
GenDBÐan open source genome annotation system
for prokaryote genomes
Folker Meyer*, Alexander Goesmann, Alice C. McHardy, Daniela Bartels, Thomas Bekel,

JoÈ rn Clausen1, JoÈ rn Kalinowski, Burkhard Linke, Oliver Rupp, Robert Giegerich1 and

Alfred PuÈhler2

Center for Genome Research, 1Technische FakultaÈ t and 2Department of Biology, Bielefeld University, Bielefeld,
Germany

Received October 30, 2002; Revised and Accepted February 4, 2003

ABSTRACT

The ¯ood of sequence data resulting from the large
number of current genome projects has increased
the need for a ¯exible, open source genome annota-
tion system, which so far has not existed. To
account for the individual needs of different pro-
jects, such a system should be modular and easily
extensible. We present a genome annotation system
for prokaryote genomes, which is well tested and
readily adaptable to different tasks. The modular
system was developed using an object-oriented
approach, and it relies on a relational database
backend. Using a well de®ned application program-
mers interface (API), the system can be linked easily
to other systems. GenDB supports manual as well
as automatic annotation strategies. The software
currently is in use in more than a dozen microbial
genome annotation projects. In addition to its use
as a production genome annotation system, it can
be employed as a ¯exible framework for the large-
scale evaluation of different annotation strategies.
The system is open source.

INTRODUCTION

The process of genome annotation can be de®ned as assigning
meaning to sequence data that would otherwise be almost
devoid of information. By identifying regions of interest and
de®ning putative functions for those areas, the genome can be
understood and further research initiated. Annotation gener-
ally is thought to be of best quality when performed by a
human expert. The vast amount of data which has to be
evaluated in any whole-genome annotation project, however,
has led to the (partial) automation of the procedure. Due to
this, software assistance for computation, storage, retrieval
and analysis of relevant data has become essential for the
success of any genome project.

Comparison of existing tools

A number of genome annotation systems intended for the
analysis of prokaryotic and eukaryotic organisms have been

designed and presented in the last few years. The ®rst
generation was published in 1996 and consisted of the
MAGPIE (1), GeneQuiz (2) and Pedant (3) systems. These
focused primarily on generating human readable HTML
documents based on tables and sometimes in-line graphics. A
number of good ideas originated from this ®rst generation of
genome annotation systems, which made their way into
today's systems. Examples are the intuitive visualizations
provided by MAGPIE and the splitting of results by signi®-
cance levels to enable comparison of different tools (also
MAGPIE). Since then, a second generation of mostly com-
mercial genome annotation systems has been published,
including ERGO (Integrated Genomics, Inc.), Pedant-Pro
(successor to Pedant, Biomax Informatics AG), Phylosopher
(Gene Data, Inc.), BioScout (Genequiz, Lion AG), WIT (4)
and the open source system Artemis (5). Some systems
(MAGPIE, Artemis and Phylosopher) contain extensive
visualizations or include multiple genome comparison-based
annotation strategies [most notably by ERGO (6)]. With the
exception of Artemis, all systems provide an automatic
annotation feature. To the best of our knowledge, except
ERGO, all systems use a variant of `best blast hit' as their
®xed, built-in annotation strategy. Only MAGPIE, Artemis
and the newer versions of Pedant allow the integration of
expert knowledge through manual annotation. (In the last few
weeks, the Manatee system has been made public by TIGR.
The authors have not yet had the opportunity to evaluate this
system.)

The substantial commercial interest in the area of genome
annotation has led to a situation where, with the noted
exception of Artemis, no genome annotation system is in the
public domain. Therefore, only the source code of Artemis is
available for further analysis by the research community. Even
in-depth technical information, such as details about the
annotation strategy implemented, is very hard to obtain. This
lack of access is a major hurdle when trying to evaluate these
complex systems. Together with the omission of well de®ned
application programmers interfaces (APIs), this prevents the
extension of existing systems. This situation is counter-
productive for science in this ®eld: the best experts in the ®eld
have no medium to contribute their experience to the
cooperative evolution of better and better annotation systems.
The resulting need for a well designed and documented open

*To whom correspondence should be addressed. Tel: +49 521 106 4827; Fax: +49 521 106 5626; Email: fm@genetik.uni-bielefeld.de

Nucleic Acids Research, 2003, Vol. 31, No. 8 2187±2195
DOI: 10.1093/nar/gkg312

Nucleic Acids Research, Vol. 31 No. 8 ã Oxford University Press 2003; all rights reserved

praktikum2-ub
Rechteck

praktikum2-ub
Rechteck



source genome annotation system led us to develop GenDB.
GenDB is a ¯exible and easily extensible system, which
currently is in worldwide use for the annotation of more than a
dozen novel microbial genomes.

As with the very successful Linux computer operating
system, the open source license of GenDB enables the
cooperative development of high quality software for genome
annotation. The system is intended to provide a ¯exible,
transparent infrastructure for genome projects, which other
groups can adopt and modify to meet their requirements.

The `System Architecture' and `Implementation' sections
describe in detail the GenDB software system; they are
intended to enable bioinformatics scientists to evaluate the
system. The next section outlines the bioinformatics methods
currently implemented by the system; here the target audience
is the biologist looking for a tool to annotate a genome.
Finally, the section on applications is intended for a general
audience to show the scope of projects in which GenDB
currently is being used.

SYSTEM ARCHITECTURE

A surprising lesson learned from the analysis of the existing
systems (as far as they are known to the authors) is the lack of
consistent internal data representation. However, in our
opinion, an internal data representation using a well de®ned
data model is the prerequisite needed to provide an API for
any larger software system.

Data model design

We chose a very simple data model, based on only three core
types of objects. Regions describe arbitrary (sub-) sequences.
A region can be related to a parent region, e.g. a CDS is part of
a contig. Observations correspond to information computed by
various tools [e.g. BLAST (7) or InterPro (8)] for those
regions. Annotations store the interpretation of a (human)
annotator. They describe regions based on the evidence stored
in the observations. Figure 1 shows the relationships between

the different core objects. As can be seen, there is a clear
distinction between the results from various bioinformatics
tools (observations) and their interpretation (annotations),
implemented in the data model. While this data model seems
very generic, it represents a hierarchy of classes, including the
complete EMBL feature set with several extensions. There are
additional classes (e.g. tools and annotators) that complement
the three core classes.

Since data access is via the objects described above, the
classes in GenDB themselves form the API.

This object-oriented approach makes code maintenance
easy, and also makes the data and methods in our system
accessible to other programs. At the same time, we provide a
means to extend the GenDB system.

General overview

Figure 2 illustrates the architecture of the GenDB system: the
GenDB objects are mapped onto tables via O2DBI and stored
in an SQL database. All access to these data via a Perl client or
server API, or via a C++ client interface is again managed by
the O2DBI module. On the client side, user interfaces can be
implemented that use the functionality of these APIs.

On the server side, sequence databases can be accessed with
the SRS (9) system or via the BioPerl (http://www.bioperl.org)
interfaces. Computational intensive tools such as BLAST or
InterPro can be managed and scheduled via a BioGrid (e.g.
Sun GridEngine http://www.sun.com/gridware).

Plug-in architecture

As all data in the system are accessible, almost any task can be
performed by a plug-in, de®ned as a tool that operates on the
GenDB data structures. While the core GenDB system
provides a mechanism for manual annotation, an automatic
annotation plug-in performs automatic assignment of regions
(e.g. genes) and/or functional annotation for those regions.
Another example of the plug-in architecture is the inclusion of
the PathFinder (10) component for the analysis of metabolic
data.

Wizards

Repetitive tasks such as updating the position of every
downstream gene after a frameshift correction are performed

Figure 1. The core data model of GenDB in UML. Only the three central
classes are shown; the classes actually represent a hierarchy of specialized
objects, e.g. a BLAST observation object and an InterPro observation
object.

Figure 2. Overview of the GenDB system.

2188 Nucleic Acids Research, 2003, Vol. 31, No. 8

praktikum2-ub
Rechteck



by wizards. These are software agents, modeling repetitive
tasks and/or tasks that require complex and synchronized
changes to several data objects. All actions performed using
wizards are modeled as annotations. Currently, wizards are
implemented for frameshift and sequence data correction,
CDS-start correction and reload (update) of contig sequences.

IMPLEMENTATION

We chose Perl (http://www.perl.org) as implementation
language using a multitude of existing Perl modules from
the BioPerl project. The widespread use of Perl in bioinform-
atics will enable many researchers to use GenDB as a platform
for their implementation of further genome analysis pipelines.
Using Perl with GenDB allows the incorporation of additional
tools and methods from this area of research. To be able to
offer an API to the outside world, the system requires a
persistent storage layer. We elected to use an relational storage
backend (SQL), which provides a fast, reliable and well tested
storage subsystem.

O2DBIv2 (objects to database interface)

The complexity of our system encourages using an object-
oriented approach not only in designing (see Fig. 1) but also in
implementing the system. While Perl offers various interfaces
to DBMS systems, there was no previous tool available for the
mapping of Perl objects to relational tables, applicable for our
purposes. We therefore used at ®rst the original O2DBI system
(O2DBI, J.Clausen, Technical Report, Bielefeld University,
2002) which was then enhanced substantially by B. Linke as
O2DBIv2 (B.Linke, in preparation) to map Perl objects
automatically to relational tables. Object descriptions in UML
(XMI) format are now translated into a library of Perl objects
with Perl and C++ client±server bindings. All objects are
stored in a relational database [e.g. MySQL (http://www.
mysql.com) or PostgreSQL (http://www.postgresql.org)].

Figure 3 shows a simpli®ed version of the role of O2DBI.
Classes are described as Perl hashes (denoting objects) which
are mapped to relational tables. Perl source code is generated
that implements standard methods (create, delete, init, get/set,
etc.) for the objects. These automatically generated object
methods are stored in Perl modules. Extension of the object
functionality is possible in separate Perl modules.

Interfaces

There are several ways of accessing the system, an API, user
interfaces and a new client±server interface.

User interfaces. The more widely used frontend is a Gtk-Perl
(http://www.gtkperl.org) based graphical user interface (GUI)
that offers access to the data in the system by a variety of
navigation metaphors (see Figs 4 and 5). Since not all users
have access to a platform with Perl/Gtk, a web interface is also
provided. The web interface offers somewhat restricted
functionality with respect to the GUI. However, due to its
HTML standard compliance, the web interface provides
access to GenDB for a wide range of platforms.

As stated above, the GenDB classes form the API.
Documentation of each class and object property or method
is available on our web site. The relative simplicity of our
object model, together with the documentation, have led
several groups to use GenDB as a platform for their research.
The web site has several sample scripts that show the
functionality of the GenDB API. Using this interface,
programmers are able to extract or manipulate the GenDB
data objects. This allows, for example, the user to write simple
Perl scripts that compute the molecular weight for every
protein in a given genome and to generate a table.

SOAP interface. In addition to the Perl API, we are in the ®nal
development stages of a client±server programmers interface.
This will not only allow non-Perl platforms to connect to the
GenDB system, but will also allow clients to run on remote
machines. We use a SOAP (http://www.w3.org/2000/xp/
Group/) interface to make our GenDB API available to
languages such as C++, Python or Java.

System requirements

Since one aim of the GenDB project is to provide a platform
for end users and developers, the system has very modest
system requirements. A Unix system with Perl, an SQL
database and BioPerl are necessary. If the user wants to
compute new observations with GenDB, the required tools
will have to be installed on the system or have to be available
via some kind of queuing system. For a complete local
installation, the sequence databases used by the tools and some
sequence retrieval mechanism are required. We currently use
SRS and BioPerl for this purpose. Of the systems available
today, only SRS provides user-friendly views on the sequence
databases.

The system can be installed on a single (e.g. Linux) server
or can be spread out over multiple machines, creating a
client±server installation. Locally, several test and develop-
ment installations exist on single CPU Linux platforms, while
our production environment includes a client±server environ-
ment with a server for the frontend, a dedicated database
server and a BioGrid to perform the computation of observa-
tions.

License

To provide a resource to the academic community, we
distribute the complete system (including source code) to non-
commercial users under an open source license. Special
commercial licenses are available on request.

Documentation and availability

The complete system including the source code, documenta-
tion, a guided tour and installation instructions is available
from our web site: http://gendb.Genetik.Uni-Bielefeld.DE.

Figure 3. O2DBI maps Perl objects to relational tables, generating both
SQL tables and Perl modules.

Nucleic Acids Research, 2003, Vol. 31, No. 8 2189

praktikum2-ub
Rechteck



The documentation includes the details on the system
architecture, the API and data model. An XML ®le describing
the complete data model in great detail and hyperlinks to both
versions of O2DBI can also be found on the web site.

BIOINFORMATICS METHODS

Data import and export

An important step for any genome analysis project is the
availability of good import and export facilities in the genome
annotation system. Currently, the GenDB system allows data
import from GenBank, EMBL and fasta format ®les.
Supported export formats are GenBank, EMBL, fasta format
®les and GFF (genome feature format; see http://www.sanger.
ac.uk/Software/formats/GFF). A user-con®gurable linear or
circular whole-genome view (see Fig. 5), which can be
exported as a PNG ®le, complements the export formats. For
each gene annotated with GenDB, a printable gene report can
be generated.

Integration of tools

As described in the System Architecture section, GenDB
allows the incorporation of arbitrary programs for different
kinds of bioinformatics analysis. According to the system
design, these programs are integrated as tools, which create
observations for a speci®c kind of region. The inclusion of
such tools in GenDB is very easy, with the most time-
consuming step typically being the implementation of a parser
for the result ®les. For the prediction of regions, such as coding
sequences (CDS) or tRNA-encoding genes, GLIMMER (11),
CRITICA (12) and tRNAscan-SE (13) have been integrated
into the system. Homology searches at the DNA or amino acid
level against arbitrary sequence databases can be done using
the BLAST program suite. In addition to using HMMer (14)
for motif searches, we also search the BLOCKS (15) and
InterPro databases to classify sequence data based on a
combination of different kinds of motif search tools. A number
of additional tools have been integrated for the characteriza-
tion of certain features of coding sequences, such as TMHMM

Figure 4. Main window of the GenDB system for navigation via the contig. A list in the left column allows the selection of a contig (here the pSymB mega-
plasmid of S.meliloti). The graphical overview in the top right window (RegionCanvas) displays the subregions of a selected contig (e.g. CDS, signal peptides,
etc.) and computed observations of several gene predictors (here Glimmer and Critica). The RegionCanvas and the sequence browser at the bottom are
synchronized. The window below the RegionCanvas contains information about the selected region or different plots (GC content, GC skew, etc.). The small
contig overview in the middle can be used to display the positions of selected genes (here several genes of the metabolism of nucleotide sugars).

2190 Nucleic Acids Research, 2003, Vol. 31, No. 8

praktikum2-ub
Rechteck



(16) for the prediction of a-helical transmembrane regions,
SignalP (17) for signal peptide prediction, or CoBias
(A.C.McHardy et al., in preparation) for analyzing trends in
codon usage.

Whereas some tools only return a numeric score and/or an
E-value as a result, other tools such as BLAST or HMMer
additionally provide more detailed information, such as an
alignment. Although the complete tool results are available to
the annotator, only a minimum data subset is stored in the
form of observations. Based on this subset, the complete tool
result record can be recomputed on demand. Storing only a
minimal subset of data reduces the storage demands by two
orders of magnitude when compared with the traditional `store
everything' approach. Our performance measurements have
shown this also to be more time ef®cient than data retrieval
from a disk subsystem for any realistic genome project. The
computation of tool results is done via a plug-in that connects
to a BioGrid using the Sun GridEngine software. The
graphical user interface for the display of tool results is
depicted in Figure 6. Upon selection of a certain region, all
available tool results for this region are visualized in a

completely customizable list. More information about the
underlying database record is available by a cross-link to
the corresponding sequence databases with the SRS system.

Data navigation metaphors

The design of the GenDB system allows the projection of data
from any component or plug-in onto all views (see also Fig. 7).
This allows the user to navigate the genome with a wide
variety of synchronized views.

Annotation

As already mentioned, the GenDB data model features a strict
separation of tool results (observations) and their interpret-
ation (annotation). This confers a large amount of ¯exibility
and enables researchers to de®ne their application-speci®c
annotation strategies freely. The GenDB system supports both
manual annotation and the application of automated annota-
tion strategies. For manual annotation, the user interface
provides a `one click' infrastructure; for automatic annotation,
the API can be used.

Figure 5. Visualization of a virtual 2D gel and navigation via a whole-genome representation. Highlighted spots and regions again show some genes of the
metabolism of nucleotide sugars.

Nucleic Acids Research, 2003, Vol. 31, No. 8 2191

praktikum2-ub
Rechteck



Figure 6. The observations, a single BLAST report and the underlying database record (via SRS) for a CDS region as shown by GenDB. The user can create
a manual annotation by clicking on an observation.

2192 Nucleic Acids Research, 2003, Vol. 31, No. 8

praktikum2-ub
Rechteck



The core GenDB system offers simple automatic annotation
functions which allow the application of user-de®ned `best
tool result' strategies. In addition to this, the GenDB-Annotate
plug-in provides more complex annotation strategies based on
the integration of an expert system. Here, the user can de®ne a
set of rules to be used for automatic annotation of regions, or
assignment of function to those regions. Owing to the
consistent, internal data representation of GenDB, all
GenDB objects can be accessed directly by an expert system.
While implementing a new annotation strategy currently
entails writing programming code, we are in the process of

establishing a graphical editor (with XML export) for editing
of annotation rules and a processor for computing annotations
based on these rules.

For annotation projects, the linear contig with its list of
genes often is only a starting point. The knowledge about
metabolic pathways and the enzymes contained in them is
connected to the data in GenDB via the GOPArc (Gene
Ontology and Pathway Architecture) module. GOPArc inte-
grates our previously described PathFinder system. It is a tool
for the integration of metabolic pathway and ontology
knowledge into GenDB. Using O2DBI, we created an object

Figure 7. Data navigation via KEGG pathways (here all annotated enzymes of the metabolism of nucleotide sugars for S.meliloti) or gene ontologies (here
identi®ed regions for a selected GO number).

Nucleic Acids Research, 2003, Vol. 31, No. 8 2193

praktikum2-ub
Rechteck



model representation of the complete KEGG database.
Knowledge from other databases [e.g. MetaCyc (http://www.
metacyc.org), BRENDA (http://www.brenda.uni-koeln.de)]
can be incorporated. In addition to that, the system also
provides access to the complete Gene Ontologies (GO) (http://
www.geneontology.org) and navigation metaphors that allow
browsing genomic data via the GO categories.

Annotation pipeline

Figure 8 shows an example of a genome annotation pipeline
that has been implemented with GenDB. Upon import of the
raw sequence data, a parent region object describing the
genome sequence is created. Following this step, user-de®ned
tools for the prediction of different kinds of regions, such as
coding sequences (CDS) or tRNA-encoding genes, can be run.
The output of these tools is stored as observations which refer
to the parent region object. Based on these observations, an
annotator, human or machine, performs `region annotation'.
This means con®rming or disregarding the results of gene
prediction tools by creating region objects such as CDSs or
tRNAs. The annotations form a complete protocol of all `region
annotation' events. Following the creation of different kinds of
regions, additional tools such as BLAST, HMMer or CoBias
can be run, creating information related to their potential
function. Finally, a `function annotation' step can be performed
by an annotator in which a putative function is assigned to these
regions by an interpretation of the observations.

APPLICATIONS

The GenDB system can be used for the annotation of novel
genomes, as a model organism database (MOD) for the
curation of already annotated genomes, or as a platform for
software development.

Using GenDB for genome annotation

The GenDB system has already been installed at a number of
European and worldwide institutions, including the German
Max Planck network. GenDB currently is being used for the
annotation of a number of microbial genomes. The genomes of
Sinorhizobium meliloti (18) and Corynebacterium glutamicum
ATCC 13032 (J.Kalinowski et al., in preparation) in addition
to a large number of bacterial arti®cial chromosomes, cosmids
and plasmids [e.g. Tauch et al. (19,20)] have already been
analyzed with GenDB at Bielefeld University. Six novel
genomes currently are being analyzed by other European
groups with their own installations of GenDB. An additional
®ve genomes (Sorangium cellulosum, Xhantomonas
campestris pv. vesicatoria, Alcanivorax borkumensis,
Azoarcus sp. and Clavibacter michiganensis) are analyzed
by a network of German groups, which use the GenDB
platform established at Bielefeld University.

GenDB as model organism database

For curation of already annotated genomes, these can be
imported from EMBL or GenBank format ®les into the
system. Any annotation information contained in these is
stored in the form of GenDB objects. The data corresponding
to these objects again are available via the GenDB API and
user interfaces. Once there is a standard data model for
prokaryote genomes (such as GMOD for the eukaryote world,
see http://www.gmod.org), GenDB will be updated to support
that data model.

GenDB as a platform for software development

Due to its versatility, the system is also well suited for use as a
platform for novel software development, for which it has
already been employed for 2 years at Bielefeld University.
Recently, a number of German groups have started to
implement their algorithms in the framework of GenDB, e.g.
groups in the Max Planck Institutes in TuÈbingen and Bremen
have implemented individual gene prediction strategies for
their microbial genome projects using the GenDB framework.

DISCUSSION

We present a new open source platform, for both biologists
and bioinformatics researchers, that implements the state of
the art for genome annotation systems and enhances it in
several areas. The system has been in use for 2 years at
Bielefeld University and for more than a year at various other
institutions. The key features of the system are its ¯exibility
and extensibility. With respect to the genome annotation
process, the system provides a ¯exible framework for
implementing various user-de®ned annotation strategies,
instead of relying on a single built-in annotation approach.
Our past experiences have also shown the system to be well
suited as an extensible platform for the integration of different
kinds of functionality. It currently is used for the implement-
ation of a system which links microarray data to gene
annotation. We have implemented a wide range of metaphors
for data navigation, which allow fast and easy access to
different kinds of information during the genome annotation
process. We hope that the positive features of the system
which we provide to the research community will help to

Figure 8. A sample genome analysis pipeline implemented with GenDB.

2194 Nucleic Acids Research, 2003, Vol. 31, No. 8

praktikum2-ub
Rechteck



initiate research in new directions and will also be used for
generating novel knowledge.

The well designed and documented API has also enabled
other researchers to build their own tools based on GenDB.
This proves that the main bene®t of the open source approach,
the cooperative development of high quality software, is
already emerging. The ongoing work on GenDB is in the
direction of more sophisticated automatic annotation methods.
Another direction is the integration of GenDB with other
programs and data sources to build a platform for systems
biology.

Since only 60±70% of the genes typically found in a
bacterial genome can be characterized functionally using a
purely sequence-based approach, there is a clear need for
adding more information to the analysis process. The GenDB
system is an ideal platform to link transcriptome and proteome
evidence to the genome, facilitating further analysis of
previously uncharacterized genes.

ACKNOWLEDGEMENTS

The authors would like to thank all GenDB users for their
time, patience and feedback that helped greatly in optimizing
numerous details of the system. A.C.M. was supported by the
DFG-Graduiertenkolleg 635 Bioinformatik. The work of F.M.
and A.G. is ®nanced by the BMBF grant 031U213D.

REFERENCES

1. Gaasterland,T. and Sensen,C.W. (1996) MAGPIE: automated genome
interpretation. Trends Genet., 12, 76±78.

2. Andrade,M.A., Brown,N.P., Leroy,C., Hoersch,S., de Daruvar,A.,
Reich,C., Franchini,A., Tamames,J., Valencia,A., Ouzounis,C. and
Sander,C. (1999) Automated genome sequence analysis and annotation.
Bioinformatics, 15, 391±412.

3. Frishman,D., Albermann,K., Hani,J., Heumann,K., Metanomski,A.,
Zollner,A. and Mewes,H.W. (2001) Functional and structural genomics
using PEDANT. Bioinformatics, 17, 44±57.

4. Overbeek,R., Larsen,N., Pusch,G.D., D'Souza,M., Selkov,E.,
Kyrpides,N., Fonstein,M., Maltsev,N. and Selkov,E. (2002) WIT:
integrated system for high-throughput genome sequence analysis and
metabolic reconstruction. Nucleic Acids Res., 28, 123±125.

5. Rutherford,K.M., Parkhill,J., Crook,J., Horsnell,T., Rice,P.,
Rajandream,M.-A. and Barrell,B. (2000) Artemis: sequence visualisation
and annotation. Bioinformatics, 16, 944±945.

6. Overbeck,R., Fontstein,M., D'Souza,M., Pusch,G.D. and Maltsev,N.
(1999) The use of gene clusters to infer functional coupling. Proc. Natl
Acad. Sci. USA, 96, 2896±2901.

7. Altschul,S.F., Madden,T.L., Schaffer,A.A., Zhang,J., Zhang,Z.,
Miller,W. and Lipman,D.J. (1997) Gapped BLAST and PSI-BLAST: a
new generation of protein database search programs. Nucleic Acids Res.,
25, 3389±3402.

8. Apweiler,R., Attwood,T.K., Bairoch,A., Bateman,A., Birney,E.,
Biswas,M., Bucher,P., Cerutti,L., Corpet,F., Croning,M.D.R., Durbin,R.,

Falquet,L., Fleischmann,W., Gouzy,J., Hermjakob,H., Hulo,N.,
Jonassen,I., Kahn,D., Kanapin,A., Karavidopoulou,Y., Lopez,R.,
Marx,B., Mulder,T.M., Oinn,N.J., Pagni,M., Servant,F., Sigrist,C.J.A.
and Zdobnov,E.M. (2001) The InterPro database, an integrated
documentation resource for protein families, domains and functional
sites. Nucleic Acids Res., 29, 37±40.

9. Etzold,T. and Argos,P. (1993) SRS: an indexing and retrieval tool for ¯at
®le data libraries. CABIOS, 9, 49±57.

10. Goesmann,A., Haubrock,M., Meyer,F., Kalinowski,J. and Giegerich,R.
(2002) Path®nder: reconstruction and dynamic visualization of metabolic
pathways. Bioinformatics, 18, 124±129.

11. Delcher,A.L., Harmon,D., Kasif,S., White,O. and Salzberg,S.L. (1999)
Improved microbial gene identi®cation with GLIMMER. Nucleic Acids
Res., 27, 4636±4641.

12. Badger,H. and Olsen,G.J. (1999) CRITICA: coding region
identi®cation tool invoking comparative analysis. Mol. Biol. Evol., 16,
512±524.

13. Lowe,T.M. and Eddy,S.R. (1997) tRNAscan-SE: a program for improved
detection of transfer RNA genes in genomic sequence. Nucleic Acids
Res., 25, 955±964.

14. Eddy,S.R. (1998) Pro®le hidden Markov models. Bioinformatics, 14,
755±763.

15. Henikoff,S. and Henikoff,J.G. (1991) Automated assembly of protein
blocks for database searching. Nucleic Acids Res., 19, 6565±6572.

16. Sonnhammer,E.L.L., von Heijne,G. and Krogh,A. (1998) A hidden
Markov model for predicting transmembrane helices in protein
sequences. In Glasgow,J., Littlejohn,T., Major,R., Lathrop,F., Sankoff,D.
and Sensen,C. (eds), Proceedings of the Sixth International Conference
on Intelligent Systems for Molecular Biology. AAAI Press, Menlo Park,
CA, pp. 175±182.

17. Nielsen,H., Engelbrecht,J., Brunak,S. and von Heijne,G. (1997)
Identi®cation of prokaryotic and eukaryotic signal peptides and
prediction of their cleavage sites. Protein Eng., 10, 1±6.

18. Galibert,F., Finan,T.M., Long,S.R., PuÈhler,A., Abola,P., Ampe,F.,
Barloy-Hubler,F., Barnett,M.J., Becker,A., Boistard,P., Bothe,G.,
Boutry,M., Bowser,L., Buhrmester,J., Cadieu,E., Capela,D., Chain,P.,
Cowie,A., Davis,R.W., Dreano,S., Federspiel,N.A., Fisher,R.F.,
Gloux,S., Godrie,T., Goffeau,A., Golding,B., Gouzy,J., Gurjal,M.,
Hernandez-Lucas,I., Hong,A., Huizar,L., Hyman,R.W., Jones,T.,
Kahn,D., Kahn,M.L., Kalman,S., Keating,D.H., Kiss,E., Komp,C.,
Lelaure,V., Masuy,D., Palm,C., Peck,M.C., Pohl,T.M., Portetelle,D.,
Purnelle,B., Ramsperger,U., Surzycki,R., Thebault,P., Vandenbol,M.,
VorhoÈlter,F.J., Weidner,S., Wells,D.H., Wong,K., Yeh,K.C. and Batut,J.
(2001) The composite genome of the legume symbiont Sinorhizobium
meliloti. Science, 29, 668±672.

19. Tauch,A., Schneiker,S., Selbitschka,W., PuÈhler,A., van Overbeek,L.S.,
Smalla,K., Thomas,C.M., Bailey,M.J., Forney,L.J., Weightman,A.,
Ceglowski,P., Pembroke,T., Tietze,E., Schroder,G., Lanka,E. and
van Elsas,J.D. (2002) The complete nucleotide sequence and
environmental distribution of the cryptic, conjugative, broad-host-range
plasmid pIPO2 isolated from bacteria of the wheat rhizosphere.
Microbiology, 148, 1637±1653.

20. Tauch,A., SchluÈter,A., Bischoff,N., Goesmann,A., Meyer,F. and
PuÈhler,A. (2002) The 79,370bp conjugative plasmid pb4 consists of an
incp-beta backbone loaded with a chromate resistance transposon, the
stra±strb streptomycin resistance gene pair, the oxacillinase gene
bla(nps-1), and a tripartite antibiotic ef¯ux system of the
resistance±nodulation±division family. Mol. Gen. Genomics, 268,
570±584.

Nucleic Acids Research, 2003, Vol. 31, No. 8 2195

praktikum2-ub
Rechteck


