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ABSTRACT

Rhizobium leguminosarum, biovar viceae, strain RCC1001 contains two
glutamine synthetase activities, GSI and GSII. We report here the
identification of glnA, the structural gene for GSI. A 2 kb fragment of DNA
was shown to complement the GIln phenotype of Klebsiella pneumoniae glnA
mutant strains. DNA sequence analysis revealed an open reading frame (ORF) of
469 codons specifying a polypeptide of 52,040 daltons. Its deduced amino acid
sequence was found to be highly homologous to other glutamine synthetase
gsequences. This ORF was expressed in Escherichia coli minicells and the
corresponding polypeptide reacted with an antiserum raised against GSI.
Upstream of glnA we found an ORF of 111 codons (ORFlll) preceded by the
consensus sequence for an ntrA-dependent promoter. Minicells experiments
showed a protein band, with a molecular weight in good agreement with that
(10,469) deduced from the nucleotide sequence. On the basis of homology
studlies we discuss the possibility that the product of ORFlll is equivalent
to the P protein of E.coli and plays a similar role 1in regulation of
nitrogen metabolism.

INTRODUCTION

Rhizobium bacteria use ammonia for growth in the free-living state, but
in the Rhizobium-legume symbiosis the nitrogen fixing bacteroids export all
ammonia produced in the nitrogen fixing process to the plant fraction of the
symbiotic nodule (l). Thus, the enzymes for ammonia assimilation need to be
regulated differently in the two bacterial states. Another peculiarity of
Rhizobiaceae 1is the presence of two glutamine synthetases (GS; EC 6.3.1.2):
GSI, similar to the GS of enteric bacteria, regulated by adenylylation and
relatively heat stable; and GSII, heat labile and not known to be modified
after tranmslation (2,3,4,5,6). Blochemical studies (7) have shown that GS
plays a central role in the regulation of nitrogen metabolism, while
genetical studies (8,9) indicate that regulation of the glnA gene 1in

Enterobacteriaceae 1s very complex. A coordinated nitrogen control system

similar to that of enteric bacteria (10) has not been described in Rhizobium

spp. .
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We started a study of the GS activities of R.leguminosarum biovar viceae,
strain RCC1001, in order to better understand nitrogen assimilation and its
regulation in this species (l11). In this paper we report the DNA sequence of
glnA, the structural gene for GSI, and the comparison of the deduced
polypeptide sequence with other known sequences. We also report the sequence
of an open reading frame upstream of glnA coding for a protein which appears

to play a regulatory role, probably equivalent to that of the P protein,

I1
which 18 involved in the regulation of GS adenylylation and glnA expression

in Escherichia coli (12,13).

MATERIALS AND METHODS

Strains, plasmids and media
Abbreviations used are: Ap (Ampicillin), Km (kanamycin), Cm

(chloramphenicol), Tet (tetraciclinm).

Strains used were E.coli HB1O1 (14), JM83 (15), DS998 (16); Klebsiella
pneumoniae wild type (17), UNF1827 and UNF1838 (18); R.leguminosarum strain
LPR1105, a rifampicin resistant derivative of RCC1001 (19); Agrobacterium
tumefaciens strain LBA2715 containing the R.leguminosarum symbiotic plasmid
(pSym) (20).

Plasmids used were: pMMB34 (21); pSVB20, pSVB23, pSVB24, pSVB25 (puC8
derivatives, Apr; W.A. et al., in preparation); pACYC184 (22); p7D9 (11),
Gln+, Kmt, containing 27 kb of R.leguminosarum DNA inserted in the
cosmid vector pMMB34; pMG1O (l1), Gln+, Cmr, containing 6.5 kb of
R.leguminosarum DNA and 3.4 kb of pMMB34 DNA inserted in the vector
pACYC184.

Media wused were: TY (14); PA (14) supplemented with O0,1% glucose;
minimal citrate (23). When needed, glutamine was used at a concentration of
200 ug/ml.

DNA manipulation

Most procedures used were according to Maniatis et al.(l4). The rapid
isolation of plasmid DNA was performed as described (24). Plasmid DNA was
prepared according to Davis et al.(25). pSym DNA was prepared from strain
LBA2715 as described (26). Hybridization experiments were all carried out at
60°C. DNA sequencing was performed with minor modifications (W.A. et al., in
preparation) of the method of Maxam and Gilbert (27).

Protein synthesis in minicells

Strain DS998 was transformed with specific plasmids and grown in minimal
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Figure 1. (a): restriction map of the glnA region and the DNA left in
different Bal3l deletions. The black bar indicate the location of the EcoRI
fragment cross-hybridizing to K.pneumoniae glnA (11). The dotted lines
indicate DNA (about 3 kb) omitted from the figure. Only the glnA
reglon-proximal end of the deletions is indicated in the figure. The boundary
of pl0-1 and p30-11 was confirmed by DNA sequencing (see Fig.2). The boundary
of pE-9 is between the EcoRI and Pstl restriction sites (striped bar); that
of pD-8 is between the Smal and BamHI sites. (b): sequencing strategy and
location of the thre ORFs deduced by computer analysis. Vertical arrows
indicate putative ribosome binding sites. P shows the position of a
sequence homologous to the consensus for an ng%iikependent promoter. A black

bar indicates the Sall fragment used as a probe in the hybridization
experiments of Fig.5.

medium supplemented with thiamine (10 ug/ml), casaminoacids (0,5%Z) and the
appropriate antibiotic. Minicells were purified (28), divided into aliquots
and stored at -80°C. After preincubation for 30 min, incorporation of either
355-methionine, 3H—valine or 3H-leucine was performed for 60 min (28).

Immunoprecipitation was performed as described (29).
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ala ead
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Figure 2. DNA sequence and deduced amino acid sequence of ORFIIl and ORF469
from the XhoI site to the Clal site of Fig.l. A consensus sequence for an
ntrA-dependent promoter is boxed, while putative ribosome binding sites are
underlined. An asterisk (*) shows the left boundary of plO-1 and p30~11
deletions.

RESULTS
Localization of the glnA region on pMG1O.
We have previously shown (11) that cosmid p7D9 (see Materials and

Methods) complements the Gln phenotype of K.pneumoniae strains UNF1827
(glnA) and UNF1838 4 glnA-ntrC). A subclone of p7D9, pMGl0, complementing
both strains, is used in this paper. In Fig.la we show part of pMGIO DNA
containing the 1.3 kb fragment cross-hybridizing to K.pneumoniae glnA (11).
We generated deletions of pMGI0O by digestion at the single Xhol site
shown in Fig.la and treatment with Bal3l nuclease. After ligation and

transformation into strains UNF1827 and UNF1838 we analyzed 24 clones, 7 of
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which were Gln+ and 17 were Gln . Restriction analysis showed that the
Xhol site was deleted in all clones. We searched for the presence of the
surrounding sites in order to construct a restriction map of all clones and
the glE+(p10—1) and Gln (p30-11) clones shown in Fig.la were chosen
because their end-points, confirmed by sequencing (see below Fig.2), are the
closest definition of the left-side border of the glnA region.

We used clone plO0-1 to generate a set of new deletions by digestion at
the single BstEIT site and treatment with Bal3l nuclease. Restriction
analysis of 40 clones carrying deletions showed that the EcoRI site to the
right of Clal 18 present in all Gln+ clones and absent in all Gln~
clones. In Fig.la a Gln+ clone (pE-9) and a Gln clone (pD-8) are shown.
R.leguminosarum DNA left in pE-9 is 2 kb long and therefore about 2 kb of DNA
are sufficient to suppress the Gln~ phenotype of strains UNF1827 and
UNF1838.

DNA sequencing of the glnA region.

The sequence of R.leguminosarum DNA from the Xhol site to the Clal site
indicated in Fig.l is presented in Fig.2. A computer search for open reading
frames longer than 100 codons resulted in the three ORFs shown in Fig.lb. A
sequence with good homology to an ntrA-dependent promoter (9) 1is found at
position 174-190 followed by a putative ribosome binding site at position
235-240 and an ORF of 111 codons (ORFl1ll). At the end of this ORF there is no
obvious sequence suggesting rho-independent transcription termination and at
position 650-655 there is a new putative ribosome binding site followed by an
ORF of 469 codons (ORF469). Downstream of this, we do not see any sequence
suggesting rho-independent transcription termination. On the opposite strand
another ORF of 517 codons is present (see Fig.lb) starting with an Arg codon
at position 2215 and ending at position 662.

DNA sequencing of appropriate subclones shows that plO-1 is deleted up to
nucleotide 347 and that p30-11 is deleted up to nucleotide 750, as indicated
in Fig.2.

We compared the deduced aminoacid sequence of the ORFlll product with
the protein sequences present 1in the January 1986 data bank using the
Micro-Genie program (30) and found no significant homology. However, it was
pointed out to us by dr. M. Merrick that codons 47 to 57 of ORFlll are
strikingly similar to the sequence of a peptide of the P
E.colil (12):

11 protein of

PII: -Gly-Ala-Glu-Tyr-Met-~Val-Asp-Phe-Leu-Pro-Lys-
ORFl1l: -Gly-Ala-Glu-Tyr-Val-Val-Asp-Phe-Leu-Pro-Lys-
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Fig 4. SDS-PAGE of minicells extracts containing different plasmids. Panel
A: S-methionine labeling of minicells containing: (a): vector pACYC184;
b): pMGlO; (c): plO-l; (d): p30-11; (e): PpE-9; (f): pD-8. Panel B
H-valine (a and b) or “H-leucine (c) labeling of: (a): pACYC184; (b) and
(c): pMGlO. The 58, 33 and 12 markers are explained in the text. Lanes (a)
show the CAT band of pACYC184 present also in the other lanes. Molecular
weights of insert-specific ban?ﬁ were interpolated from the molecular weight
of commercially available C-standards. The experiments shown were
performed with 10% (Panel A) and 20% (Panel B) polyacrylamide.

Since the complete amino acid sequence of the PII protein of E.coli is not
published, we could not compare other portions of the two proteins. The
molecular weight of the PII protein of E.coli is 11,000 to 13,400 (31),
similar to that of the deduced amino acid sequence of ORFl11 (10,469). The
comparison of the amino acid composition of the PII protein of E.coli (31)
and of the ORFlll product shows a striking similarity. We conclude that the
product of ORFl1l might be equivalent to the E.coli PII protein. -
We also searched for homology of the deduced amino acid sequence of
ORF469 to other protein sequences present in the data bank and found a
significant value only with Anabaena sp. strain 7120 GS. We introduced in
the data bank the deduced protein sequences of E.coli (32) and Azospirillum
brasilense sp.7 (33) GSs and that of Bradyrhizobium japonicum GSII (6).
Homology of ORF469 is 56%, 63% and 68% with Anabaena, E.coli and A.brasilense
GSs, respectively, and most of it is in boxes of identical amino acids, as
shown in Fig.3, thus suggesting that this ORF codes for R.leguminosarum GSI.
Homology with B.japonicum GSII 1is 15%. The molecular weight of the deduced
amino acid sequence of ORF469 is 52,040, in good agreement with that (60,000)
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of the GS purified from UNF1827(pMG10) (A. Fuggli and R.D., manuscript in
preparation). The molecular weight of the deduced amino acid sequences of

Anabaena, E.coli and A.brasilense GSs are 53,265, 51,814 and 51,917

respectively.

A recent paper (34) reports the crystallographic structure of Salmonella
typhymurium GS and defines an N-domain formed by 92 N-terminal amino acids
and a C-domain formed by 5 stretches of amino acids (123-137; 208-228;
263-276; 343-361 and 392-400), participating in the conformation of the
active site. We measured homology on portions of the GS sequences which we
assume to be analogous to the above mentioned domains (see Fig.3). We found

that N-domain sequences of Anabaena, E.colil and A.brasilense GSs give values

of homology to R.leguminosarum GSI slightly lower than those found for the
complete protein (49Z, 582 and 552 respectively), while C-domain sequences
show higher values (72%Z, 692 and 82X respectively). A more detailed analysis
shows that 4 of the C-domain stretches are highly homologous while the Sth

one (residues 392-400) 1s very conserved in R.leguminosarum, E.coli and

A.brasilense GSs8 and different in Anabaena GS.

Using the computer program reported above (30) we analyzed the secondary
structure of 110 N-terminal and of 110 C-terminal residues of the 4 protein
sequences. No significant homology was found among the secondary structures
of the C-terminal sequences while the N-terminal sequences showed homology
except in the case of Anabaena (data not shown).

The ORF on the opposite strand starts at least 80 codons upstream of the
Arg codon, as shown by DNA sequencing not reported in this paper. Also E.coli
and A.brasilense sequences present an extended ORF on the opposite strand,
which is absent in the Anabaena sequence. The codons of these three ORFs are
on a reading frame coinciding (with opposite polarity) with the reading
frame of the respective GSs. Analysis of the deduced amino acid sequence in
the data bank showed no significant homology of the R.leguminosarum ORF to
other proteins.

Expression of pMGl0 and its deletion derivatives in minicells.

In order to demonstrate the expression of the ORFs identified by DNA
sequencing, minicells experiments were carried out. Plasmid pMG10 and the
deletion derivatives described above were introduced into strain DS998 by
transformation and minicells were purified. After labeling with
3Ss—methionine and SDS-PAGE, we observed, in addition to vector-coded
bands, a band specific of the insert of pMGl0 (Fig.4A). This band, 58,000 in
molecular weight, 1s also present in the Gln+ deletion derivatives pl0-~1

and pE-9, 1s absent 1in the Gln~ deletion p30-11, while it 1s reduced 1in
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gure 5. Hybridization of a 32P—pS)F‘m DNA fragment (left panel) and

P-glnA DNA (right panel) to total DNA (lane t) and pSym DNA (lane p). The
probe pSym DNA is a 1.8 kb EcoRI fragment isolated from plasmid pl085 (40);
glnA DNA is a Sall fragment of pMGl0 indicated in Fig.lb and in the text. 5
ug of total DNA and 1 ug of pSym DNA (a plasmid preparation from strain LBA
2715), were digested with EcoRI and used in each experiment. The molecular
weight of the hybridizing band is interpolated from aA -HindIII marker (not
shown).

molecular weight (33,000) in the Gln deletion pD-8. We conclude that the
latter is a truncated polypeptide. Therefore, this experiment shows that the
insert of pMGl0 codes for a protein, 58,000 in wmolecular weight, that the
direction of tranmscription is left to right as indicate in Fig.lb and that
this protein 1is necessary for the Gln+ phenotype either in strain UNF1827
or UNF1838. The additional band, approximately 28,000 in molecular weight
(lanes b,c and d), appears to be coded by the DNA deleted in PE-9 and it is
not relevant to this study.

A protein A-Sepharose 4CL column was treated with a polyclonal antiserum
raised in rabbit against pure GSI obtained from strain UNF1827 (p7D9)
(A.Fuggi and R.D., manuscript in preparation). This column retained the
58,000 molecular weight protein produced in 355--:matl'11m'1!.n|z labeled
minicells. After elution with the appropriate buffer (see Materials and
Methods), SDS-PAGE showed a single band comigrating with that of pMGl0 (data
not shown). We conclude that this band is GSI, coded by ORF469, which we
call glnA,
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In the experiment of Fig.4A we could not see any band corresponding to
the size predicted from ORF11l. Since this ORF contains only one methionine
at its amino-terminal end (Fig.2) we repeated a minicell experiment using
either 3H-valine or 3H—leucine and found a band, 12,000 to 14,000 f{in
molecular weight, in addition to the 58,000 band (Fig.4B). These experiments
demonstrate that ORFlll and glnA are expressed in minicells, while the ORF
present on the opposite strand is not expressed.

The glnA region is not located on the symbiotic plasmid

A Sall fragment of pMGlO, shown in Fig.lb, was used as a probe and
hybridized to EcoRI digests of R.leguminosarum total and pSym DNA. We
observed hybridization only to total DNA, as shown in Fig.5. If, instead, the
probe originates from R.leguminosarum pSym DNA, there 1s hybridization to
both DNAs. Therefore the insert of pMGlO is not located on pSym. The size of
the hybridizing fragment 1s that (1.3 kb) of the EcoRI fragment of pMG1O
shown in Fig.la. Since total DNA was digested with EcoRI, this experiment
shows colinearity between the EcoRI restriction sites of the insert of pMGIO
and those of total DNA.

DISCUSSION

Free-living Rhizobium bacteria assimilate ammonia for growth, but the
nitrogen fixing bacteroids export to the plant fraction of the symbiotic
nodule all ammonia produced. That is, when nitrogenase activity becomes
derepressed ammonia assimilation 1s blocked, probably by repression and
inhibition of the GSs present in the nodule (2,4). At the same time a
nodule-specific plant GS 1is derepressed (35). The study of regulation of
R.leguminosarum glnA 1is important to understand the physiology of ammonia

utilization in the symbiosis.

We report in this paper the sequence of the glnA gene and of a
contiguous gene which, at the amino acid level, shows homology to the PII
protein of E.coli (31). These two genes are not located on the symbiotic
plasmid (pSym) as shown in Fig.5.

The DNA of pMGl0 required to suppress the Gln phenotype of UNF1827
and of UNF1838 has been localized with the help of Bal3l deletions and
restricted to about 2 kb. This DNA reglon overlaps with the fragment

cross-hybridizing to K.pneumoniae glnA DNA (l1) as indicate in Fig.la. The

DNA sequence of this region, reported in Fig.2, contains an ORF at position
665 to 2071 (ORF469), the deduced amino acid sequence of which is highly
homologous to that of E.coli, Anabaena and A.brasilenge GSs (Fig.3), and
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poorly homologous to B.japonicum GSII. Expression of ORF469 in minicells
(Fig.4) reveals the presence of a protein, 58,000 in molecular weight, that
specifically reacts with an antiserum against R.leguminosarum GSI. The
molecular weight of GSI 1is 60,000 (A.Fuggi and R.D., in preparation), while
the deduced molecular weight of the protein encoded by the ORF at position
665-2071 is 52,040. We conclude that ORF469 corresponds to glnA, the
structural gene for GSI.

R.leguminosarum GSI can be adenylylated in vivo, at least in
K.pneumoniae, because pure GSI, or GSI activity in crude extracts of
UNF1827 (pMG10), 41s partially adenylylated (A.Fuggli and M.G., unpublished

results). Therefore, R.leguminosarum, E.coli and A.brasilense GSs can be

adenylylated, while Anabaena GS cannot (36). We compared the 5 amino acid
stretches of the C-domain (34) in the four protein sequences of Fig.3 and
found Anabaena-gpecific differences only in the 5th stretch (residues 392
to 400, containing the Tyr target of adenylylation). An analysis of the
secondary structure of the four proteins in this region, using the
Micro—Genie computer program (30) shows that these are all different and
therefore the correlation between lack of adenylylation and secondary
structure around the target Tyr, previously proposed (32), 1s not confirmed.
Anabaena-specific differences by this type of analysis were only found in the
N~domain (34). If this 1s related to the lack of adenylylation should be
confirmed by independent evidence.

The ORF on the opposite strand of glnA does not show a band in minicell
experiments and we found no significant homology of 1its deduced amino acid
sequence to other sequences in the data bank. An extended ORF 1is present

also on the opposite strand of E.colil and A.brasilense glnA DNA, but not in

the case of Anabaena. As shown under Results the reading frame of these
three ORFs 1ie coincident, but with opposite polarity, with that of GS.
Although this 1s certainly striking and suggests a functional or evolutionary
role (37) we did not investigate its significance further on.

Plasmid pMGl10 codes not only for GSI, but also for a protein expressed
in minicells with a molecular weight from 12,000 to 14,000. This molecular
weight 18 1in good agreement with that (10,469) of the deduced amino acid
sequence of ORF11ll (nucleotides 251 to 584). As indicated under Results the
product of ORFl1ll might be equivalent to the E.coli PII protein. If so,

while glnB, the supposed structural gene for P is unlinked to ginA in

11’
K.pneumoniae (38) and in E.coli (10) it might be contiguous to it in

R.leguminogarum. A glnB-like gene appears to be contiguous to glnA also in
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A.brasilense and B.japonicum. In fact, 350 bp upstream of A.brasilense glnA

(33) the published sequence starts with 75 bp coding for 25 residues, 20 of
which are identical to residues at the -COOH end of the ORFlll product. In
the case of B.japonicum (5), 336 bp upstream of glnA the published sequence
starts with 180 bp coding for 60 residues, 45 of which are identical to
residues at the -COOH end of the ORFlll product.

We previously reported evidence (39) that DNA in the region coding for
ORF1l1ll 1is responsible for inhibition of the growth observed in the presence
of nitrate. In fact, when UNF1827 carrying either p7D9 or pMGlO is grown in
nitrate, there was no complementation of the Gln phenotype. Although still
obscure, this phenomenon suggests that GSI might be repressed or adenylylated
when K.pneumoniae containing pMGlO is grown in nitrate. UNF1827(pl0-1) grows
in nitrate 1indicating that the DNA deleted 1in pMGI0 to generate plO0-1 is
required for the nitrate effect. This observation suggests a regulatory role,
or an interference with a K.pneumoniae regulatory circuit, caused by the
product of ORFIl11.

In Fig. 2 we show a sequence with good homology to an ntrA-dependent
promoter at position 174-190, It is tempting to conclude that glnA 1is
transcribed from this promoter in pMG10, since R.leguminosarum DNA in this
plasmid 1is inserted with opposite orientation to the Tet promoter of the
PACYC184 vector. However, the putative ntrA-dependent promoter is deleted in
the plO-1 (Gln+) clone (Fig.la) and therefore a promoter more proximal to
gloA might exist. Indeed, at position 564-597 we find a sequence homologous

to the promoter sequence of B.japonicum glnA (5). Experiments are in progress

to identify transcription initiation(s) in this region.
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