Given a number of scores, which are the ones
we are interested in?

In the following, we will work through these steps for the
RNA secondary structure prediction problem.

Typical elements found in RNA secondary structureFigure 1
Typical elements found in RNA secondary structure.

C

U

G
C

A

G

U
A

G

G

U U G
G

U
C C

G

C
G

C

G

U C

U
G

CU
G

C
GG

U

G
C

C G

G

A

AU

C

G

U

C

G

G

U

U

G

G

Multiple Loop

Stacking Region

Hairpin Loop

Internal Loop

Bulge Loop (left)

Bulge Loop (right)

C

C A

C

UGG
C

G
CC

G

C
G

G

G
C

C

G

A

C
G

UC

G A

CU

A G

G C
C

G

C

U

C

G
GA

A

A

C

G

G

G

G

U

A

C

C

G

C

G

U
U

C

C
C

A

C

U

A

G

G

C

G

C

C

G
G

Page 2 of 13
(page number not for citation purposes)

praktikum2-ub
Rechteck

BMC Bioinformatics 2005, 6:224 http://www.biomedcentral.com/1471-2105/6/224
Alphabet

The input RNA sequence is a string over = {a, c, g, u}.

 is called the alphabet and * denotes the set of

sequences over of arbitrary length. ε denotes the
empty string. In the following, we denote the input

sequence with w ∈ *.

Search space
Given the input sequence w, the search space is the set of
all possible secondary structures the sequence w can form.
In the ADP terminology, the elements of the search space
for a given input sequence are called candidates. Our next
task is to decide how to represent such candidates. Two
possible ways are shown in Figure 2. The first variant is the
well-known dot-bracket notation, where pairs of match-
ing parentheses are used to denote pairing bases. The sec-
ond variant, the tree representation, is the one we use in
the algebraic approach.

Such a tree representation of candidates is quite com-
monly used in RNA structure analysis, but not so in other
applications of dynamic programming. To appreciate the
scope of the ADP method, it is important to see that such
a representation exists for any application of dynamic pro-
gramming (see appendix).

In our example, the trees are constructed using four differ-
ent node labels. Each label represents a different situation,
which we want to distinguish in the search space and in
the eventual scoring of such a candidate. A node labeled
pair represents the paring of two bases in the input
sequence. The remaining nodes right, split and nil repre-

sent unpaired, branching and empty structures. It is easy
to see that each tree is a suitable representation of the cor-
responding dot-bracket string. Also note that in each of
the example trees, the original sequence can be retrieved
by collecting the leaves in a counter-clockwise fashion.
This is what we call the yield of the tree. The yield function
y maps candidate trees back onto their corresponding
sequences.

The next important concept is the notion of the signature.
The signature describes the interface to the scoring func-
tions needed in our algorithm. We can derive the signa-
ture for our current example by simply interpreting each
of the candidate trees' node labels as a function
declaration:

The symbol Ans is the abstract result domain. In the fol-
lowing, Σ denotes the signature, TΣ the set of trees over the
signature Σ.

With the concepts of yield and signature we are now pre-
pared to give a first definition of the search space: Given
an input sequence w and a signature Σ, the search space
P(w) is the subset of trees from TΣ, whose yield equals w.
More formally, P(w) = {t ∈ TΣ|y(t) = w}.

This would suffice as a very rough description of the
search space. In general, we want to impose more restric-
tions on it, for example, we want to make sure, that the
operator pair is only used in combination with valid base
pairs. For this purpose we introduce the notion of tree
grammar. Figure 3 shows grammar nussinov78, origin of
our two example trees. This grammar consists of only one
nonterminal, s, and one production with four alternatives,
one for each of the four function symbols that label the
nodes. Z denotes the axiom of the grammar. The symbols
base and empty are terminal symbols, representing an arbi-
trary base and the empty sequence. The symbol basepairing
is a syntactic predicate that guarantees that only valid base
pairs can form a pair-node.

Two candidates in the search space for the best secondary structure for the sequence gucaugcagugucaFigure 2
Two candidates in the search space for the best secondary
structure for the sequence gucaugcaguguca.

gucaugcaguguca

(...)((...))..

t1 =
Split

Pair

’g’ Split

Right

Nil ’u’

Right

Right

Nil ’c’

’a’

’u’

Split

Pair

’g’ Pair

’c’ Split

Right

Nil ’a’

Right

Right

Nil ’g’

’u’

’g’

’u’

Right

Right

Nil ’c’

’a’

gucaugcaguguca

.(.(((...))).)

t2 =
Split

Right

Nil ’g’

Pair

’u’ Split

Right

Nil ’c’

Split

Pair

’a’ Pair

’u’ Pair

’g’ Split

Right

Nil ’c’

Right

Right

Nil ’a’

’g’

’u’

’g’

’u’

Right

Nil ’c’

’a’

Tree grammar nussinov78Figure 3
Tree grammar nussinov78. Terminal symbols in italics.

nil Ans

right Ans Ans

pair Ans Ans

split Ans Ans An

: { }

:

:

:

ε →
× →

× × →
× →

ss

nussinov78 Z = s

s → nil

empty

| right

s base

| pair

base s base
with basepairing

| split

s s
Page 3 of 13
(page number not for citation purposes)

praktikum2-ub
Rechteck

BMC Bioinformatics 2005, 6:224 http://www.biomedcentral.com/1471-2105/6/224
Our refined definition of the search space is the following:
Given a tree grammar over Σ and and a sequence w
∈ *, the language described by is = {t|t ∈ TΣ,
t can be derived from the axiom via the rules of }. The
search space spawned by w is
 .

From the language theoretic viewpoint, is the set

of all parses of the sequence w for grammar .

The method we use for constructing the search space is
called yield parsing, a solved problem that need not con-
cern us here.

Scoring

Given an element of the search space as a tree t ∈ ,
we need to score this element. In our example we are only
interested in counting base pairs, so scoring is very simple:
The score of a tree is the number of pair-nodes in t. For the
two candidates of Figure 2 we obtain scores of 3 (t1) and
4 (t2). To implement this, we provide definitions for the
functions that make up our signature Σ:

In mathematics, the interpretation of a signature by a con-
crete value set and functions operating thereon is called an
algebra. Hence, scoring schemes are algebras in ADP. Our
first example is the algebra bpmax for maximizing the
number of base pairs. The subscript bpmax attached to the
function names indicates, that these definitions are inter-
pretations of the function under this algebra. In the fol-
lowing, we will omit these subscripts.

The flexibility of the algebraic approach lies in the fact that
we don't have to stop with definition of one algebra. Sim-
ply define another algebra and get other results for the
same search space. We will introduce a variety of algebras
for our second, more elaborate example in Section In-
depth search space analysis.

Objective
The tree grammar describes the search space, the algebra
the scoring of solution candidates. Still missing is our
optimization objective. For this purpose we add an objec-
tive function h to the algebra which chooses one or more
elements from a list of candidate scores. An algebra

together with an objective function forms an evaluation
algebra. Thus algebra bpmax becomes:

A given candidate t can be evaluated in many different
algebras; we use the notation ε(t) to indicate the value
obtained from t under evaluation with algebra ε.

Given that yield parsing constructs the search space for a
given input, all that is left to do is to evaluate the candi-
dates in a given algebra, and make our choice via the
objective function h. For example, candidates t1 and t2 of
Figure 2 are evaluated by algebra bpmax in the following
way:

Definition 1 (Algebraic dynamic programming)

• An ADP problem is specified by a signature Σ over , a tree

grammar over Σ, and a Σ-evaluation algebra ε with objective
function h.

• An ADP problem instance is posed by a string w ∈ *. Its

search space is the set of all its parses, .

• Solving an ADP problem is computing h{ε(t) | t ∈ }

in polynomial time and space with respect to |w|.

In general, Bellman's Principle of Optimality [7] must be
satisfied in order to achieve polynomial efficiency.

Definition 2 (ADP formulation of Bellman's Principle) An
evaluation algebra satisfies Bellman's Principle, if for each k-
ary function f in Σ and all answer lists z1,..., zk, the objective
function h satisfies

h([f(x1,..., xk) | x1 ← z1,..., xk ← zk]) = h([f(x1,..., xk) | x1 ←
h(z1),..., xk ← h(zk)])

 ()

P w t y t w () { () | () }= ∈ =

P w()

 ()

Ans IN

nil s

right s,b s

pair a,s,b

bp

bp

bp

bp

max

max

max

max

=

=

=

=

()

()

()

0

ss

split s,s’ s s

+

= +

1

bpmax() ’

A IN

bpmax (nil,right,pair,split,h) where

nil(s)

righ

bpmaxns =

=
= 0

tt(s,b)

pair(a,s,b)

split(s,s’)

h

h

=
= +
= +
=

s

s

s s

1

1

’

([]) []

([,...,s ss sr
i r

i]) [max]=
≤ ≤1

h t t((), ())

[max(,)]

[]

bpmax bpmax1 2

3 4

4

=
=

P w()

P w()
Page 4 of 13
(page number not for citation purposes)

praktikum2-ub
Rechteck

BMC Bioinformatics 2005, 6:224 http://www.biomedcentral.com/1471-2105/6/224
as well as

h(z ++ z') = h(h(z) ++ h(z'))

where ++ denotes list concatenation, and ← denotes list
membership.

Bellman's Principle, when satisfied, allows the following
implementation: As the trees that constitute the search
space are constructed by the yield parser in a bottom up
fashion, rather than building them explicitly as elements
of TΣ, for each function symbol f the evaluation function
fε is called. Thus, the yield parser computes not trees, but
their evaluations. To reduce their number (and thus to
avoid exponential explosion) the objective function may
be applied at an intermediate step where a list of alterna-
tive answers has been computed. Due to Bellman's Princi-
ple, the recursive intermediate applications of the
objective function do not affect the final result.

As an example, consider the following two candidates
(represented as terms) in the search space for sequence
aucg:

Since algebra bpmax satisfies Bellman's Principle, we can
apply the objective function h at intermediate steps inside
the evaluation of candidates t3 and t4:

Given grammar and signature, the traditional dynamic
programming recurrences can be derived mechanically to
implement the yield parser. In the sequel, we shall use the
name of a grammar as the name of the function that
solves the dynamic programming problem at hand. Natu-
rally, it takes two arguments, the evaluation algebra and
the input sequence.

In-depth search space analysis
Note that the case analysis in the Nussinov algorithm is
redundant – even the sequence ' aa' is assigned the two
trees Right (Right Nil 'a') 'a' and Split (Right Nil 'a') (Right
Nil 'a'), which actually denote the same structure.

In order to study also suboptimal solutions, a non-redun-
dant algorithm was presented in [8]. Figure 4 shows the
grammar wuchty98. Here the signature has 8 function
symbols, each one modeling a particular structure ele-
ment, plus the list constructors (nil, ul, cons) to collect
sequences of components in a unique way. Nonterminal
symbol strong is used to capture structures without iso-
lated (unstacked) base pairs, as "lonely pairs" are known
to be energetically unstable. Purging them from the search
space decreases the number of candidates considerably.
This grammar, because of its non-redundancy, can also be
used to study combinatorics, such as the expected number
of feasible structures of a sequence of length n. This

Tree grammar wuchty98Figure 4
Tree grammar wuchty98. Terminal symbols in italics.

wuchty98 Z = struct

struct → str

comps

| str

ul

singlestrand

| str

nil

empty

block → strong | bl

region strong

comps → cons

block comps

| ul

block

| cons

block ul

singlestrand

singlestrand → ss

region

strong →
(

sr

base strong base

| sr

base weak base
) with basepairing

weak →

(

hl

base region3 base

| sr

base bl

region strong

base

| sr

base br

strong region

base

|

ml

base cons

block comps

base

| sr

base il

region strong region

base) with basepairing

region3 → region with minsize 3

t

t

3

4

=

=

Split Pair a Nil u

Right Right Nil c g

Split Pai

(’ ’ ’ ’)

((’ ’) ’ ’)

(rr a Nil u

Pair c Nil g

’ ’ ’ ’)

(’ ’ ’ ’)

h t t

h

((), ())

((’ ’ ’ ’)

((

bpmax bpmax

Split Pair a Nil u

Right Right N

3 4

=
iil c g

Split Pair a Nil u

Pair c Nil g

Split

’ ’) ’ ’),

(’ ’ ’ ’)

(’ ’ ’ ’))

((= h h((’ ’ ’ ’,

’ ’ ’ ’))

(((’ ’) ’ ’,

Pair a Nil u

Pair a Nil u

Right Right Nil c g

Pa

h

iir c Nil g’ ’ ’ ’)))

[max(max(,) max(,))]

[max()]

[]

= +
= +
=

1 1 0 1

1 1

2

Page 5 of 13
(page number not for citation purposes)

praktikum2-ub
Rechteck

BMC Bioinformatics 2005, 6:224 http://www.biomedcentral.com/1471-2105/6/224
algorithm, as implemented in RNAsubopt [8], is widely
used for structure prediction via energy minimization. The
thermodynamic model is too elaborate to be presented
here, and we will stick with base pair maximization as our
optimization objective for the sake of this presentation.
Figure 5 shows four evaluation algebras that we will use
with grammar wuchty98. We illustrate their use via the
following examples, where g(a,w) denotes the application

of grammar g and algebra a to input w. Table 1 summa-
rizes all results for an example sequence.

wuchty98(enum,w): The enumeration algebra enum
yields unevaluated terms. By convention, function sym-
bols are capitalized in the output. Since the objective func-
tion is identity, this call enumerates all candidates in the
search space spawned by w. This is mainly useful in

Four evaluation algebras for grammar wuchty98Figure 5
Four evaluation algebras for grammar wuchty98. Arguments a and b denote bases, (i, j) represents the input subword
wi + 1 wj, and s denotes answer values. Function dots(r) in algebra pretty yields a string of r dots ('.').

Table 1: Applications of grammars wuchty98 and nussinov78 with different individual algebras on input w = cgggauaccacu.

Application Result

wuchty98(enum, w) [Str (Ul (Bl (0,1) (Sr 'g' (Hl 'g' (3,10) 'c') 'u'))), Str (Ul (Bl (0,2) (Sr 'g' (Hl 'g' (4,10) 'c') 'u'))), Str (Cons (Bl (0,1) (Sr 'g' (Hl 'g'
(3,7) 'c') 'c')) (Ul (Ss (9,12)))), Str (Cons (Bl (0,2) (Sr 'g' (Hl 'g' (4,7) 'c') 'c')) (Ul (Ss (9,12)))), Str (Ul (Ss (0,12)))]

wuchty98(pretty, w) [".((.......))", "..((......))", ".((....))...", "..((...))...", "............"]
wuchty98(bpmax, w) [2]
wuchty98(count,w) [5]
nussinov78(count,w) [9649270]

Ansenum = TΣ

enum = (str, ..., h) where
str(s) = Str s
ss((i,j)) = Ss (i,j)
hl(a,(i,j),b) = Hl a (i,j) b
sr(a,s,b) = Sr a s b
bl((i,j),s) = Bl (i,j) s
br(s,(i,j)) = Br s (i,j)
il((i,j),s,(i’,j’)) = Il (i,j) s (i’,j’)
ml(a,s,b) = Ml a s b
nil((i,j)) = Nil (i,j)
cons(s,s’) = Cons s s’
ul(s) = Ul s
h([s1, . . . , sr]) = [s1, . . . , sr]

Ansbpmax = IN

bpmax = (str, ..., h) where
str(s) = s
ss((i,j)) = 0
hl(a,(i,j),b) = 1
sr(a,s,b) = s + 1
bl((i,j),s) = s
br(s,(i,j)) = s
il((i,j),s,(i’,j’)) = s
ml(a,s,b) = s + 1
nil((i,j)) = 0
cons(s,s’) = s + s’
ul(s) = s
h([]) = []
h([s1, . . . , sr]) = [max

1≤i≤r
si]

Anspretty = dot-bracket strings

pretty = (str, ..., h) where
str(s) = s
ss((i,j)) = dots(j-i)
hl(a,(i,j),b) = "("++dots(j-i)++")"
sr(a,s,b) = "("++s++")"
bl((i,j),s) = dots(j-i)++s
br(s,(i,j)) = s++dots(j-i)
il((i,j),s,(i’,j’)) = dots(j-i)++s++

dots(j’-i’)
ml(a,s,b) = "("++s++")"
nil((i,j)) = ""
cons(s,s’) = s++s’
ul(s) = s
h([s1, . . . , sr]) = [s1, . . . , sr]

Anscount = IN

count = (str, ..., h) where
str(s) = s
ss((i,j)) = 1
hl(a,(i,j),b) = 1
sr(a,s,b) = s
bl((i,j),s) = s
br(s,(i,j)) = s
il((i,j),s,(i’,j’)) = s
ml(a,s,b) = s
nil((i,j)) = 1
cons(s,s’) = s * s’
ul(s) = s
h([]) = []
h([s1, . . . , sr]) = [s1 + · · · + sr]
Page 6 of 13
(page number not for citation purposes)

praktikum2-ub
Rechteck

BMC Bioinformatics 2005, 6:224 http://www.biomedcentral.com/1471-2105/6/224
program debugging, as it allows us to inspect the search
space actually traversed by our program.

wuchty98(pretty, w): The pretty-printing algebra pretty
yields a dot-bracket string representation of the same
structures as the above.

wuchty98(bpmax,w): The base pair maximization algebra
is bpmax, such that this call yields the maximal number of
base pairs that a structure for w can attain. Here the
objective function is maximization, and it can be easily
shown to satisfy Bellman's Principle. Similarly for gram-
mar nussinov78.

wuchty98(count,w): The counting algebra count has as its
objective function summation, and εcount(t) = 1 for all can-
didates t. Hence, summing over all candidate scores gives
the number of candidates.

However, the evaluation functions are carefully written
such that they satisfy Bellman's Principle. Thus,
[length(wuchty98(enum,w))] == wuchty98(count,w),
where the right-hand side is polynomial to compute,
while the left-hand side typically is exponential due to the
large number of answers returned by wuchty98(enum,w).
Technically, the result of wuchty98(count,w) is a single-
ton list, hence the [...].

nussinov78(count,w): This computes (using an analo-
gous version of the counting algebra not shown here) the
number of structures considered by the Nussinov algo-
rithm, which, in contrast to the above, is much larger than
the size of the search space.

These examples show analyses achieved by individual
algebras. We now turn to what can be done by their
combination.

Results and discussion
In this section we first introduce and discuss our defini-
tion of the product operation. From there, we proceed
with a series of examples demonstrating its usage.

The product operation on evaluation algebras
We define the product operation as follows:

Definition 3 (Product operation on evaluation algebras) Let
M and N be evaluation algebras over Σ. Their product M***N
is an evaluation algebra over Σ and has the functions

fM***N((m1, n1)...(mk, nk)) = (fM(m1,..., mk), fN(n1,..., nk))
for each f in Σ,

and the objective function

Above, ∈ denotes set membership and hence ignores
duplicates. In contrast, ← denotes list membership and
respects duplicates. Implementing set membership may
require some extra filtering effort, but when the objective
function hM, which computes L, does not produce dupli-
cates anyway, it comes for free. We illustrate the applica-
tion of the product operation to algebras bpmax and
count:

Here, each function calculates a pair of two result values.
The first is the result of algebra bpmax, the second is the
result of algebra count. The interesting part is the objective
function h. It receives the list of pairs as input, with each
pair consisting of the candidate's scores for the first and
for the second algebra. In the first step the objective func-
tion of algebra bpmax (max) is applied to the list of the
first pair elements. The result is stored in L. In this exam-
ple, L holds only one element, namely the maximum base
pair score of the input list. In general, L holds many ele-
ments or may be empty. For each element of L, a new
intermediate list is constructed that consists of all corre-
sponding right pair elements of the input list. This inter-
mediate list is then applied to the objective function of the
second algebra (here: summation). Finally, the result of h
is constructed by combination of all elements from L with

h m n m n l r

l L

r h r l r

M N k k

N

*** ([(,)...(,)]) [(,)|

,

([’ |(’, ’) [(

1 1 =
∈
← ← mm n m n l L

L h m m
k k

M k

1 1

1

,)...(,)], ’])],

([,...,]).

∈
=where

Ansbpmax count IN IN

bpmax *** count str h where

str(m,

(,...,)

= ×

=
nn))

ss((i,j))

hl(a,(i,j),b)

sr(a,(m,n),b)

=
=
=
=

(,)

(,)

(,)

m n

0 1

1 1

((,)

(,)

(,)

m n

m n

m n

+
=
=

1

b1((i,j),(m,n))

br((m,n),(i,j))

il((i,j),,(m,n),(i’,j’))

ml(a,(m,n),b)

nil((i,j))

=
= +
=

(,)

(,)

(,

m n

m n1

0 1))

(’, ’)

(,)

([,).

cons((m,n),(m’,n’))

ul((m,n))

h

= + +
=

m m n n

m n

m n1 1 ...(,)])

[(,)| ,

[[’ |(’, ’) [(,)...(,)

m n

l r l L

r r l r m n m n

k k

k k

=
∈

← ←∑ 1 1]], ’]]],

[max]

l L

L m
i k

i

∈
=

≤ ≤
where

1

Page 7 of 13
(page number not for citation purposes)

praktikum2-ub
Rechteck

BMC Bioinformatics 2005, 6:224 http://www.biomedcentral.com/1471-2105/6/224
their corresponding result for the second algebra stored in
r. This computes the optimal number of base pairs,
together with the number of candidate structures that
achieve it.

One should not rely on intuition alone for understanding

what M***N actually computes. For any tree grammar
and product algebra M***N, their combined meaning is
well defined by Definition 1, and the view that a complete
list of all candidates is determined first, with hM***N

applied only once in the end, is very helpful for under-

standing. But does (M***N, w) actually do what it
means? The implementation works correctly if and only if
Bellman's Principle is satisfied by M***N, which is not
implied when it holds for M and N individually! Hence,
use of product algebras is subject to the following Proof
obligation: Prove that M***N satisfies Bellman's Principle
(Definition 2).

Alas, we have traded the need of writing and debugging
code for a proof obligation. Fortunately, there is a theo-
rem that covers many important cases:

Theorem 1 (1) For any algebras M and N, and answer list x,
(idM* * * idN)(x) is a permutation of x.

(2) If hM and hN minimize with respect to some order relations
≤M and ≤n, then hM***N minimizes with respect to the lexico-
graphic ordering (≤M, ≤N).

(3) If both M and N minimize as above and both satisfy Bell-
man's Principle, then so does M***N.

Proof. (1) According to Definition 3, the elements of x are
merely re-grouped according to their first component. For
this to hold, it is essential that L is treated as a set. (2) fol-
lows directly from Definition 3. (3) In the case of minimi-
zation, Bellman's Principle is equivalent to (strict)

monotonicity of the functions fM and fN with respect to ≤M
and ≤N, and this carries over to the combined functions
(trivially) and the lexicographic ordering (because of (2)).

In the above proof, strict monotonicity is required only if
we ask for multiple optimal, or for the k best solutions
rather than a single, optimal one [9].

Theorem 1 (1) justifies our peculiar treatment of the list L
as a set. It states that no elements of the search space are
lost or get duplicated by the combination of two algebras.
Theorem 1 (2,3) say that *** behaves as expected in the
case of optimizing evaluation algebras. This is very useful,
but not too surprising. A surprising variety of applications
arises when *** is used with algebras that do not do opti-
mization, like enum, count, and pretty.

The proof obligation is met for all the applications studied
below. A case where the proof fails is, for example,
wuchty98(count***count,w), which consequently deliv-
ers no meaningful result.

Implementing the product operation
The algebraic style of dynamic programming can be prac-
ticed within any decent programming language. It is
mainly a discipline of structuring our dynamic program-
ming algorithms, the perfect separation of problem
decomposition and scoring being the main achievement.
When using the ASCII notation for tree grammars pro-
posed in [5], the grammars can be compiled into
executable code. Otherwise, one has to derive the explicit
recurrences and implement the corresponding yield
parser. Care must be taken to keep the implementation of
the recurrences independent of the result data type, such
that they can be run with different algebras, including
arbitrary products.

All this given, the extra effort for using product algebras is
small. It amounts to implementing the defining equations

Table 2: Measuring time and space requirements of the product operation. All results are for a C implementation of wuchty98,
running on a 900 MHz Ultra Sparc 3 CPU under Sun Solaris 10. The space requirements were measured using a simple wrapper
function for malloc, that counts the number of allocated bytes. Times were measured with gnu time.

|w| wuchty98(bpmax,w) wuchty98(bpmax***bpmax,w) %

time (sec) 200 0.58 0.69 + 18.97
space (MB) 200 1.88 2.06 + 9.57
time (sec) 400 4.65 6.02 + 29.46
space (MB) 400 4.60 5.37 + 16.74
time (sec) 800 52.04 65.54 + 25.94
space (MB) 800 15.61 18.77 + 20.24
time (sec) 1600 590.72 725.03 + 22.74
space (MB) 1600 59.85 72.62 + 21.34

Page 8 of 13
(page number not for citation purposes)

praktikum2-ub
Rechteck

BMC Bioinformatics 2005, 6:224 http://www.biomedcentral.com/1471-2105/6/224
for the functions of M***N generically, i.e. for arbitrary
evaluation algebras M and N over the common signature
Σ. In a language which supports functions embedded in
data structures, this is one line per evaluation function,
witnessed by our implementation in Haskell (available
for download). In other languages, abstract classes (Java)
or templates (C++) can be used. It is essential to provide a
generic product implementation. Otherwise, each new
algebra combination must be hand-coded, which is not
difficult to do, but tedious and error-prone, and hence
necessitates debugging. A generic product, once tested,
guarantees absence of errors for all combinations.

Efficiency discussion
Before we turn to the uses of ***, a word on computa-
tional efficiency seems appropriate. Our approach
requires to structure programs in a certain way. This
induces a small (constant factor) overhead in space and
time. For example, we must generically return a list of
results, even with analyses that return only a single
optimal value. Normally, each evaluation function is in
O(1), and when h returns a single answer, asymptotic effi-
ciency is solely determined by the tree grammar [5]. This
asymptotic efficiency remains unaffected when we use a
product algebra. Each table entry now holds a pair of
answers, each of size O(1). Things change when we
employ objective functions that produce multiple results,
as the size of the desired output can become exponential
in n, and then it dominates the overall computational
effort. For example, the optimal base pair score may be
associated with a large number of co-optimal candidates,
especially when the grammar is ambiguous. Thus, if using
*** makes our programs slower (asymptotically), it is not
because of an intrinsic effect of the product operation, but

because we decide to do more costly analyses by looking
deeper into the search space.

The only exception to this rule is the situation where
objective function hM produces duplicate values, which
must be filtered out, as described with Definition 3. In this
case, a non-constant factor proportional to the length of
answer lists is incurred.

The concrete effect of using product algebras on CPU time
and space is difficult to measure, as the product algebra
runs a more sophisticated analysis than either single one.
For an estimation, we measure the (otherwise meaning-
less) use of the same algebra twice. We compute
wuchty98(bpmax,w) and compare to
wuchty98(bpmax***bpmax,w). The outcome is shown
in Table 2. For input lengths from 200 to 1600 bases, the
product algebra uses 9.57% to 21.34% more space and is
18.97% to 29.46% slower than the single algebra.

Applications of product algebras
We now turn to applications of product algebras. Table 3
summarizes all results of the analyses discussed in the
sequel, for a fixed example RNA sequence.

Application 1: Backtracing and co-optimal solutions
Often, we want not only the optimal answer value, but
also a candidate which achieves the optimum. We may
ask if there are several optimal candidates. If so, we may
want to see them all, maybe even including some near-
optimal candidates. The traditional technique is to store a
table of intermediate answers and backtrace through the
optimizing decisions made [1]. This backtracing can
become quite intricate to program if we ask for more than

Table 3: Example applications of product algebras with grammar wuchty98 on input w = cgggauaccacu.

Application Result

wuchty98(bpmax***count,w) [(2,4)]
wuchty98(bpmax***pretty,w) [(2,".((.......))"), (2,"..((......))"), (2,".((....))..."), (2,"..((...))...")]
wuchty98(bpmax***enum,w) [(2, Str (Ul (Bl (0,1) (Sr 'g' (Hl 'g' (3,10) 'c') 'u')))), (2, Str (Ul (Bl (0,2) (Sr 'g' (Hl 'g' (4,10) 'c') 'u')))),

(2, Str (Cons (Bl (0,1) (Sr 'g' (Hl 'g' (3,7) 'c') 'c')) (Ul (Ss (9,12))))), (2, Str (Cons (Bl (0,2) (Sr 'g' (Hl
'g' (4,7) 'c') 'c')) (Ul (Ss (9,12)))))]

wuchty98(bpmax***(enum***pretty,w) [(2,(Str (Ul (Bl (0,1) (Sr 'g' (Hl 'g' (3,10) 'c') 'u'))), ".((.......))")), (2, (Str (Ul (Bl (0,2) (Sr 'g' (Hl 'g'
(4,10) 'c') 'u'))), "..((......))")), (2,(Str (Cons (Bl (0,1) (Sr 'g' (Hl 'g' (3,7) 'c') 'c')) (Ul (Ss (9,12)))),
".((....))...")), (2, (Str (Cons (Bl (0,2) (Sr 'g' (Hl 'g' (4,7) 'c') 'c')) (Ul (Ss (9,12)))), "..((...))..."))]

wuchty98(shape***count, w) [("_ [_]", 2), ("_ [_]_", 2), ("_",1)]
wuchty98(bpmax(5)***shape, w) [(2,"_ [_]"), (2,"_ [_]_"), (0,"_")]
wuchty98(bpmax(5)***(shape***count), w) [(2, ("_[_]", 2)), (2, ("_[_]_", 2)), (0, ("_",1))]
wuchty98(shape***bpmax, w) [("_[_]", 2), ("_[_]_", 2), ("_",0)]
wuchty98(bpmax***pretty', w) [(2,".((....))...")]
wuchty98(pretty***count, w) [(".((.......))",1), ("..((......))",1), (".((....))...",1), ("..((....))...",1), ("............",1)]
Page 9 of 13
(page number not for citation purposes)

praktikum2-ub
Rechteck

BMC Bioinformatics 2005, 6:224 http://www.biomedcentral.com/1471-2105/6/224
one candidate. We can answer these questions without
additional programming efforts using products:

wuchty98(bpmax***count,w) computes the optimal
number of base pairs, together with the number of candi-
date structures that achieve it.

wuchty98(bpmax***enum,w) computes the optimal
number of base pairs, together with all structures for w
that achieve this maximum, in their representation as
terms from TΣ.

wuchty98(bpmax***pretty,w) does the same as the previ-
ous call, producing the string representation of structures.

wuchty98(bpmax***(enum***pretty),w) does both of
the above.

To verify all these statements, apply Definition 3, or visit
the ADP web site and run your own examples. It is a non-
trivial consequence of Definition 3 that the above product
algebras in fact give all co-optimal solutions. Should only
a single one be desired, we would use enum or pretty with
a modified objective function h that retains only one
element.

Note that our substitution of backtracing by a "forward"
computation does not affect asymptotic runtime effi-
ciency. With bpmax***enum, for example, the algebra
stores in each table entry the optimal base pair count,
together with the top node of the optimal candidate(s)
and pointers to its immediate substructures, which reside
in other table entries. Hence, even if there should be an
exponential number of co-optimal answers, they are rep-
resented in polynomial space, because subtrees are
shared. Should the user decide to have them all printed,
exponential effort is incurred, just as with a backtracing
implementation.

Application 2: Holistic search space analysis
Abstract shapes were recently proposed in [10] as a means
to obtain a holistic view of an RNA molecule's folding
space, avoiding the explicit enumeration of a large
number of structures. Bypassing all relevant mathematics,
let us just say that an RNA shape is an object that captures
structural features, like the nesting pattern of stacking
regions, but not their size. We visualize shapes by strings
alike dot-bracket notation, such as _[_[_]], where _
denotes an unpaired region and [together with the
matching] denotes a complete helix of arbitrary length.
This is achieved by the following shape algebra. Here,
function shMerge appends two strings and merges adja-
cent characters for unpaired regions (_). The function nub
eliminates duplicates from its input list.

Together with a creative use of ***, the shape algebra
allows us to analyze the number of possible shapes, the
size of their membership, and the (near-) optimality of
members, and so on. Let bpmax(k) be bpmax with an
objective function that retains the best k answers (without
duplicates).

wuchty98(shape***count,w) computes all the shapes in
the search space spawned by w, and the number of struc-
tures that map onto each shape.

wuchty98(bpmax(k)***shape,w) computes the best k
base pair scores, together with their candidates' shapes.

wuchty98(bpmax(k)***(shape***count),w)

computes base pairs and shapes as above, plus the
number of structures that achieve this number of base
pairs in the given shape.

wuchty98(shape***bpmax,w) computes for each shape
the maximum number of base pairs among all structures
of this shape.

Application 3: Optimization under lexicographic orderings
Theorem 1 is useful in practice as one can test different
objectives independently and then combine them in one
operation. A simple case of using two orderings would be
the following: Assume we have a case with a large number
of co-optimal solutions. Let pretty' be pretty with h = min.

wuchty98(bpmax***pretty',w) computes among several
optimal structures the one which comes alphabetically
first according to its string representation.

Ansshape shape strings

shape str, ..., h) where

str(s) s

ss(i,j)

=

=
=

(

==
=
=
=

"_"

"[_]"

"_"

hl(a,(i,j),b)

sr(a,s,b) s

bl((i,j),s) ++s

br(s,((i,j)) s++

il((i,j),s,(i’,j’)) ++s++

ml(a,s,b)

=
=
=

"_"

"_" "_"

"["+++s++

nil((i,j))

cons(s,s’) shMerge(s,s’)

ul(s) s

h

"]"

""

([

=
=
=

s1,,...]) [,...,]s s sr r= nub 1
Page 10 of 13
(page number not for citation purposes)

praktikum2-ub
Rechteck

BMC Bioinformatics 2005, 6:224 http://www.biomedcentral.com/1471-2105/6/224
Of course, there are more meaningful uses of a primary
and a secondary optimization objective. For lack of space,
we refrain from introducing another optimizing algebra
here.

Application 4: Testing ambiguity
Dynamic programming algorithms can often be written in
a simpler way if we do not care whether the same solution
is considered many times during the optimization. This
does not affect the overall optimum. A dynamic program-
ming algorithm is then called redundant or ambiguous. In
such a case, the computation of a list of near-optimal solu-
tions is cumbersome, as it contains duplicates whose
number often has an exponential growth pattern. Also,
search space statistics become problematic – for example,
the counting algebra speaks about the algorithm rather
than the problem space, as it counts evaluated, but not
necessarily distinct solutions. Tree grammars with a suita-
ble probabilistic evaluation algebra implement stochastic
context free grammars (SCFGs) [2]. The frequently used
statistical scoring schemes, when trying to find the answer
of maximal probability (the Viterbi algorithm, cf. [2]), are
fooled by the presence of redundant solutions. In princi-
ple, it is clear how to control ambiguity [11]. One needs
to show unambiguity of the tree grammar in the language
theoretic sense (not the associated string grammar – it is
always ambiguous, else we would not have an optimiza-
tion problem), and the existence of an injective mapping
from TΣ to a canonical model of the search space. How-
ever, the proofs involved are not trivial. Rather, one would
like to implement a check for ambiguity that is applicable
for any given tree grammar, but this may be difficult or
even impossible, as the problem is closely related to ambi-
guity of context free languages, which is known to be for-
mally undecidable.

Recently, Dowell and Eddy showed that ambiguity really
matters in practice for SCFG design, and they suggest a
procedure for ambiguity testing [12]. This test uses a com-
bination of Viterbi and Inside algorithms to check
whether the (putatively optimal) candidate returned by
Viterbi has an alternative derivation. A more complete test
is the following, and due to the use of ***, it requires no
implementation effort:

The required homomorphism from the search space to
the canonical model may be coded as another evaluation
algebra. In fact, if we choose the dot-bracket string repre-
sentation as the canonical model, algebra pretty does
exactly this. We can test for ambiguity by testing injectivity
of pretty – by calling wuchty98(pretty***count,w) on a
number of inputs w. If any count larger than 1 shows up
in the results, we have proved ambiguity. This test is
strictly stronger than the one by Dowell and Eddy, which
detects ambiguity only if it occurs with the (sampled)

"near-optimal" predictions. This and other test methods
are studied in detail in [13].

Limitations of the product operation
The above applications demonstrate the considerable ver-
satility of the algebra product. In particular, since a prod-
uct algebra is an algebra itself, we can work with algebra
triples, quadruples, and so on. All of these will be com-
bined in the same fashion, and here we reach the limits of
the product operation. The given definition of *** is not
the only way needed to combine two algebras. In abstract
shape analysis [10], we use three algebras mfe (computing
minimal free energy), shape and pretty. A shape represent-
ative structure is the structure of minimal free energy
within the shape. Similarly to the above,
wuchty98(shape***(mfe***pretty),w) computes the rep-
resentatives of all shapes. However, computing only the k
best shape representatives requires minimization within
and across shapes, which neither mfe***shape nor
shape***mfe can achieve. Hence, a hand-coded combi-
nation of the three algebras is necessary for this particular
analysis.

Conclusion
We hope to have demonstrated that the evaluation alge-
bra product as introduced here adds a significant amount
of flexibility to dynamic programming. We have shown
how ten meaningful analyses with quite diverse objectives
can be obtained by using different products of a few sim-
ple algebras. The techniques we have shown here pertain
not just to RNA folding problems, but to all dynamic
programming algorithms that can be formulated in the
algebraic style.

The benefits from using a particular coding discipline do
not come for free. There is some learning effort required
to adapt to a systematic approach and to abandon tradi-
tional coding habits. After that, the discipline pays back by
making programmers more productive. Yet, the pay-off is
hard to quantify. We therefore conclude with a subjective
summary of our experience as bioinformatics toolsmiths.
After training a generation of students on the concepts
presented here, we have enjoyed a boost in programming
productivity. Four bioinformatics tools have been devel-
oped using this approach -pknotsRG [14], RNAshapes
[10], RNAhybrid [15] and RNAcast [16]. The "largest"
example is the pseudoknot folding grammar, which uses
47 nonterminal symbols and a 140-fold case distinction.
The techniques described here have helped to master such
complexity in several ways:

• The abstract formulation of dynamic programming
recurrences in the form of grammars makes it easy to com-
municate and refine algorithmic ideas.
Page 11 of 13
(page number not for citation purposes)

praktikum2-ub
Rechteck

BMC Bioinformatics 2005, 6:224 http://www.biomedcentral.com/1471-2105/6/224
• Writing non-ambiguous grammars for optimization
problems allows us to use the same algorithm for mathe-
matical analysis of the search space.

• Ambiguity checking ensures us that such analyses are
correct, that probabilistic analyses are not fooled by
redundant recurrences, and that near-optimal solutions
when reported do not contain duplicates.

• enum algebras allow for algorithm introspection – we
can obtain a protocol of all solution candidates the pro-
gram has seen, a quite effective program validation aid.

• Using pretty and enum algebras in products frees us
from the tedious programming of backtracing routines.

• The use of the product operation allows us the create
new analyses essentially with three key strokes – and a
proof obligation that must be met.

This has created a good testbed for the development of
new algorithmic ideas, which can immediately be put to
practice.

Methods
The new product operation has been implemented and
made available via the Bielefeld Bioinformatics Server [4],
where the reader may run the examples presented in this
paper, as well as his or her own ones.

Appendix: "Reverse engineering" of dynamic
programming algorithms
To support the claim that a tree representation of candi-
dates always exists, we show how such a representation
can be found by a sort of reverse engineering of a given DP
algorithm not formulated in the ADP framework. The rea-
soning applied is called symbolic evaluation in computer
science terminology.

Assume that the algorithm returns a score of (say) X1. The
last step in the computation of this score value must have
been the application of some function f1. This function
corresponds to a particular problem decomposition. Let
X1 = f1(a, b,..., X2, X3,...). Here a, b,... come from the input
problem and are parameters for the local score contribu-
tion, while X2, X3,... are scores from subproblems. For
example, in pairwise sequence alignment, f1 may corre-
spond to replacing one amino acid by another, adding the
PAM score of mutating a to b to the score of the remaining
alignment, X2. There are no additional Xi in this case. With
RNA folding, f1 may correspond to a multiloop, with a, b
being the closing base pair, and X2 corresponding to the
first stem within the multiloop, and X3 to a succession of
the other stems. This includes DP algorithms that consider
RNA pseudoknots. f1 may correspond to composing a

pseudoknot from two crossing helices corresponding to
X2 and X3, as is apparent in the pseudoknot folding pro-
gram pknotsRG [14], which was developed with the ADP
method. Unless the DP algorithm has been written very
systematically, the actual operations that implement f1
may be scattered over various places in the code.

Whatever the meaning and implementation of f1 is – we
record the formula F1 = f1(a, b,..., X2, X3,...), and recursively
apply the same consideration to the subproblem scores Xi,
using the appropriate functions fi to obtain formulas Fi
which we substitute in F1 for the corresponding Xi, and so
on. This eventually results in a large formula F1 that con-
tains no more Xi and hence depends only on the input
parameters. We have recorded, as the symbolic expression
F1, the complete computation of the score X1. We have not
recorded how this formula was found – it does not at all
reflect the control structure of the algorithm. As any for-
mula can be naturally considered as a tree, we have found
a tree representation of the optimal candidate. Clearly, all
suboptimal candidates have similar representations,
obtained in the same way.

The reverse engineering of a known DP algorithm is not
only a theoretical possibility, but also an instructive edu-
cational exercise, and helpful in analyzing and improving
upon previous work.

Authors' contributions
Both authors cooperated closely in developing the work
presented here, and in writing the manuscript.

Acknowledgements
We are grateful to Sebastian Oehm for a careful reading of this manuscript.
Morris Michael and Marco Rüther compiled the showcase of classical
dynamic programming algorithms for the ADP web site.

References
1. Gusfield D: Algorithms on Strings, Trees, and Sequences Cambridge Uni-

versity Press; 1997.
2. Durbin R, Eddy S, Krogh A, Mitchison G: Biological Sequence Analysis

Cambridge University Press; 1998.
3. Bafna V, Edwards N: On de novo interpretation of tandem mass

spectra for peptide identification. In Proceedings of the seventh
annual international conference on Computational molecular biology ACM
Press; 2003:9-18.

4. Algebraic Dynamic Programming homepage [http://bibis
erv.techfak.uni-bielefeld.de/adp/]

5. Giegerich R, Meyer C, Steffen P: A Discipline of Dynamic Pro-
gramming over Sequence Data. Science of Computer Programming
2004, 51(3):215-263.

6. Nussinov R, Pieczenik G, Griggs J, Kleitman D: Algorithms for loop
matchings. SIAM J Appl Math 1978, 35:68-82.

7. Bellman R: Dynamic Programming Princeton University Press; 1957.
8. Wuchty S, Fontana W, Hofacker IL, Schuster P: Complete Subop-

timal Folding of RNA and the Stability of Secondary
Structures. Biopolymers 1999, 49:145-165.

9. Morin TL: Monotonicity and the principle of optimality. J Math
Anal Appl 1982, 86:665-674.

10. Giegerich R, Voss B, Rehmsmeier M: Abstract Shapes of RNA.
Nucleic Acids Res 2004, 32(16):4843-4851.
Page 12 of 13
(page number not for citation purposes)

http://bibiserv.techfak.uni-bielefeld.de/adp/
http://bibiserv.techfak.uni-bielefeld.de/adp/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10070264
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10070264
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10070264
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15371549
praktikum2-ub
Rechteck

BMC Bioinformatics 2005, 6:224 http://www.biomedcentral.com/1471-2105/6/224
Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

11. Giegerich R: Explaining and Controlling Ambiguity in
Dynamic Programming. In Proc Combinatorial Pattern Matching
Springer LNCS 1848; 2000:46-59.

12. Dowell RD, Eddy SR: Evalution of lightweight stochastic con-
text-free grammars for RNA secondary structure
prediction. BMC Bioinformatics 2004, 5:71.

13. Reeder J, Steffen P, Giegerich R: Effective ambiguity checking in
biosequence analysis. BMC Bioinformatics 2005, 6:153.

14. Reeder J, Giegerich R: Design, implementation and evaluation
of a practical pseudoknot folding algorithm based on
thermodynamics. BMC Bioinformatics 2004, 5:104.

15. Rehmsmeier M, Steffen P, Höchsmann M, Giegerich R: Fast and
effective prediction of microRNA/target duplexes. RNA 2004,
10:1507-1517.

16. Reeder J, Giegerich R: Consensus Shapes: an alternative to the
Sankoff Algorithm for RNA consensus structure prediction.
Bioinformatics 2005, 21:3516-23. [Advance access]
Page 13 of 13
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15180907
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15180907
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15180907
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15967024
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15967024
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15294028
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15294028
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15294028
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15383676
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15383676
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16020472
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16020472
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/
praktikum2-ub
Rechteck

praktikum2-ub
Rechteck

	Abstract
	Background
	Results
	Conclusion

	Background
	Overview
	Algebraic dynamic programming by example
	RNA secondary structure prediction
	ADP methodology
	Alphabet
	Search space
	Scoring
	Objective

	In-depth search space analysis
	Table 1

	Results and discussion
	The product operation on evaluation algebras
	Implementing the product operation
	Efficiency discussion
	Applications of product algebras
	Application 1: Backtracing and co-optimal solutions

	Application 2: Holistic search space analysis
	Application 3: Optimization under lexicographic orderings
	Application 4: Testing ambiguity
	Limitations of the product operation

	Conclusion
	Methods
	Appendix: "Reverse engineering" of dynamic programming algorithms
	Authors' contributions
	Acknowledgements
	References

