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Summary. Recent research has demonstrated that 
ipsilaterally visually evoked potentials (VEPs) can be 
measured within the ectostriatum, the telencephalic 
target area of the tectofugal visual pathway in birds. 
In this paper we systematically measured contra- and 
ipsilateral VEPs within the ectostriatal complex to 
obtain more detailed information on the processing 
of contra- and ipsilateral stimuli. The similarity of 
neighbouring VEPs at equal depth and a comparison 
of a one dimensional and a three dimensional analy- 
sis of current source-densities (CSDs) for identical 
coordinates suggested that a one dimensional current 
source-density analysis might be applicable. The one 
dimensional current source-density analysis demon- 
strated largely corresponding patterns in the sink - 
source sequences of the current source-density depth 
profiles for the contra- and ipsilateral stimulus 
responses. The occurrence of a large sink in the 
centre of the ectostriatal core, together with the 
results of multiunit recordings, shows that the ecto- 
striatal core is the location of the generators for both 
the contra- and the ipsilaterally evoked responses. 
The occurrence of macroscopic sinks and sources and 
the fact that VEPs can be recorded from the ecto- 
striatum shows that there is a higher degree of order 
in the ectostriatum than has been previously demon- 
strated by anatomical methods. The time coincidence 
between the maximum spike rate of multiunit 
responses, the negative peak of the evoked potential, 
and the large central sink demonstrates that the 
influence of ipsi- as well as of contralateral stimuli is 
predominantly excitatory. 
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Introduction 

In birds with lateral eyes, the tectofugal visual 
pathway is much more prominent than the thalamo- 
fugal pathway, which in turn is more developed in 
birds with frontal eyes like most nocturnal raptors 
(Ebbeson 1970; Pettigrew 1977). Therefore, it is 
likely that in birds with lateral eyes, like the zebra 
finch, the tectofugal system has a major importance 
for the processing of visual information. 

In contrast to rather detailed information on the 
optic tectum (Jassik-Gerschenfeld and Guichard 
1972; Mori 1973; Holden 1968a, b; Hardy et al. 
1984), the knowledge about visual processing in 
higher stations of this pathway, the nucleus rotundus 
and the ectostriatum, is sparse. 

Early electrophysiological evidence for the pro- 
cessing of visual information in the nucleus rotundus 
and the ectostriatum was provided by evoked poten- 
tial recordings with electrical stimulation of the 
ipsilateral tectum opticum and nucleus rotundus 
(Revzin and Karten 1966). These results were con- 
firmed with flash evoked potentials by Parker and 
Delius (1972). The neurons of the nucleus rotundus 
have large receptive fields and respond best to fast 
moving stimuli (Maxwell and Granda 1979). More- 
over, Yazulla and Granda (1973, Granda and 
Yazulla 1971) demonstrated colour coding properties 
of rotundal neurons. Ectostriatal neurons resemble 
the receptive field properties of rotundal neurons 
(Revzin 1970; Kimberly et al. 1971). 

In general, the tectofugal pathway has been seen 
as to be exclusively driven by the contralateral eye. 
However, studies from our laboratory revealed that a 
strong influence from the ipsilateral eye can be 
detected electrophysiologically in the telencephalic 
target area of this pathway, the ectostriatum (En- 
gelage and Bischof 1988). This demonstrates that the 
interhemispheric connections between the tectofugal 
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systems of either side are of more importance than 
had been previously believed (Benowitz and Karten 
1976; Hunt and Kfinzle 1976; Robert and Cuenod 
1969a, b; Hardy et al. 1984). The aim of this study 
was to examine in more detail the ectostriatal 
responses to ipsi- and contralateral stimuli. In par- 
ticular, we were interested in the location of the sinks 
and sources generating the ectostriatal VEPs, and in 
an evaluation of functional subdivisions of this 
nucleus. We therefore applied a current source- 
density analysis to the ectostriatum. In mammals this 
method has become a widely accepted and common 
tool (for review see: Mitzdorf 1985), whereas in birds 
it seems to be limited to one study in the tectum 
opticum (Stone and Freeman 1971). In contrast to 
VEPs the sinks and sources revealed by this method 
are spatially localized phenomena (e.g. Mitzdorf 
1985). Therefore, the current source-density method 
leads to a much greater spatial resolution of these 
events and in principle the anatomical aspect of the 
current source-densities can be used for a functional 
identification of structures, or even of subdivisions of 
structures (Mfiller-Preuf3 and Mitzdorf 1984; Mitz- 
doff 1985, 1987). In contrast to single unit data, the 
current source densities predominantly show sites of 
excitatory synaptic interactions rather than locations 
of cell somata and, like intracellular recordings, they 
disclose even subthreshold synaptic events (Mitzdorf 
!987). Therefore, this technique should be a useful 
tool for a closer examination of the function of the 
ectostriatum. In fact, our experiments reveal that a 
one dimensional CSD analysis is applicable to the 
ectostriatum of birds, and that this brain structure is 
of higher anatomical order than the available evi- 
dence suggests. 

Material and methods 

The experiments were performed on 20 adult male and female 
zebra finches obtained from the institute's stock. 

Preparation, stimulation and evoked potential recording 

The birds were anesthetized once with an injection of 0.1 ml 
urethane (20% w/v) and, after about half an hour, mounted in a 
specially designed stereotaxic headholder (Bischof 1981). Evoked 
potentials were recorded with glass micropipettes filled with alcian 
blue in 3 M NaC1 (5-15 MQ). The stereotaxic coordinates for the 
electrode positions were derived from an atlas of the zebra finch 
brain (H.J. Bischof and B.N. Nixdorf, unpublished). In the 
experiments concerned with the spatial distribution of VEPs in the 
ectostriatum the recording sites were verified histologically. Visual 
stimuli were provided by a stroboscope. Flashes were directed to 
one or both eyes by a fiber optics system. Contra-, ipsi- and 
bilateral stimuli were selected by opening and closing shutters 
between the stroboscope and the fiber optics system. The terms 
ipsilateral and contralateral refer to the position of the recording 

electrode. Controls were made by closing the shutters in the fiber 
optics system or, in some cases, by removing the fiber optics 
system from the eyes. This excluded the contribution of acousti- 
cally evoked responses and electrical artifacts which may contami- 
nate the visually evoked potentials (VEPs). 

Signals were averaged 64 times by a Nicolet Signal Averager. 
The interstimulus time interval was five seconds. Storing and 
processing of the data was accomplished by a HP-86 microcompu- 
ter. This device also triggered the stimuli and controlled the 
experimental procedure. Amplitudes and peak latencies were 
estimated with the aid of a minimum-maximum routine of the 
microcomputer. In addition, detailed information on amplitudes 
and latencies was obtained by processing the evoked potential 
plots on a graphics tablet. 

CSD analysis 

The extracellular field potential ~ is related to the active and 
passive transmembrane currents of cell assemblies of activated 
neurons by the Poisson equation: 

V * 13 * V(I) = - I  m (1) 
(Freeman and Nicholson 1975; Freemann and Stone 1969; Mitz- 
doff and Singer 1977; Nicholson and Freeman 1975). 

Since no striking anatomical subdivisions can be detected 
within the ectostriatal complex it is treated as a homogenous 
structure. It can be assumed that the conductivity tensor o is equal 
throughout the entire ectostriatum. In optimally orientated rectan- 
gular cartesian coordinates, the current source density I m is then 
given by the second spatial derivative: 

o(x) 62~(x't)+6x 2 o(y) ~ +  6(z). 62qS(z't)=6z z -Im(X,y,z,t) (2) 

If translational symmetry in two dimensions can be assumed in the 
ectostriatal complex, a one dimensional current source-density 
analysis can be applied (Nicholson and Freeman 1975). Arguments 
justifying this assumption are given in the results and the discus- 
sion (see below). Equation (2) is then reduced to: 

62~5 z,t) I t7 t'~ O(Z) ~ =  --~m\~,., (3) 

The current source-densities were actually calculated with a finite 
difference formula according to Mitzdorf and Singer (1977). 

-I~(x,t) = 6zq~(x)~ ~(x+nAh)-2q)(x)+q~(x-nah)  
6x z (nAh)Z (4) 

Results 

Evoked potentials 

In two birds we measured the spatial distribution of 
contra- and ipsilateral flash evoked responses within 
the ectostriatal complex. In each bird, using a single 
electrode, we recorded VEPs in nine tracks with five 
recording points each (stepwidth 250 ~m, see Figs. 1, 
2). The temporal succession of the tracks was chosen 
randomly. The recording coordinates covered the 
whole ectostriatal complex. After we had finished the 
recordings of ipsilateral VEPs in the second bird, we 
made additional recordings of VEPs to contra- and 
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Fig. 1. Spatial distribution of 
contralaterally evoked 
responses in the ectostriatum. 
Lateral spacing between elec- 
trode tracks is 750 ~*m. Frontal 
spacing is 500 btm, depth spac- 
ing (step width) is 250 Ixm. The 
minimal and maximal record- 
ing depths have been adjusted 
to orientation of the ectostria- 
turn within the telencephalon. 
Average 64 x, bin width 
500 bts, stimulus at 50 ms 
marked by small dots. Note the 
similarity of the potentials at 
equal depth in the lateral two 
columns 

ipsilateral stimulation in a central location of the 
ectostriatum. These recordings confirmed the relia- 
bility of the amplitude difference between contra- 
and ipsilateral VEPs and the reproducability of VEPs 
of these recordings even in different birds. 

With contralateral stimulation (Fig. 1) we re- 
corded a relatively large negative-positive wave. The 
negative wave at rostral and intermediate levels 
consisted of two clearly distinguishable peaks, with 
latencies of about 40 ms for the first peak and about 
65 ms for the second and larger peak. For  the positive 
wave we measured peak latencies around 120 ms. 
The amplitudes of the negative wave ranged from 
0.1 mV at the medial border  of the ectostriatum up to 
0.5 mV in more lateral portions of the ectostriatum. 

In the caudal ectostriatum, VEPs with large 
amplitudes and short latencies were recorded. At 
these locations the amplitude of the first peak of the 
negative wave was larger than that of the second 

peak. At  the medial border,  we recorded VEPs with 
small amplitudes and short latencies in caudal and 
rostral portions of the ectostriatum. The first and 
second negative peak were of almost equal 
amplitude. There is no clearly distinguishable posi- 
tive peak at these locations (Fig. 1). In recordings at 
rostro-lateral ectostriatal coordinates, we obtained 
VEPs with larger amplitudes, long latency compo- 
nents, and a clearly distinguishable positive peak. At 
these locations the amplitude of the second peak of 
the negative wave was larger than the first peak 
(Fig. 1). 

Reliable ipsilaterally evoked potentials could be 
recorded only in the lateral two thirds of the ecto- 
striatal complex (Fig. 2). The ipsilateral flash evoked 
response is characterized by a slow negative wave 
with two slightly distinct peaks and, in some cases, a 
small positive wave. The maximal amplitude of about 
0.1 mV appears in the lateral ectostriatum. The 
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Fig. 2. Spatial distribution of 
ipsilaterally evoked responses 
in the ectostriatum. Spacing as 
in Fig. 1. Average 64 x,  bin 
width 500 ~ts, stimulus at 50 ms, 
marked by small dots. Note the 
similarity of the potentials at 
equal depth in the lateral two 
columns 

latencies of the negative peak range from 40 to 70 ms. 
At the medial border of the ectostriatum we recorded 
small, fast positive-negative waves with short laten- 
cies of about 15 ms for the positive peak and 25 ms 
for the negative peak. As the latencies of these 
responses are smaller than those of the responses in 
the nucleus rotundus (around 30 ms, unpublished 
results) they cannot be due to afferent connections 
from the nucleus rotundus. Possibly, these responses 
are due to a small bilateral projection from the 
nucleus dorsolateralis posterior (DLP) to the neo- 
striatum intermedium (NI) as recently described by 
Gamlin and Cohen (1986). 

Current source-densities 

In two birds we compared the current source-density 
profile from a one dimensional current source- 

density analysis with that of a three dimensional 
current source-density analysis of a central track in 
the lateral ectostriatum (Fig. 3A, B). The striking 
feature in both current source-density depth profiles 
is a prominent current sink (a) from 2500 ~m to 3250 
~tm with a latency of about 50 to 65 ms (Fig. 3). This 
prominent early sink (a) sometimes could be differ- 
entiated in two distinguishable peaks. At the depth of 
2500 and 2750 ~m it is preceded by a sharp early sink 
with a latency of about 30 ms (Fig. 3, f). Dorsal and 
ventral corresponding current sources can be 
detected. From 3500 ~tm to 3750 gm another early 
sharp current sink appears (Fig. 3,g). At a depth of 
1750 ~m, slightly above the ectostriatal core within 
the ectostriatal belt, a further current sink appears 
(Fig. 3, d). This dorsal sink (d) is separated from the 
dominant central sink (a) by a current source with 
corresponding latencies. The current sinks (a) and 
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Fig. 3A, B. Comparison of a 
one dimensional current 
source-density calculation of a 
central track within the 
ectostriatum with a three 
dimensional current source- 
density calculation from five 
tracks of equal spatial lattice 
for identical coordinates within 
the ectostriatum. Differen- 
tiation grid 500 ~tm, step 
width 250 ~tm 

(d) are followed by temporally delayed current 
sources. A comparison of the current source-density 
profiles, revealed either by a one- or three-dimen- 
sional current source-density calculation, demon- 
strates that both profiles have predominantly corre- 
sponding sink-source distributions (compare Fig. 3A 
and B). 

The spatial distribution of contra- and ipsilat- 
erally evoked VEPs shows that, at least in the lateral 
two thirds of the ectostriatal complex, the differences 
between neighbouring VEPs of equal depth are 
neglible compared to the differences of the VEPs of a 
single track at different depths (compare Figs. 1, 2 
above)�9 This, together with the correspondence of 
the sink-source distributions in the one and the three 
dimensional current source-density calculations (Fig. 
3A and B), shows that a one dimensional current 
source-density analysis can be applied (e.g. Nichol- 
son and Freeman 1975)�9 

A comparison of the contralaterally evoked VEPs 
and the related current source densities demonstrates 
the higher spatial resolution and the focussing on 
distinct localized events in the current source-density 
profiles. 

Figure 4 provides an example of a contralaterally 
evoked potential depth profile and its related current 
source-density profile together with a frontal section 

of the brain, which shows the recording sites within 
the ectostriatal core. In the current source-density 
profile calculated from these recordings, a first 
prominent current source can be detected at 1750 ~m 
slightly above the dorsal border of the ectostriatum. 
The latency of his source peak is about 50 ms. This 
early source is followed by a small sink (b) with a 
latency of about 100 ms. Between 2250 ~m and 
2500 ~m (precisely at the dorsal border of the 
ectostriatum) the early source reverses into a current 
sink (a) with two small peaks, and the delayed sink 
(b) reverses into a source�9 At 2750 ~tm the latency of 
the early sink (a) shifts from 50 ms to 65 ms, while the 
latency of the delayed source is reduced to about 
75 ms. The delayed source reverses into a small sink 
(c) at 3250 ~tm. About 250 ~tm deeper the early sink 
(a) reverses into a source. Thus, a source-sink-source 
pattern for the first part corresponds to a sink-source- 
sink pattern of the second part. 

With ipsilateral stimulation, a first small source 
with a latency of about 70 ms is detected at 2000 ~tm 
(Fig. 5). It is followed by a small sink (b) with a 
latency of about 110 ms. This coincides with the 
results of contralateral stimulation. At a depth of 
2500 ~tm the sinks and sources diminish. At 2750 vm 
an early current sink (a) followed by a source is 
detected�9 The latencies of these sinks and sources are 
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Fig. 4. Comparison of contra- 
laterally evoked potentials and 
related current source densities 
in the ectostriatum. Left: Fron- 
tal section (Ant. 3) of the zebra 
finch brain with electrode 
track. Right: Evoked potential 
profile. Middle: Current source 
density profile. VEP: Average 
64 x, bin width 500 ~s, 
stimulus at 0 ms. CSD: Differ- 
entiation grid 500 gin, step 
width 250 ~m. The heavy bar 
(right) represents the solid part 
of the electrode track in the 
frontal brain section (left) 
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Fig. 5. Comparison of ipsilat- 
erally evoked potentials and 
related current source-densities 
in the ectostriatum. Presenta- 
tion as in Fig. 4 

comparable to their reversals 500 gm above. From 
3000 ~tm to 3250 ~tm the sinks and sources reverse 
simultaneously. A comparison of both the contra- 
and ipsilaterallly evoked current source-density pat- 
tern shows that the sequence of sinks and sources is 
almost identical in both cases. However, the most 
prominent ipsilaterally evoked current sink (a) is 
more restricted to the ectostriatal core region than 
the contralaterally driven one (compare Figs. 4 and 
5). 

Comparing 20 current source-density depth pro- 
files along electrode tracks at different coordinates, 
local differences from the source-sink-course (first 

part of the response) and sink-source-sink (second 
part of the response) pattern described above can be 
detected. First, from the medial to the lateral border 
of the ectostriatum a shift in depth from 3000 ~tm 
(medial) to 3500 ~m (lateral) of the center of the 
prominent sink (a) and its related delayed source is 
observed (compare Figs. 6, 7). At the ventral border 
of the medial ectostriatum, the occurrence of an early 
source at a depth of 3750 ~m coincides with the 
reversal of the field potential (Fig. 6). This is not the 
case in the lateral ectostriatum. Second, whereas in 
the medial ectostriatum the current source-density 
depth profile for the first part is source-sink-source 
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Fig. 7. Comparison of current 
source-density profile (left) 
and evoked potential profile 
(right) in the lateral part of the 
ectostriatum. VEP: Average 
64 x, bin width 500 Ixs, 
stimulus at 0 ms. CSD: Differ- 
entiation grid 500 ~tm, step 
width 250 p,m. Note the addi- 
tional source-sink-source 
sequence (first response) dor- 
sal to the ectostriatal core 
(eomp. Fig. 6) 

(see above),  in the lateral ectostr iatum the current 
source-density pat tern  is more  differentiated along 
the depth axis (Fig. 7). In these electrode tracks an 
additional source-sink-source sequence can be 
detected above the ectostriatum: a dorsal sink (d) is 
separated from the central sink (a) by a common 
current source f rom 2000 to 3000 ~m. 

Multiunit recordings 

To demonstra te  that the evoked potentials are gener- 
ated in the ectostriatal core and to obtain information 

about the question whether  components  of the 
evoked potentials are due to excitatory or inhibitory 
processes, we recorded flash evoked multiunit activ- 
ity and evoked potentials at identical electrode 
coordinates. A comparison of these recordings 
demonstrates  that the multiunit responses corre- 
spond well with the evoked potentials (Fig. 8A, B). 
The maximum spike rate in the contralateral mul- 
tiunit activity (Fig. 8A) temporal ly coincides with the 
negative wave of the evoked potential  curve. With 
the occurrence of the positive wave the spike rate 
decreases, possibly slightly below the level of spon- 
taneous activity. This demonstrates  that the first 



570 

rnV l e p b  ~ A 

- . 4  

- . 8  

0 100 200 900 400 ms 

mV 
§ 4" 

+ , 2  �84 

�9 cpb 

-24 

18 
..../.......J",~,.~ / " , . . %  �9 . . . . . .  ...~.,"~ . . . . . . . .  '.~.......... ,'.-...... 

t2 

2 

- . 4 ~  

0 100 200 300 400 ms 

Fig. 8A,B. Visually evoked potentials, current source-densities, 
VEPs and multiunit activity at the same recording site. Stimulus at 
0 ms. Current source-densities: Differentiation grid 500 ~m, 
ordinate scale in V/mm 2. VEPs: bin width 500 ~s, average 64 x, 
ordinate scale in mV, multiunits: bin width 10 ms, average 16 x, 
ordinate scale in counts/bin (cpb). The distribution of multi-unit 
activity fits the VEP and current source density plot well 

negative peak predominantly represents excitatory 
processes within the ectostriatum in the case of 
ipsilateral stimulation (Fig. 8B), both the multiunit 
and the evoked potential response are not as promi- 
nent as with contralateral stimulation, but show a 
time coincidence similar to the contralateral case. 

Discussion 

Until recently the higher stations of the tectofugal 
visual pathway of birds, the nucleus rotundus and the 
ectostriatum, have been thought to be involved solely 
in the processing of monocular visual information 
(Revzin and Karten 1966/67; Parker and Delius 
1972). In contrast, Engelage and Bischof (1988) 
demonstrated a strong, presumably excitatory, ipsi- 

lateral influence on the telencephalic target of the 
tectofugal pathway, the ectostriatum, in normal and 
enucleated birds. This paper demonstrates that both 
contra- and ipsilateral stimulus responses can be 
detected throughout the entire ectostriatal complex. 
They both reach their maximum amplitudes in the 
lateral portion of the ectostriatum. 

It also demonstrates that a current-source density 
analysis is applicable in a telencephalic structure in 
birds. Our results demonstrate that, in addition to 
the three dimensional form of current source-density 
analysis, the one dimensional current-source-density 
analysis can also be applied. This, in contrast to the 
VEPs, allows the exact localization of the generators 
of VEPs, the macroscopic current sinks and sources 
(Figs. 4, 5). Whereas the contralateral VEPs a r e  
detectable from about 1500 ~m above the ecto- 
striatum, the prominent early sink (a) is clearly 
restricted to the ectostriatal core. This indicates that 
the ectostriatal core is really the source of the 
contralaterally evoked potentials and thus the loca- 
tion of the synaptic processes underlying the field 
potentials (Figs. 3, 4, 6, 7). The ipsilateral stimulus 
responses are due to a sink restricted to the ecto- 
striatal core (Fig. 5). 

Our data further indicate that synaptic processes 
within the ectostriactum are predominantly excita- 
tory. This is demonstrated by the time coincidence of 
the central early sink (a) of the current source- 
density analysis, the negative wave of the evoked 
potentials and the maximum spike rates in the 
multiunit recordings, respectively (Fig. 8). These 
results are in agreement with theoretical considera- 
tions concerning the physiological processes underly- 
ing the generation of evoked potentials which assume 
that predominantly dendritic synaptic activities con- 
tribute to the extracellularly recorded potentials (e.g. 
Llinas and Nicholson 1974; Mitzdorf 1985). 

Several features of our results demonstrate that 
within the ectostriatum there is a higher degree of 
order than is expected from anatomical data. Within 
the ectostriatal core, no subdivision or lamination 
can be detected anatomically. However, several 
studies (Cohen and Karten 1974; Nixdorf and Bi- 
schof 1982) have demonstrated that the nucleus 
rotundus projects topographically into the ecto- 
striatum, suggesting that there is at least a certain 
degree of topographical order in this area. From the 
distribution of macroscopic sinks and sources demon- 
strated above, it is likely that the ectostriatum is 
ordered functionally. Therefore, with physiological 
activation of the visual pathways, an orderly pattern 
of excitation is elicited in the ectostriatum which 
causes the macroscopic current sink and source 
distribution and, in turn, the related field potentials. 
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The temporal sequence of sinks and sources in the 
current source-density depth profiles and the differ- 
ent peaks of the VEPs indicate that there are several 
steps of processing occurring within the ectostriatal 
core. As we normally used flash stimuli, a generation 
of the second negative peak by slower input fibers 
cannot be excluded. However,  cooling and spreading 
depression experiments (Engetage and Bischof, in 
preparation) do not support this, but again suggest 
that there may be at least two successive steps of 
information processing within the ectostriatum (see 
below). Therefore, the small delayed sinks (b) and 
(c) (Figs. 4, 5) are probably the result of a successive 
bifurcating projection from the central sink (a). 

Comparing the VEPs one can detect regional 
differences within the ectostriatum. As demonstrated 
in the results, the amplitude of the first peak in the 
VEP, probably representing the first step of process- 
ing within the ectrostriatum, reaches its maximum at 
the medioventral parts. Therefore, this area might be 
the location of the input from the Nucleus rotundus. 

From the ventromedial areas of the ectostriatum 
information may be processed to rostro-lateral parts 
of the ectostriatum. In this region the second nega- 
tive peak is higher than the first one, suggesting that 
a successive step of processing occurs here. This fits 
in well with experiments where we were able to 
demonstrate (Engelage and Bischof, in preparation) 
additional visual inputs coming from the visual wulst 
(via the hyperstriatum ventrale). We found that 
cooling and spreading depression in the visual wulst 
leads to a selective reduction of the second negative 
peak and the positive wave in the ectostriatal VEPs. 
A connection between the visual wulst and the 
ectostriatal core (via the hyperstriatum ventrale) has 
been described anatomically by Ritchie and Cohen 
(1977) and Watanabe et al. (1985). 

The rostrolateral region is also the location of the 
additional source-sink-source sequence described 
above. From anterograde tracing experiments we 
have evidence that this region receives efferent fibers 
from the nucleus rotundus (Niemann and Bischof, in 
preparation), which are possibly collaterals from 
axons terminating in the medioventral part of the 
ectostriatum. Therefore, the additional source-sink- 
source sequence may be either due to an as yet 
undescribed projection of the tectofugal pathway or 
to a visual wulst-ectostriatal core interaction, or to 
both. 

In summary, our results demonstrate by applica- 
tion of current source-density analysis and careful 
analysis of variations in the evoked potentials of 
different parts of the nucleus, that the ectostriatum is 
a brain area of higher order than previously believed. 
With further experiments it should be possible to 

examine this more precisely, and to create a basis for 
comparing this avian telencephalic structure with its 
mammalian homologue,  the extrastriate cortex. 
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