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Monocular deprivation affects neuron size in the ectostriatum 
of the zebra finch brain 
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The effects of different periods of monocular deprivation on cell sizes in the ectostriatum, the telencephalic relay of the tectofugal 
pathway in zebra finches, were evaluated. Following 20 days of monocular closure, neurons in the deprived and undeprived hemi- 
sphere show an unselective hypertrophy of 10%. Extending the deprivation period results in a shrinkage of neurons of the deprived 
side to values of adult normally reared birds, whereas the non-deprived neurons maintain their hypertrophied size. 

It is widely accepted that early monocular  depriva- 

tion (MD) in mammals  dramatical ly  alters physiolo- 

gy and anatomy of central visual pathways 4'18'24. An-  

atomical effects like changes in dendri t ic  spine den- 
sity 7'23, number  and size of synapses s'26 and number  

of vesicles 29 have been found in the visual cortex af- 

ter MD. Moreover ,  changes in neuron size in the lat- 

eral geniculate nucleus (LGN)  have been repor ted  in 
various species ~'1°~2~725'2~. It is interesting, however, 

that cell size in the visual cortex seems to be unaf- 
fected by such a manipula t ion 13'27. 

In contrast  to the mammal ian  visual system rela- 

tively little is known about  the effects of MD on the 

visual pathways in birds. The data  available for the 

thalamofugal  system of owls, often bel ieved to be ho- 

mologous to the geniculostriate pathway in mam- 

mals 2°, suggest that similar effects can be obta ined in 

birds 2z. We have recently demons t ra ted  (Herrmann 

and Bischof, submit ted)  that early monocular  lid clo- 

sure alters the size of neurons in the nucleus rotun- 

dus, the thalamic relay of the tectofugal project ion.  

The effects, however,  markedly  differ from those ob- 

served in mammals .  In zebra finches, neurons in the 

deprived nucleus rotundus,  i.e. the nucleus receiving 

input from the contralateral  depr ived eye,  seem to be 

unaffected by monocular  deprivat ion,  whereas neu- 

rons in the non-depr ived nucleus, driven by the con- 

tralateral  open eye,  show a hyper t rophy of about  

15%. 

In this study we tried to find out whether  the effect 

found in mammals ,  namely that changes in cell size 

can only be observed in the thalamus and not in the 

forebrain,  can be demons t ra ted  in birds, too. We 

therefore examined the effects of MD on neuron size 

in the ectostr iatum, the telencephalic  relay of the tec- 

tofugal pathway 16"21. The obtained values are com- 

pared with data on cell size of normal ly  reared birds. 

Twenty-two zebra finches (Taeniopygia guttata 

castanotis) of both sexes and of different ages from 

the institute 's stock were used for this study. Twelve 

birds served as controls Cnormal ' )  and 10 were mon- 

ocularly depr ived from the first or second day of life, 

when the eyes are still closed, until sacrifice. The 

birds were deprived ei ther  by glueing a plastic cap 

onto one eye or by spreading a liquid adhesive plaster 

over the closed eyelid 5. The following age groups 

were studied: 20 days (normal:  n -- 4, deprived:  n = 

4), 40 days (normal:  n = 4, deprived:  n = 3) and at 

least 100 days of age (normal:  n = 4, deprived:  n = 

3). The birds were perfused via the left ventricle with 
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0.9% NaC1. followed by 10% formalin in saline. The 
brains were processed according to standard histolo- 

gical techniques, cut horizontally into 30-#m thick 
frozen sections and counterstained with 1% cresyl vi- 
olet. Cell size in the medial part of the ectostriatal 
core region was determined by drawing the outlines of 
cross-sectional areas of neuronal somata with a visi- 
ble nucleolus within the left and right hemisphere, re- 

spectively, at a magnification of x 1250 (n = 200 for 
each bird). The areas were measured on a Hewlett 
Packard graphics tablet and the data stored and pro- 
cessed by a HP 85 computer. The obtained values 
were tested for differences using a two-tailed Stu- 
dent's t-test. All results of cell size measurements are 

presented graphically in Fig. l. 

At 20 days 
After 20 days of MD neurons in the ectostriatum, 

which receive their main input mainly from the de- 

prived eye, do not differ significantly from cells in the 
corresponding non-deprived hemisphere (110.10 _+ 
29.0 ,um 2 vs 114.30 + 31.48 #m 2, Fig. t). The fre- 

quency distribution of neuron sizes of brain AF is 
shown in Fig. 2. A comparison of the data obtained 
from the 4 deprived birds and from normally reared 
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Fig. 1. Comparison of mean cross-sectional areas of ectostriatal 
neurons of normal and visually deprived (deprived and non-de- 
prived) birds of different ages. Number of cells in each column: 
n = 400. except for 40- and 100-day-old deprived birds: n = 
300. The bars represent the S.E.M. obtained from the pooled 
data. 

birds (100.84 +_ 21.77 #m2), however, reveals a hy- 

pertrophy of about 10% and 12.9% in the deprived 
and non-deprived hemisphere, respectively. 

At 40 days 

After 40 days of monocular lid closure there is a 

marked hemispheric asymmetry in cell size of 18.4%: 
neurons in the deprived ectostriatum are significantly 
smaller if compared to their interhemispheric coun- 
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Fig. 2. Frequency histograms showing the distribution of ecto- 
striatat neurons of representative zebra finch brains deprived 
until sacrifice after 20 days (bird AF), 40 days (bird BW) and 
120 days (bird BQ). Each histogram shows the cross-sectional 
areas of t00 neurons of the deprived (shaded) and non-de- 
prived (white) hemisphere. The open arrows mark the mean 
value for the ceils in the deprived nucleus, the shaded arrows 
mark mean values for deprived ectostriatal neurons. Column 
width is 40am 2. 



terparts (73.33 + 19.16#m 2 vs 89.88 + 27.27#m z, P 

< 0.0011, see brain BW in Fig. 2 for example) or to 
the value they had 20 days before (73.33 ~tm 2 vs 
110.10/xm2). Correspondingly, the deprived neurons 

are smaller than ectostriatal cells of normally reared 
birds (83.04 _+ 16.98 #m2). On the other hand, neu- 

rons driven by the open eye, having a size of 89.88 
/~m:, are significantly larger than both deprived 

(+22.6%) and normal somata (+8.2%).  

At  100 days or more 

Extending the deprivation time up to at least 100 
days of age does not seem to affect the deprived cells: 
they exhibit the same size as neurons of normal birds 
(71.29 + 25.76 ~tm z vs 71.12/~m;), which is the size 

they already had two months before. On the other 
hand, neurons receiving input via the open eye show 
a hypertrophy of 7.9% (76.71 _+ 20.59 #m 2) com- 
pared to values of normally reared birds. In contrast 

to the data on cell size following 40 days of monocular 
closure, where all 3 brains exhibited the same signifi- 
cant interhemispheric asymmetry in ectostriatal cell 
size, the results after longer periods of deprivation 
are not as conclusive. The interhemispheric differ- 
ence is significant for one brain (P < 0.001), but less 
significant for the second (P < 0.044) and not signifi- 
cant for the third brain (P < 0.09), (e.g. brain BQ in 
Fig. 2). 

This pilot study is the first to provide data concern- 
ing the effects of visual deprivation on cell size in the 
forebrain of birds. Previous studies have dealt with 
different aspects of MD in birds, e.g. behavioral deft- 
cits 5, effects on electrophysiology 22, transmitters 2 

and enzymes ~ in the visual wulst, and electrophysio- 
logical ? and ultrastructural 6 changes in the retina, 
optic nerve and tectum opticum. We have recently 
demonstrated (Herrmann and Bischof, submitted) 
that early monocular lid closure alters the size of neu- 
rons in the nucleus rotundus, the thalamic relay of 
the tectofugal pathway in zebra finches. 

In normal zebra finches cell size in the ectostria- 
turn, the telencephalic station of this projection, in- 
creases during the first 20 days of life and then de- 
creases until adulthood 1~. Our present study clearly 
demonstrates that this 'peak-decl ine trend q9 is also 
found in deprived birds, but superimposed by two 
subsequent deprivation effects: after 20 days of MD 
the neurons of both the deprived and the non-de- 
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prived hemisphere show a hypertrophy compared to 

normal birds of the same age. Prolonging the depri- 
vation period to 40 days of age has different effects, 
namely that neurons of the deprived side are smaller 
than in normal 40-day-old birds and have already 
reached adult size. Neurons in the non-deprived 

hemisphere are still hypertrophied compared to nor- 
mal birds. At 100 days of age, cells of the deprived 
ectostriatum do not differ from normal animals, 
whereas the hypertrophy of the non-deprived neu- 

rons remains. 
In summary, after inducing an initial hypertrophy 

in both hemispheres, MD accelerates the shrinkage 
of neurons on the deprived side and reduces the 
shrinkage on the non-deprived side. Hypertrophy on 

the non-deprived side as a consequence of depriva- 
tion has already been described for the LGN of cats 12 

(but see ref. 15) and monkeys m. This effect could be 
understood as a reflection of an enhanced physiologi- 
cal activity, accompanied by an increased dendritic 
and/or axonal arborization 9 (Nixdorf and Bischof, in 
preparation). In addition we were able to demon- 

strate such a hypertrophy on the deprived side, which 
has not been mentioned in other studies. One inter- 
pretation may be that this hypertrophy is caused by 
the attempt of the neuronal circuits to compensate 
the effects of deprivation by providing additonal syn- 
aptic offerings (Nixdorf and Bischof, in preparation), 
as suggested by Wolff 3°. The rapid shrinkage of neu- 

rons to their normal adult size may then be the result 
of the failure to function adaequately. 

In any case, the pattern of changes obtained in this 
deprivation study suggests interactions between the 
two hemispheres. In contrast to the thalamofugal sys- 
tem in birds, neither binocular neurons nor competi- 
tion mechanisms have been described for the tectofu- 
gal system. However, tectotectal and tectorotundal 
interhemispheric projections indicate that such inter- 
actions between the two brain sides are possible 14. 
The mechanism of the interactions conveyed by these 

projectiol3s is under investigation in our lab (Enge- 
lage and Bischof, in preparation). 

In contrast to mammals, MD in birds also affects 
the size of neurons in the telencephalic station of the 
visual pathway. However, area 17 in mammals and the 
ectostriatum in birds are non-homologous structures, 
and comparable studies on the extrastriate projec- 
tion are not available. Another explanation may be 
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t h a t  t h e  d i f f e r e n c e s  in cell  s ize,  as in o u r  s tudy ,  de-  

c r ease  a n d  m i g h t  d i s a p p e a r  f ina l ly  at  a c e r t a i n  age.  

So far ,  on ly  d e p r i v a t i o n  e f fec ts  on  s t r i a ta l  cell  size 

h a v e  b e e n  i n v e s t i g a t e d  in a d u l t  m o n k e y s  t3'27. Pe r -  

h a p s  M D  s tud ies  of  y o u n g e r  m a m m a l s  m i g h t  show 

the  s a m e  ef fec t  we d e m o n s t r a t e d  in t h e  z e b r a  f inch .  
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