
Principles of visual motion detection 
Alexander Borst and Martin Egelhaaf 

Motion information is required for the solution of many 
complex tasks of the visual system such as depth 
perception by motion parallax and figure/ground 
discrimination by relative motion. However, motion 
information is not explicitly encoded at the level of the 
retinal input. Instead, it has to be computed from the 
time-dependent brightness patterns of the retinal image 
as sensed by the two-dimensional array of photorecep- 
tors. Different models have been proposed which 
describe the neural computations underlying motion 
detection in various ways. To what extent do biological 
motion detectors approximate any of these models? As 
will be argued here, there is increasing evidence from 
the different disciplines studying biological motion 
vision, that, throughout the animal kingdom ranging 
from invertebrates to vertebrates including man, the 
mechanisms underlying motion detection can be 
attributed to only a few, essentially equivalent compu- 
tational principles. Motion detection may, therefore, be 
one of the first examples in computational neurosciences 
where common principles can be found not only at the 
cellular level (e.g. dendritic integration, spike propa- 
gation, synaptic transmission) but also at the level of 
computations performed by small neural networks. 

Thinking about how the nervous system extracts 
motion information, one might imagine that it 
compares successive images to measure the displace- 
ment of a certain object. This implies that the 
identification of specific features in a scene is a 
prerequisite for the perception of motion. Although 
feature identification may play a role in motion vision 
under certain circumstances a, it is not necessary. 
This could be shown in psychophysical and behav- 
ioural experiments on various species by the use of 
periodic or statistical patterns containing no promin- 
ent features a'2. It is now widely accepted on the basis 
of such experiments that motion is initially evaluated 
in parallel by two-dimensional, retinotopically organ- 
ized arrays of local motion detectors, which operate in 
the simplest case directly on the local light intensity 
(for review see Ref. 3). 

Models of mot ion detect ion 
From a theoretical point of view, local motion 

detection mechanisms have to satisfy certain mini- 
mum requirements in order to signal motion in a 
directionally selective way (see Box 1). In brief, a 
movement detector has to be asymmetrical and needs 
at least two inputs, which interact in a non-linear 
way 4-6. These requirements are met by a variety of 
similar motion detection models 6-1°. Some of them 
characterize the computations underlying motion 
detection in formal terms, others try to account for 
them in terms of cellular mechanisms. Irrespective of 
the actual level of description, the various biological 
motion detection schemes have been divided into 
two main categories, the so-called gradient- and 
correlation-type models 8'H. While in the gradient 
schemes an estimate of local motion is obtained by 
relating the simultaneously measured spatial and 

temporal changes in local light intensity of the moving 
image7,S, la, in the correlation schemes 2'6A2 and their 
mathematical equivalents 13 this is done by evaluating 
a kind of spatiotemporal cross-correlation of the 
appropriately filtered signals originating from two 
points in the retinal image. The gradient scheme 
originated from the study of computer vision and was 
applied only later to biological motion vision 7's. In 
contrast, the correlation-type of movement detector 
was deduced from behavioural experiments on motion 
vision in insects 2'6. Subsequently, it was successfully 
used to explain motion detection in vertebrates 
including man 12'14-a8. The well-known 'Barlow- 
Levick'-type of movement detector, which was 
originally proposed to account for motion detection in 
the rabbit retina 19, belongs also to the broad class of 
correlation-type movement detectors in that it is a 
variant of them, being effected by logical operations 
rather than in an analogue form. 
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Box 1. General Requirements for a Directionally Selective 
Movement Detector 4-6 

Two Inputs 
Two inputs are necessary since motion is a 
vector that needs two points for its represen- 
tation. A single photoreceptor could not dis- 
tinguish a dark bar that crossed its receptive 
field from the left to the right from one that 
crossed from the right to the left, or from a 
momentary dimming of the light. 

~r 

Non-linear Interaction 
A non-linear interaction between the input 
signals is required. Otherwise, the time- 
averaged output of a detector would be equal 
to the detector response to its time-averaged 
input signals. In the averaged input signals, 
however, all information about the temporal 
sequence is lost. Thus, a movement detector 
with a linear interaction cannot be directionally 
selective. 

J 

Asymmetry 
The two input signals of a movement detector 
have to be processed in a slightly different way. 
If the detector were symmetrical, its input 
channels could be interchanged without affect- 
ing its output. It is then no longer possible to 
discriminate which channel was excited first 
and which later. Accordingly, the detector 
would not be directionally selective. 
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Fig. 1. Computation of motion information by a correlation-type movement detector. This detector consists of two mirror-symmetrical 
subunits (see C). In its simplest form, its input is given by the light intensities as measured at two points in space. In each subunit, the 
detector input signals are multiplied (M) with each other after  one of them has been delayed by a time interval, E. Both subunit outputs are 
then subtracted to give the final output signal of the detector. To facilitate an understanding of the different operations performed by a 
movement detector, the output of a single detector subunit to motion in opposite directions is considered first. The signals conveyed at the 
different stages of the detector subunit are indicated. When the stimulus pattern passes the two detector input channels, they are activated 
one af ter  the other with a certain time shift. (A) When the pattern moves in the detector's 'preferred direction' (pale tint), the temporal 
separation of the signals in both input channels may be compensated for by the delay in the left arm of the detector. In this way both signals 
may coincide at the multiplication stage giving rise to a large output signal. (B) When the stimulus moves in the 'null direction' (dark tint), the 
temporal sequence of the signals in both channels is reversed. The delay increases their separation in time of arrival at the multiplication 
stage, which results in two small response peaks. (C) In a correlation-type movement detector two mirror symmetrical subunits are 
combined. By subtracting the output signals of both subunits, those response components are efiminated that are due to correlated input 
signals independent of the direction of motion and still present in the subunit output. When the subtraction stage is perfectly balanced, the 
responses to motion in opposite directions have the same ampfitude and time course but different signs. 

The gradient scheme, at least in its mathematically 
perfect form, obtains an exact measurement of the 
local velocity dx/dt by dividing the temporal gradient 
dI/dt by the respective spatial gradient d//dx of the 
pattern (x and t refer to the spatial variable and time, 
respectively; I denotes the light intensity). If the 
spatial and temporal gradients are evaluated by finite 
mechanisms s'7, the detector may acquire different 
properties. This, however, has not yet been investi- 
gated thoroughly. 

The basic operations of a correlation-type move- 
ment detector are summarized in Fig. 1. In its 
simplest form, it operates directly on the retinal light 
intensity distribution or filtered versions of it (see 

below) and assumes a multiplication (which is the non- 
linearity of the lowest possible order) for the 
interaction of its two input channels. These are 
spatially separated by the 'sampling base' Aq~ of the 
detector. When the signal in the input channel, which 
is activated first by a moving stimulus, is delayed by 
an appropriate time interval, c, the signals in both 
input channels tend to coincide at the multiplication 
stage M resulting in a large response amplitude (Fig. 
1A). Conversely, when the temporal sequence of 
stimulation is reversed (corresponding to motion in 
the opposite direction) the separation of both signals 
is further increased by detector delay, resulting in 
only smali responses (Fig. 1B). It is obvious that the 
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delay and the sampling base deter- 
mine the optimal velocity of the 
detector and, consequently, its 
dynamic range. The smaller the 
delay, the faster the optimal 
velocity and vice versa. The 
combination of a temporal delay 
and a multiplication of the detector 
input channels is the reason why 
this type of detector measures the 
degree of coincidence of the 
signals at its input stages or, in 
other words, performs a kind of 
spatiotemporal cross-correlation. 
However, a motion detector as 
shown in Fig. 1A, B also contains 
response components that are not 
specifically a result of the stimulus 
motion but are induced by cor- 
related input signals that are inde- 
pendent of motion, such as back- 
ground luminance. To eliminate 
these, a correlation-type move- 
ment detector is composed of two 
mirror-symmetrical subunits, each 
consisting of a separate delay unit 
and multiplication stage. The out- 
puts of both subunits are then 
subtracted (Fig. 1C) leading to 
responses of the same amplitude 
but of different signs for motion in 
opposite directions. However, this 

Box 2. Predictions of a Correlation-type Movement Detector for Moving Sine Wave Gratings 

Local detector response 
(1) The response to a stimulus pattern should be modulated over time under both transient 
and steady-state conditions 2°. 
(2) In the case of a sine wave grating the response modulations should be composed of only 
the fundamental and second harmonic of the temporal frequency of the stimulus if the 
multiplication is mathematically perfect and no other non-linearities, such as spike threshold, 
are significant. The second harmonic frequency component may disappear when the two 
detector subunits are perfectly balanced 2°. 

Integrated detector response 
(1) Steady-state conditions (sufficiently long stimulus presentation with constant velocity). 

• 2 0  The response profiles should not be modulated over hme . 
The mean response amplitude should depend on the structure of the pattern 6. For a sine 

wave grating moving at constant velocity, the velocity leading to an optimum response 
amplitude should depend on the spatial wavelength of the pattern. The ratio between 
optimum velocity and spatial wavelength, i.e. its temporal frequency, should remain 
constant 2,5,52. 
(2) Dynamicalproperties. At the onset of motion, response oscillations are expected, and the 
modulation frequency should be equal to the temporal frequency of the stimulus; the 
amplitude of the modulations are expected to decay with a time constant equal to the 
movement detector delay 62. 

Characteristic distortions are expected in the responses to patterns oscillating with a high 
frequency or a high amplitude 61. 

The response should be sensitive to flicker stimulation, as long as the subtraction between 
the output signals of the two subunits is not mathematically perfect. The time course of the 
response to flicker stimulation should be modulated only with the second harmonic 
frequency in the case of a sinusoidal counter-phase flicker, but with both the fundamental 
and the second harmonic if the stimulus is spatially homogeneous and only its brightness is 
sinusoidally modulated over time ('field flicker') 2°. 

is only true if the movement detector is mathemati- 
cally perfect, an unlikely assumption given the 
properties of the neuronal hardware. Thus a biological 
movement detector may not be strictly selective for 
motion, but can be expected to respond, at least to 
some extent, to temporal brightness modulations of a 
stationary stimulus ('flicker stimulation') 2°. 

Various cellular models have been proposed which 
approximate, to some extent, the multiplication in 
the movement detector by specific cellular inter- 
actions 9'z°'21. However, since the same computation 
may be realized in different organisms by different 
cellular and synaptic mechanisms and, with a few 
exceptions, experimental data are missing, a com- 
parison between different species is greatly facilitated 
by an analysis at the computational level. Therefore, 
we will base our predictions on the formal movement 
detector models and, in particular, on the correlation- 
type model. 

Experimental methods to study motion 
detection 

Motion detection has been studied by various 
stimulation methods. Very popular are dots or bars 
flashed sequentially at different positions and with 
different time intervals, thereby mimicking apparent 
motion. As a result of the non-linear interaction, 
maximum responses are obtained for certain spatial 
and temporal separations between the two stimuli, 
which then may be used to estimate the sampling base 
and the temporal delay of the underlying motion 
detection mechanism. This technique has been 
applied, for instance, to the rabbit retina 19, to visual 
cortical areas of cats and monkeys 22-24, and to the 
fly visual system 25"26. Despite its appeal for many 

investigators, this approach may have some disadvan- 
tages. If one is interested in how the non-linear 
interaction of the movement detector input signals can 
be formally characterized, the responses obtained in 
this way are difficult to interpret analytically: because 
of their very transient nature, the time course of 
flashed stimuli will already be considerably altered by 
peripheral processing stages. As a consequence, the 
shape of the input signal to the essential non-linear 
interaction of the detector can hardly be inferred. 
This, of course, severely complicates an interpret- 
ation of the resulting output signals. Instead, when a 
grating pattern with a sinusoidally modulated bright- 
ness and moderate contrast is moved across the 
receptive field of a detector, the peripheral processing 
may, to a first approximation, behave linearly 27-29. 
The actual input signals to the motion detector can 
then be assumed also to be sinusoidal 2° and 
predictions can be derived for the response of a 
correlation-type movement detector (Box 2). These 
can be compared with experimental results obtained 
in studies using several different methods. 

Local motion detectors and consequences  of 
spatial integration 

Individual movement detectors of the correlation 
type do not provide an exact estimate of the local 
pattern velocity. Their response to pattern motion, 
even of constant velocity, is not constant but 
modulated over time with the time course depending 
on both the velocity and the texture of the pattern 2°'3° 
(Box 2). Probably the simplest means of getting rid of 
these phase-dependent modulations is some sort of 
temporal or spatial integration over sufficiently large 
patches of movement detectors 3°. This is because the 
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Fig. 2. Local and spatially integrated responses of biological motion detectors to sinusoidally modulated gratings drifting with a constant 
velocity. Graded changes of the membrane potential as recorded intracellularly from the direction-selective motion-sensitive HS-cell in the 
third visual ganglion of the fly (A, B) are compared with the visually induced spike activity of motion-sensitive cells in the cat visual cortex 
(C, D). (A) In the fly HS-cell, which integrates local movement detectors from large parts of the visual field, temporally modulated responses 
are obtained when spatial integration is prevented. This is achieved by moving the sine wave grating behind a small vertical slit, so that only a 
fraction of a spatial wavelength is seen by the fly at a given time 2°. Thus all vertically aligned local movement detectors are stimulated almost 
in synchrony. (B) When large parts of the receptive field of the cell are stimulated the response modulations disappear 2° These findings are 
predicted on the basis of the movement detection model (Box 2). Note that the cell is, on average, depolarized by motion in its preferred 
direction (pale tint) and hyperpolarized by motion in the reverse direction (dark tint). (C) In the visual cortex of the cat, temporally 
modulated responses to a moving grating are found in simple cells, whereas unmodulated responses are common in complex cells (D). (Data 
shown in C and D from Ref. 38.) According to the predictions of the movement detector theory (Box 2), the modulated responses are 
interpreted as the output of local movement detectors, an interpretation that is consistent with the receptive field of simple cells consisting of 
separable on- and off-regions. In contrast, unmodulated responses are expected for the spatially integrated output of a detector array and, 
thus, correspondingly for complex cells with homogeneous on/off receptive fields integrating over elements with separable on/off regions. 
In the case of a pure multiplication such as movement detector non-linearity the response modulations of the local movement detectors 
should be composed of the fundamental and the second harmonic frequency of the temporal frequency of the stimulus (Box 2). In the fly, 
this prediction is satisfied 2°. In (A) the second harmonic component is indicated by an arrow. In the cat data (C) only the fundamental 
frequency component is visible. Note, however, the non-linearity introduced by the spiking threshold of the cell. 

output signals of an array of movement detectors are 
all phase-shifted with respect to each other. Interest- 
ingly, spatial integration is quite common in cells that 
mediate information on motion both in vertebrates 
(e.g. Refs 31, 32) and in invertebrates (e.g. Ref. 33). 
In man, the importance of spatial integration for the 
perception of motion has been demonstrated in a 
number of psychophysical studies (e. g. Refs 34-36). 
It may suffice here to illustrate with two examples the 
responses of individual movement detectors and the 
consequences of spatial integration (Fig. 2). 

In the cat visual cortex, the responses of 
directionally selective motion-sensitive simple cells 
(i.e. cells with separable on- and off-regions 29'37) to 
the motion of periodic patterns are modulated in time 

(e.g. Ref. 38) (Fig. 2C). In contrast, complex cells 
that are known to combine output signals of several 
cells with antagonistic subfields 22'37 exhibit unmodu- 
lated responses 38 (Fig. 2D). This concurs with the 
predictions for the local and spatially integrated 
movement detector responses (Box 2). 

In the insect visual system, we can, fortunately, 
investigate the responses of individual movement 
detectors and the consequences of spatial integration 
within one and the same neurone. The so-called 
HS-cells can be recorded intracellularly and identified 
individually in each animal by functional and anatomical 
criteria 39. Since these cells pool the signals of large 
retinotopic arrays of local movement detectors, one 
can obtain spatially integrated motion detector 
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responses fairly easily. On the other hand, local 
detector responses are also accessible if spatial 
integration is prevented by presenting the stimulus A 
pattern to the animal via a small slit 2°'3°. The results 
of such an experiment are shown in Fig. 2A. They 
demonstrate that, as predicted by the correlation 
model and in agreement with data from motion- 
sensitive cortical cells, (1) the responses of individual 
motion detectors are modulated in time, and (2) these 
temporal modulations disappear as a result of spatial 
integration (Fig. 2B). It should be noted that temporal 
modulations of local detector responses are not 
predicted by the gradient scheme, at least in its pure 
mathematical form. 

We can now go one step further and characterize 
the non-linear interaction underlying motion detection 
on the basis of the time course of responses of 
individual movement detectors (Box 2). If the basic B 1 
non-linearity in the motion detection system is of the 
second order, i.e. a multiplication, and no significant 
non-linear processing of the visual input takes place t 
prior to or after motion detection, the response to a 
sine-wave grating moving with a constant velocity c ~ 0 
should contain only the fundamental and the second o 
harmonic of the temporal frequency of the 
stimulus 1°'2°. This is indeed the case in the HS-ceU of cc 
the fly which was analysed in this respect (Fig. 2A) 2°. -1 
The finding that the essential non-linearity responsible 
for movement detection in the fly is a multiplication is 
supported by a white noise analysis on another fly 
visual interneurone 4°. Moreover, the same conclusion 
can be drawn for directionaUy selective motion- ¢ 
sensitive cells in the visual cortex of the cat 41. All 1" 
these experiments strongly support a multiplicative 
interaction as the essential non-linearity underlying 
biological movement detection. Motion detection in 
quite different species may thus be based on 
essentially equivalent neuronal computations. 

Spatial filter properties and the problem of 
spatial aliasing 

A motion detector needs two input channels which 
are separated in space (see Box 1). The distance 
between them is often referred to as the 'sampling 
base' of the detector. The sampling base, Aq9, 
determines the spatial resolution of the motion 
detection system and its dependence on the spatial 
frequency components of the stimulus pattern. The 
smallest spatial wavelength that is resolved ad- 
equately amounts to twice the sampling base, accord- 
ing to Shannon's sampling theorem 42. For smaller 
wavelengths the response may become inverted, 
signalling the wrong direction of motion. This pheno- 
menon is known as spatial aliasing 43'44. Maximum 
responses are expected for wavelengths of four times 
the sampling base. Towards higher spatial wave- 
lengths the response amplitudes decrease again. This 
means that, owing to its finite sampling base, a motion 
detection system has an intrinsic apparent spatial 
band-pass characteristic, even if there are no addi- 
tional spatial filters in its input channels (Fig. 3). This 
fact is stressed here because it is often neglected 
when the spatial frequency dependence of motion 
detection systems is interpreted (e. g. Ref. 45). 

To prevent spatial aliasing, high spatial frequencies 
should be removed from the detector input signals. 
This can be most easily achieved by additional spatial 
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Fig. 3. Consequences of spatial filters in the movement detector input channels 
for the spatial frequency dependence of correlation-type movement detectors. 
(A-C) Consequences of Oaussian-shaped spatial low-pass filters with three 
different halfwidths (coloured lines) (modified from Ref. 44). (A) Receptive 
fields of the spatial filters in relation to the sampling base (A@) of a movement 
detector. (B) Contrast transfer functions of the filters (coloured fines) together 
with the spatial frequency dependence of a movement detector without any 
input filter (shaded area). Note that for high frequencies the response is 
reversed due to undersampfing ('spatial aliasing'). When the spatial frequency 
functions of both the filter and the motion detector are combined, responses as 
shown in (C) are obtained. The filter shown in blue is too narrow and, thus, 
does not prevent spatial afiasing, whereas the filter drawn in green is too 
broad, cutting out most of the detector's intrinsic optimal response range. The 
filter drawn in red is optimally matched to the sampling base of the detector. 
Experimental data on the acceptance angle of fly photoreceptors and the 
sampling base of its movement detection system show that in the fly both 
parameters are matched, as is expected for optimal imaging 44. 
(D-F) Consequences of using spatial band-pass filters in the input fines of the 
motion detector instead of spatial low-pass filters as in (A-C). Again, the filter 
drawn in red is optimally matched, whereas the two others have a frequency 
optimum that is too low or too high for the sampfing base and thus also for the 
intrinsic frequency dependence of the detector. Interestingly the optimal 
relation of A¢/,~ is a quarter of the optimal spatial wavelength of the filter, 
which is approximately what has been measured in movement-sensitive 
neurons in the cat visual cortex 23. 

TINS, Vol. 12, No. 8, 1989 301 



lOO 
T 

ID 
" 0  

- -  10 
0 
0 

A Insect  Behav io r  

R ~ Rop 

/ ', ', D 
Velocity 

;= 

P a t t e r n  D e p e n d e n c e  
B 

1oo 

T 

~ 10 

Human Psychophys i cs  

O 
O 

> 

0.1 0.1 
i I I I I I 

0.1 1 10 100 1000 0.1 1 10 100 
Spat ia l  W a v e l e n g t h  I d e g ] ~  Spa t ia l  Wave leng th  [ d e g ] ~  

100q 

Fig. 4. Pattern dependence of different biological movement detection systems as revealed in optomotor tuming responses in (A) the fly and 
(B) human psychophysics. To test whether or not movement detector responses are pattern dependent (see predictions in Box 2), mean 
response amplitudes to sine gratings of various spatial wavelengths drifting at different angular velocities were determined. For each 
wavelength they increase with increasing velocity, reach an optimum value and then decrease again. The response optima are shifted 
towards larger velocities for patterns with larger spatial wavelengths [shown schematically in the inset of (A)]. When the optimal velocity is 
plotted against the pattern wavelength the data points approximate to a straight line for motion perception of both insects and man. In 
correspondence with the model predictions, this indicates that the response optima are determined by the temporal frequency rather than by 

44 the velocity of the stimulus. Insect data represent the optomotor turning response of the fly . Psychophysical data are compiled from 
various studies that use different indicators of movement perception: red 54, yellow 5z and violet circles 55, maximum contrast sensitivity for 
the detection of a moving grating; blue circles 58, maximum contrast sensitivity for estimating the correct direction of motion; orange 

56 59 circles , strength of motion after-effect as estimated by subjective scaling; green circles , strength of motion after-effect as estimated by 
the velocity required to cancel it. 

filters in the detector input lines. However, a detector 
elaborated in this way only shows an optimal 
performance if these spatial filters are matched 
appropriately to the detector's intrinsic spatial fre- 
quency characteristic. This means that, while filtering 
out those spatial frequencies that lead to aliasing, 
these filters should not attenuate the frequencies in 
the optimum operating range of the movement 
detector. This appears to be accomplished in insects 
and vertebrates in different ways. 

In insects the sampling base is essentially deter- 
mined by the spacing of the two-dimensional array of 
photoreceptors. Here, aliasing effects are dramati- 
cally alleviated simply by the bell-shaped sensitivity 
distributions of the photoreceptors which are a direct 
consequence of the optical properties of the eye (Fig. 
3A). The width of the sensitivity distribution should 
be carefully matched to the sampling base 44. If it is too 
small, then wavelengths that cause spatial aliasing 
may enter the motion detection system. On the other 
hand, if the sensitivity distribution is too broad, the 
motion detection system unnecessarily loses spatial 
acuity (Fig. 3B, C). A thorough analysis of the visual 
system of the fly revealed that the sampling base and 
the spatial low-pass filter properties of the receptors 
are almost optimally matched to guarantee a high 
performance in motion detection 44. 

In higher mammals including man there is good 

evidence for motion detectors with different sized 
sampling bases (e.g. Ref. 46). The sampling bases 
may be considerably larger than the angular distance 
between the photoreceptors and thus larger than the 
maximum resolution of the eye. Consequently, spatial 
aliasing cannot be prevented simply by using the 
spatial transfer properties of the optical apparatus. 
Instead, spatial frequency filters have to be generated 
by appropriate neuronal interactions. There is ample 
evidence that the visual system of different mam- 
malian species acquires band-pass filter characteristics 
prior to the site of motion detection. These are 
generated by the antagonistic subfields found in the 
receptive fields of, for instance, retinal ganglion cells 
and cortical simple cells (Fig. 3D) 29'37'47. Again, as in 
insects, the spatial filter properties of the input 
channels and the sampling bases of the subsequent 
motion detection system seem to be almost optimally 
matched (Fig. 3E, F). This can be inferred from data 
on directional-selective motion-sensitive simple and 
complex cells in the cat striate cortex za. There is a 
strong correlation between the spatial wavelength 
optimum of the cells and the optimum distance 
between two sequentially flashed bars simulating 
apparent motion. This optimum distance was found to 
increase proportionally with the optimum wavelength 
of the cell, yielding a mean ratio of about 1:5. A ratio 
of 1:4 is predicted as optimal on the basis of 
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movement detector theory, if the optimum distance 
as determined in the experiments is assumed to 
correspond to the sampling base of the movement 
detector. Interestingly, corresponding results were 
found in related psychophysical experiments on 
motion vision in man 48'49. In this way, the spatial 
frequency filters in the input channels to the 
movement detectors do not much attenuate frequen- 
cies in the detector's optimal operating range, but do 
prevent spatial aliasing. Since also low spatial 
frequencies are attenuated by the band-pass filter 
characteristics, the above data on motion-sensitive 
cells in the cat 23 further indicate that motion detection 
is performed separately in different spatial frequency 
channels all tuned to the corresponding sampling 
bases. There is independent evidence from psycho- 
physical experiments that this is also the case in 
man 5°'51, and thus may reflect a general feature of 
motion detection at least in higher mammals. 
However, it should be emphasized that these 
differences between the motion detection system of 
insects and vertebrates only reflect their spatial input 
organization rather than any principal differences in 
the detection mechanism. 

Pattern dependence of motion detectors 
In contrast to the gradient scheme, which repre- 

sents a pure velocity sensor, a motion detection 
mechanism of the correlation type does not correctly 
signal the local motion in the retinal image in terms of 
its direction and velocity. Instead, its output also 
depends in a specific way on the structure of the 
stimulus pattern, such as the spatial frequency 
content and contrast 2'6'~2. This characteristic can be 
used to distinguish this motion detection scheme from 
alternatives experimentally (Box 2) and may be 
illustrated most conveniently for grating patterns 
moving with a constant velocity. For a given spatial 
wavelength of the pattern, the response is expected 
to increase initially with increasing velocity until it 
reaches its optimum, and then to decrease again (see 
inset in Fig. 4). For a larger wavelength the response 
optimum should be shifted towards higher velocities in 
such a way that the ratio of the optimum velocity and 
the spatial wavelength of the pattern, i.e. the 
temporal frequency of the stimulus, is constant. 

This prediction was originally tested in various 
insect species using a behavioural paradigm to 
monitor the output of their motion detection 
systems 52'53. Striped drums were rotated around the 
insect, while the compensatory optomotor turning 
responses were measured. Response optima for 
various combinations of pattern velocities and spatial 
wavelengths are drawn into a wavelength/velocity 
diagram (Fig. 4A). To a good approximation, they are 
located on a straight line. As predicted by model 
calculations, the response optima are thus essentially 
determined by the temporal frequency of the stimulus 
rather than by the pattern velocity itself. 

Similar results have been obtained for humans in 
psychophysical studies using different indicators of 
the performance of the movement detection 
system 54-59, as well as in behavioural experiments on 
macaque monkeys ~. The psychophysical results are 
summarized in Fig. 4B. As in insects, the response 
optima are located approximately on a common 

straight line in a wavelength/velocity diagram irres- 
pective of the criteria used for the manifestation of 
human motion detection. This finding demonstrates 
that the motion vision systems of higher mammals 
including man are obviously incapable of yielding 
unambiguous information on velocity when exposed to 
grating patterns. Surprisingly, these results have not 
yet been discussed with respect to the mechanism 
underlying the evaluation of motion information. By 
analogy with the insect data, however, they provide 
strong evidence that in vertebrates too the initial 
representation of motion information is computed by a 
correlation-type movement detector. These findings 
corroborate those psychophysical and behavioural 
results that were interpreted explicitly in favour of 
essentially equivalent movement detection schemes 
in humans and insects 12'14A5'17'18. It should be 
emphasized again, that this conclusion is not affected 
by the evidence for spatial band-pass filters in the 
movement detector input channels of man and higher 
mammals 5°'51. This only means that motion detectors 
with otherwise the same properties operate indepen- 
dently in different spatial frequency bands. 

Dynamical  propert ies  of motion detectors 
All the predictions discussed so far are concerned 

with the response of the motion detection system 
under steady-state conditions, i.e. when all stimulus 
parameters, such as pattern velocity are constant. 
The motion detection scheme discussed here to 
underly motion vision in different biological systems 
has limitations for the evaluation and representation of 
transiently changing motion stimuli 61'62. These limi- 
tations are due to the fact that the signals in the two 
branches of each movement detector have to be 
phase-shifted with respect to each other for the 
movement detector to operate properly (Fig. 1). 
Analysing the transient response properties of 
movement detectors may, therefore, be interesting in 
two respects. First, they allow the assessment of how 
motion transients are represented at the output of a 
biological motion detection system. Second, they 
provide us with additional analytical tools to decide 
whether or not the motion detection system under 
investigation is of the correlation type. 

In the following we focus on two types of transient 
stimuli, (1) an abrupt onset of motion of a sinusoidally 
modulated grating pattern, and (2) sinusoidal oscil- 
lations of this pattern with different frequencies. In 
Fig. 5, computer simulations of the spatially inte- 
grated output of an array of motion detectors are 
compared with the corresponding electrophysiological 
data obtained from wide-field movement-sensitive 
cells in the visual system of the fly. At the onset of 
motion, both the model and cellular responses reach 
their steady-state level only after some time. During 
the transition period the response oscillates with the 
temporal frequency of the stimulus (Fig. 5A). The 
oscillation amplitude decays exponentially with a time 
constant, which is determined by the movement 
detector delay 62. When the pattern velocity changes 
sinusoidally (Fig. 5B), the time course of the response 
is smooth and follows the pattern motion quite well, as 
long as the oscillation frequency and amplitude are 
sufficiently small. For higher frequencies and ampli- 
tudes characteristic distortions in the response pro- 
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Fig. 5. Transient movement detector responses. The diagrams on the left of both (A) and (B) are the simulated outputs of a spatially 
integrated array of correlation-type movement detectors. The diagrams on the right (tinted) are the corresponding responses of directionally 
selective large-field interneurons in the third visual ganglion of the fly. (A) Responses to the onset of motion of a grating with low 
frequencies (upper panels) and higher frequencies (middle panels). The onset and direction of the stimulus are shown in the lower panels. In 
the computer simulations (left) the grating frequencies were 2 Hz (upper panel) and 10 Hz (middle panel); the movement detector delay 
was approximated by a first-order low-pass filter with a time constant of 50 ms. In the responses from the fly's Hl-cell the grating 
frequencies were 2 Hz (upper panel) and 15 Hz (middle panel). Initially, the responses oscillate with the temporal frequency of the stimulus, 
until they settle to their steady-state level This is due to the delay inherent in the detector. The oscillations are more pronounced for the 
higher frequency oscillations. (B) Graded membrane potential changes of an HS-cell in response to a sinusoidal stimulus grating oscillating 
with a frequency of 8 Hz, but with different amplitudes of stimulus. In the upper panels of both the computer model and the fly's HS-cell, 
the amplitude of the stimulus grating was low (+_2.5°). In both, the responses follow the velocity modulations of the stimulus pattern 
(bottom panels) more or less smoothly. On the other hand, at higher oscillation amplitudes (+_ 10 °, middle panels), characteristic distortions 
occur. In the computer simulations the time constant of the movement detector was 160 ms; the oscillation ampfitudes corresponded to the 
spatial wavelength (middle panel) and to one-fifth of the spatial wavelength (upper panel). In both the model and the experiment, the 
detector output signal is proportional to stimulus pattern velocity only within a fimited dynamic range. (Modified from Refs 61, 62.) 

files become visible in both the model and the cellular 
responses 61. It can thus be concluded that the time 
course of the spatially integrated responses of 
correlation-type movement detectors and of the fly's 
movement detection system are proportional to 
pattern velocity only within a limited dynamic range of 
pattern motion, i.e. when the changes in pattern 
velocity are sufficiently small. Beyond this dynamic 
range, considerable deviations of the responses from 
the time course of pattern velocity occur. 

Whether these conclusions also apply to motion 
detection in vertebrates cannot yet be decided, 
because comparable experimental data are not 
available in the literature. The predictions of charac- 
teristic response transients, as derived on the basis of 
the correlation-type of movement detector, rep- 
resent another challenge to the conclusion that 
movement detection in insects and in the human visual 
system is based on essentially the same principles. In 
any case, the results shown in Fig. 5 suggest that the 
dynamics of detector responses should be considered 
if transient stimuli are used. In general, such data 

cannot be explained purely on the basis of the steady- 
state detector theory (compare e.g. Ref. 63 with Ref. 
64). This might also be important when we interpret 
psychophysical and behavioural data because transient 
movement stimulation (such as brief stimulus presen- 
tation times occurring, for example, in reaction time 
measurements) is commonly used there and often 
leads to surprising results. 

Concluding remarks 
We hope to have illustrated that a clear understand- 

ing of the mechanisms underlying motion detection 
can only be achieved by a combined experimental and 
theoretical approach. It is important to know what 
information about the visual surround is extracted and 
represented by the mechanism if one wants to analyse 
the steps involved in processing this initial represen- 
tation of local motion and which may give rise to the 
solution of more complex motion-dependent tasks. 

To our knowledge, most relevant experimental 
data on biological motion detection now available are 
in accordance with the predictions of a correlation- 
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type movement detector (Box 2). However, there 
exist some studies on human psychophysics 65-67 that 
are interpreted as evidence in favour of the gradient 
scheme (e.g. see Ref. 8). However, the model 
predictions tested in these studies were not derived 
from the mathematically perfect gradient scheme but 
from a discrete version of it which was first proposed 
by Marr and Ullman 7. There are two points to note 
here. (1) This discrete version of the gradient scheme 
no longer represents a pure velocity sensor, but 
instead, its response depends on the structure of the 
pattern, as is also characteristic of the correlation 
model (see Box 2). (2) The non-linear interaction 
inherent in this model relies on a logic AND-gate or, if 
implemented in an analogue way, on a multiplication 7. 
Since this kind of interaction forms the core of the 
correlation-type of movement detector, the antagon- 
ism between the two formal rival models begins to 
fade when more realistic implementations of the 
gradient scheme are taken into account. Although 
many questions still remain, this is a further indication 
in favour of basically the same motion detection 
scheme occurring in insects and in different verte- 
brate species including man. Of course, this notion 
does not exclude species differences in the peripheral 
pre-processing of the signals on which the motion 
detection mechanism operates (see above). 

Having characterized the basic computations under- 
lying biological motion detection and, in particular, the 
non-linear interaction of the movement detector input 
channels, it might be of great interest for neurobiol- 
ogists to account for them in cellular terms. For 
instance, different types of specific synaptic interac- 
tion, both inhibitory and excitatory, have been 
proposed theoretically as cellular mechanisms under° 
lying directional selectivity. Interestingly, both types 
of interaction may approximate a multiplication which 
represents the core of a correlation-type movement 
detector 9'1°'21'68. Moreover, promising attempts 
have been made to unravel these synaptic interactions 
by experimental means in suitable systems such as 
the amphibian and rabbit retina 69'7°, the visual cortex 
of cats 71 and the fly visual system 72'73. So there is 
hope that, in the near future, we wilt see how the 
different neuronal computations postulated by the 
correlation model are accomplished by the nervous 
system in terms of synaptic interactions. 

Whatever the cellular mechanisms underlying 
movement detection in different species might be, the 
conclusions drawn above suggest that common 
principles of information processing exist not only at 
the level of properties of single nerve cells but also at 
the level of computations performed by neural 
circuits. Up to now there have not been many 
examples where this could be shown. 
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Scientists studying the invert- 
ebrate nervous system are quick to 
point out how much less complex 
the nervous system of invert- 
ebrates is compared with the brain 
of higher organisms. In this book, 
the 'simple' invertebrate nervous 
system is taken to an even more 
basic level, cell culture. 

In eight chapters, experts in the 
field review their work on cultured 
neurons from pond snails, leeches, 
sea slugs, cockroaches, fruit flies 
and grasshoppers. The chapters 
on insects deal mostly with 
issues of membrane excitability 
and neurotransmitter systems, 
whereas the others focus on 
developmental issues like neurite 
outgrowth and synaptogenesis. 
All the chapters provide ample 
evidence of the two main ad- 
vantages of cell culture. First, cells 
growing on the surface of a dish 
are easily accessible and allow 
studies which would be difficult or 
impossible to perform in the living 
animal. Second, the environment 
of the culture dish is well defined 
and can be manipulated to study 
neuronal behavior. Thus, the 
complexity of the nervous system 
in r ive can be reduced to well- 
defined components in the culture 
dish. 

The methods described in this 
book are as diverse as the species 
used. They range from time-lapse 
video-microscopy of intracellular 

calcium concentrations in living 
growth cones, to the mutational 
analysis of membrane excitability 
in Drosophila neural cultures, to 
single-channel recordings from 
myosac membranes. Results ob- 
tained in cell culture are compared 
with in vivo findings to which they 
often correspond in surprising 
detail. 

This book meets its goal of 
giving an up-to-date review of 
invertebrate neuron culture. It 
is highly recommended to the 
novice who wants to get an 
introduction into the field. The 
expert may find it useful as a 
reference that gathers much in- 
formation in one place. The use 
of the book as a reference in 
the laboratory is limited since 
some chapters do not give enough 
detail or are poorly illustrated 
in the methodology sections. 
Researchers who do not work with 
invertebrate neurons may want 
to read individual chapters in 
this book because they show 
how elegantly so many different 
aspects of neuroscience can be 
tackled in a system as basic as 
invertebrate neuron culture. Most 
chapters are concise and easily 
readable. However, the general 
relevance of the material pre- 
sented in this multi-authored book 
is not the same in each chapter. 
While most of the chapters do 
stress concepts and provide ex- 
amples of how this new method- 
ology can lead to new insight into 
the nervous system, there are also 
one or two chapters that describe 
results without really providing 
much perspective on conceptual 
advances. The many figures in 
the book enhance its value. 
Excellent black-and-white photo- 
micrographs show the complex 

patterns of neurite formation in 
the culture dish but seem pale 
compared with their full beauty 
when viewed under the micro- 
scope in the laboratory. 

The case for the usefulness of 
the cell culture approach is made 
in several chapters of the book. 
Particularly convincing are the 
studies on the growth cones of 
identified neurons of the pond 
snail Heliosoma. The ease of cell 
culture differs for the various 
preparations described. Molluscan 
neurons grow readily in culture. 
Kater and his colleagues have 
pioneered the characterization of 
this system. One of their most 
striking findings was that the 
growth cones of identified neur- 
ons had different morphologies 
and responses to neurotrans- 
mitters. The different behaviors 
of growth cones appear to 
be regulated by intracellular cal- 
cium levels. The other prepar- 
ations described focus on different 
questions. In Aplysia, the focus is 
on synapse formation and modu- 
lation. The leech studies are 
directed at the question of neur- 
onal wiring, and the Drosophila 
studies are focused on the cellular 
mechanism linking genetic change 
to a whole animal phenotype. The 
authors' enthusiasm for their 
projects is infectious. 

So far, cell culture methods 
have focused on elementary topics 
like neurite outgrowth, specificity 
of synapse formation, and mem- 
brane excitability. But can invert- 
ebrate cell culture bring together 
the individual components and 
help in the study of the behavior of 
complex circuits? After reading 
this book, one wonders whether 
the invertebrate nervous system 
can really be constituted in a dish? 
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