- [7] Experimental procedure: $2: 30\%$ H₂O₂ (11.3 g, 100 mmol) was added with stirring to ethyl pyruvate (17.3 g, 150 mmol) at -10 to 0° C [3]. This solution was then added with stirring and cooling (-5 to 0° C) to a mixture of **1** (10 mmol), conc. H_2SO_4 (3 g), H_2O (8 g), FeSO₄.7 H₂O (28 g, 100 mmol), and CH₂Cl₂ (150 mL). After 15 min of further stirring, the resulting mixture was poured into ice water, the phases were separated, and the aqueous phase was exhaustively extracted with CH_2Cl_2 . After drying over anhydrous $Na₂SO₄$, the solvent and excess ethyl pyruvate were removed in vacuo. The spontaneously crystallizing, colorless needles were recrystallized from diethyl ether: Yield: 1.4g (81Yo) **2;** mp=89-93°; correct C,H,N analyses. IR (KBr): 1715 ($v_{C=0}$), 2250 cm⁻ ($v_{C=N}$): MS: m/z 176 (2%, M⁺), 104 (100%); ¹H-NMR (CDCl₃, 90 MHz): $\delta = 9.00$ (d, 1 H, $J = 5$ Hz, H-6), 8.39 (d, 1 H, $J = 2$ Hz, H-3), 7.75 (dd, 1H, $J=5$ Hz, 2 Hz, H-5), 4.53 (q, 2H, $J=7$ Hz, CH₂), 1.48 (t, 3H, $J=7$ Hz, CH₃).
- [8] **8-10. 12:** 30% H₂O₂ (3.4 g, 30 mmol) was added with stirring to ethyl pyruvate (5.2 g, 45 mmol) at -10 to 0°C [3]. This solution was then added with stirring and cooling *(-5* to 0°C) to a mixture of **7** or **I1** (10 mmol). conc. H?SO, *(3* g), H20 (8 g), FeS04.7 H20 **(8.3** g, 30 mmol), and CH_2Cl_2 (30 mL). $-8-10$: After a work-up similar to that for 2, the residue is separated by medium pressure chromatography (Lobar® size B, LiChroprep® Si60, Merck; dichloromethane/ethyl acetate 5:1). Fraction I: 394 mg **10 [Ill** (22%); fraction **11:** 580 mg **9** [lo] *(33%);* fraction $111: 366$ mg 8 $[91(21\%) = 12:$ After washing the spontaneously crystallizing, pale yellow needles with diisopropyl ether, 1.2 g (80%) of the product is obtained, whose spectroscopic data are identical with those of authentic material [12].
- **8:** Structure determination on the basis of the 'H-NMR spectrum [CDCI,. 90 MHz: 6=9.10-8.90 (m, **1** H, H-6). 8.38-8.18 (m, **1** H, H-4), 7.83-7.60 (m, 1 H, H-5), 4.58 (q, 2 H, $J=7$ Hz, CH₂), 1.49 (t, 3 H, $J=7$ Hz, CH₃)] as well as the hydrolysis in $2 \wedge Na_2CO_3$ solution to 3-cyano-2-pyridinecarhoxylic acid 1131.
- **L.** Noracek, K. Palat, M. Celadnik, **E.** Matuskova, *Cesk. Form. I1* (1962) 16; *Chrm. Abstr.* 57(1962) 15067i.
- H. Watanabe, Y. Kikugawa, **S.** Yamada, *Chem. Pharm. Bull. 21* (1973) 465.
- H. Shindo, *Chem. Pharm. Bull 8* (1960) **33.**
- *S.* Fallab, H. Erlenmeyer, *Helu. Chim. Acra 34* (1951) 488.

Proton Exchange between Arenium Ions and Arenes in the Gas Phase**

By Diefmar Kuck,* Steen Ingemann, Leo *J.* de Koning, Hans-Friedrich Grutzmacher. and Nico *M. M.* Nibbering

Proton transfer reactions are known to be extremely fast in general.^[1] In the gas phase, they can be studied by modern, time-resolved mass spectrometry. Thus, MIKE spectrometry of metastable ions^[2] (time scale 10^{-5} to 10^{-4} s) is used for the investigation of *intramolecula*^{*r*} hydrogen migration reactions, e.g., the proton exchange in protonated α , ω -diphenylalkanes [Eq. (1a)],^[3] while, for *intermolecular* exchange reactions, $^{[4]}$ Fourier transform ion cyclotron resonance (FT-ICR) spectrometry^[5] is becoming increasingly important (time scale 10^{-3} to 10^{+1} s). We report here on the intermolecular proton exchange **[Eq.** (lb)] between simple arenium ions and arenes^[4c] in the cell of a FT-ICR mass spectrometer^[6] (Ar, Ar'= aryl).

$$
ArH^{\circ}-(CH_2)_n - Ar' \rightleftharpoons Ar-(CH_2)_n - Ar'H^{\circ}
$$
\n
$$
2 \le n \le 20
$$
\n(1a)

$$
ArH_2^{\Theta} + Ar'H \implies ArH + Ar'H_2^{\Theta} \tag{1b}
$$

[*] Dr. D. Kuck, Prof. Dr. H.-F. Grützmacher Fakultät für Chemie der Universität

Posrfach 8640, D-4800 Bielefeld 1 (FRG)

Prof. **Dr.** N. M. **M.** Nibbering, Dr. S. Ingemann, **L. J.** de Koning

Laboratorium voor Organische Scheikunde, Universiteit van Amsterdam

Nieuwe Achtergracht 129, NL-1018 WS Amsterdam (The Netherlands)

[**] D. K. thanks the Deutscher Akademischer Austauschdienst, Bonn, and the Ministerie voor Onderwijs en Wetenschappen, The Hague, for a grant.

Fig. 1. a) **FT-ICR** mass spectrum of a mixture of CH₄, C_6H_6 , and C_6D_6 [7a]; b) after ejection of all ions except $C_6H_7^{\circ}$ (m/z 79) at the time $t_r=0$; c) after $I_r = 190$ ms, and d) after $I_r = 6290$ ms.

We generated the benzenium ions $C_6H_7^{\oplus}$ and $C_6HD_6^{\oplus}$ by electron-impact ionization of a mixture of benzene, [D,]benzene, and methane at lo-' Pa (Fig. la).[7"' **All** ions except $C_6H_7^{\oplus}$ (*m/z* 79) were then removed from the ICR cell by "notch ejection"^[8] (Fig. 1b); subsequently, the ionmolecule reactions of the benzenium ions isolated in this way with the C_6H_6/C_6D_6 mixture were followed as a function of time (t_r) . Figures 1c and 1d show all ions present in the cell at $t_r = 190$ and 6290 ms, respectively; Figure 2 displays the dependence of the relative abundance of the *product* ions $C_6(H,D)_7^{\omega}$ on t_r .

Fig. 2. Relative abundances of the product ions in the system C_6H_7/C_6H_6 C_6D_6 as a function of the reaction time t_r given relative to the sum of all product ions and corrected for naturally occurring ¹³C.

The measurements allow two conclusions to be drawn: 1. The proton exchange between benzenium ions and benzene is a surprisingly slow process (cf., for example, the system $D_3O^{\Theta}/C_6H_6^{[4a]}$). For short reaction times t_r (under

"single collision conditions"), no isotopomers other than $C_6HD_6^{\circ}$ (simple H^{\circ} transfer), $C_6H_6D^{\circ}$ (simple H $^{\circ}$ /D $^{\circ}$ exchange), and $C_6H_2D_5^{\oplus 19}$ are formed. The light and the heavy benzenium ions also predominate under "multiple collision" conditions ($t_r \gtrsim 300$ ms).

2. The proton exchange occurs not only by consecutive ion-molecule reactions, but also within the collision complexes (e.g., $[C_6H_7^{\oplus} \cdot C_6D_6]^*$). This follows from extrapolation of the relative abundances of the product ions to $t_r = 0$: The exchange products $C_6H_6D^{\circ}$ (m/z 80) and $C_6H_2D_5^{\circ}$ (*m/z* 84) are already present there (Fig. 2).

Similar results are obtained from the corresponding investigation of the reaction of isolated $C_6HD_6^{\circ}$ ions with the C_6H_6/C_6D_6 mixture.

A further experiment allows a clear distinction to be made between these two exchange processes (Scheme 1). If the ions $C_6HD_6^{\oplus}$ (m/z 85) are continuously removed from the cell for the entire reaction time, $[7b]$ the formation of all further $C_6(H,D)_7^{\circledast}$ ions is suppressed to the extent that they are formed via $C_6HD_6^{\oplus}$ (Scheme 1a). In contrast, $C_6(H,D)_7^{\oplus}$ ions that arise via H^{\oplus}/D^{\oplus} exchange within the collision complexes $[C_6H_7^{\oplus} \cdot C_6D_6]^*$ are *not* suppressed (Scheme 1b). In Table 1 the relative abundances of the ions present in the cell after $t_r = 790$ ms—with and without continuous removal *of* the ions *m/z* 85-are compared.

Scheme **¹**

Table 1. Ion abundances in the system $C_6H_7^{\circ}/C_6H_6/C_6D_6$ after $t_r = 790$ ms without (-) and with (+) continuous removal of the ions $C_6HD_6^0$ (m/z 85) **[a].**

	m/z 78 79 80 81 82 83 84 85 86				
	$(-)$ 30 1000 49 8.6 7.9 14.3 70 168 15.8 $(+)$ 30 1000 40 6.4 4.2 10.4 62 0 1.0				

[a] ¹³C-corrected values. The absolute abundance of the ions $C_6H_7^0$ ($\equiv 1000$) was constant in both experiments. In order to continuously remove the ions $C_6HD_6^{\circ}$, a radiofrequency pulse with an amplitude of 2.5 V peak-to-peak was used.

The data confirm that the proton exchange takes place within the collision complex: even upon ejection of the ions m/z 85, all $C_6(H,D)_7^{\circ}$ isotopomers are formed, albeit in lower absolute abundances. Thus, for example, the abundance of the ions $C_6H_6D^{\oplus}$ (m/z 80) decreases by only a relative 19%; in contrast, the formation of the ions $C_6D_7^{\oplus}$ (*m/z* 86), which are formed *exclusively* by consecutive ion-molecule reactions (Scheme la), is completely suppressed.[10]

The proton exchange between toluenium ions and toluene $(C_7H_8/C_7D_8/CD_4)^{[7a]}$ is even slower than that between the lower homologues. Here, too, the exchange takes place partly within the collision complexes (e.g., $[C_7D_9^{\oplus} \cdot C_7H_8]^*$). Thus, a fraction of the $C_7(H,D)_9^{\oplus}$ isotopomers are still formed despite continuous removal of the ions $C_7H_8D^{\oplus}$. A possible reason is that the proton exchange in the collision complex $[C_7H_9^{\oplus} \cdot C_7H_8]^*$ only occurs between positions having the same proton affinity (primarily para \rightleftharpoons para'), which must lead to a considerable slowing of the reaction compared with the exchange in the collision complex $[C_6H_7^\oplus \cdot C_6H_6]^*$.

In fact, no proton exchange is observed for non-degenerate proton-transfer reactions, such as in the system benzene/toluene/methane.^[7a] Accordingly, solely proton transfer is observed at all *t,* in the exothermic direction of the reaction **[Eq.** (2a)], and no other toluene isotopomers are formed in the endothermic direction of the reaction $[Eq. (2b)]^{[11]}$

$$
C_6D_7^\circ + C_7H_8 \longrightarrow C_6D_6 + C_7H_8D^\circ
$$

$$
\nleftrightarrow C_6(H, D)_7^\circ \text{ and } C_7H_7D_2^\circ \text{ etc.}
$$
 (2a)

$$
C_7H_9^{\Theta} + C_6D_6 \nleftrightarrow C_7(H,D)_9^{\Theta} + C_6(H,D)_6 \tag{2b}
$$

Fig. 3. Energy profiles for the H transfer between arenium ions and arenes (enthalpy values [11, 13] in kJ/mol^{-1}). (-): thermoneutral H^{\oplus} transfer, $Ar = Ar' = C_6H_5$ or $C_6H_4CH_3$; (---): non-thermoneutral H^{\circledast} transfer, $Ar = C_6H_5$, $Ar' = C_6H_4CH_3$.

These observations can be explained qualitatively by a symmetrical ($Ar = Ar'$) or an asymmetrical ($Ar \ne Ar'$) double-minimum energy profile^[12] (Fig. 3).^[13] According to our results, the activation barrier between the minima $[ArH_2^{\oplus} \cdot Ar'H]$ and $[ArH \cdot Ar'H_2^{\oplus}]$ must be relatively high. This is especially noteworthy in comparison with the extremely fast intramolecular proton exchange in protonated α , ω -diphenylalkanes and related arenium ions.^[3]

> Received: February 20, 1985; **[Z** 1180 **IE]** revised: May 24, 1985 German version: *Angew. Chem.* 97 **(1985)** 691

CAS Registry numbers: benzenium, 38815-08-6; benzene, 71-43-2; toluenium, 52809-63-9; toluene,

- [1] a) R. P. Bell: *The Proton in Chemistry*, 2nd ed., Cornell University Press, New York 1973: b) M. Eigen, *Angew. Chem. 75* (1963) 489; *Angew. Chem. lnt. Ed. Engi.* 3 (1964) I; c) J. E. Crooks in E. Caldin, V. Gold (Eds.): *Proton Transfer Reactions.* Wiley, New York 1975, chap. 6.
- 121 a) R. *0.* Cooks, J. H. Beynon, R. M. Caprioli, G. Lester: *Metastable lons.* Elsevier, Amsterdam 1973; b) K. Levsen: *Fundamental Aspects of Mays Spectrometrv.* Verlag Chemie, Weinheim 1978.
- 131 a) D. Kuck, *Int. J. Mass Spectrom. Ion Phys. 47* (1983) 499; b) D. Kuck, W. BBther, H. F. Griitzmacher, *J. Am. Chem. Soc. 101* (1979) 7154: c) D. Kuck, W. BBther, H. F. Grutzmacher, *In!. J. Spectrom. Ion Proc..* in press.
- [4] a) B. **S.** Freiser, R. L. Woodin, J. L. Beauchamp, *J. Am. Chem.* **SOC.** 97 (1975) 6893; b) S. Ghaderi, P. S. Kulkarni, E. B. Ledford, Jr., C. L. Wilkins, M. L. Gross, *Anal. Chem. 53* (1981) 428; c) Y. Yamamoto, *S.* Takamuku. H. Sakurai, *Cbem. Lett. 1974,* 849; *1975,* 683.
- *[S]* a) C. L. Johlman, R. L. White, C. L. Wilkins, *Mass Spectrom. Rev. 2* (1983) 389: b) M. L. Gross, D. L. Rempel, *Science 224* (1984) 261; c) N. M. M. Nibbering, *Nachr. Chem. Tech. Lab. 32* (1984) 1044: d) K. P. Wanczek, *Int. J. Mass Spectrom. /on Proc.* 60 (1984) **1** I.
- 161 The FT-ICR mass spectrometer was built at the University **of** Amsterdam. **d)** Electronics: J. H. **J.** Dawson in H. Hartmann, **K. P.** Wanczek: *Lecture Notec in Chemistry, Vol. 31,* Springer, Berlin 1982, p. **331;** b) software: A. J. Noest, *C.* W. F. Kort, *Compuf. Chem.* 6 (1982) 111, 115; c) general methods of measurement: J. C. Kleingeld, N. M. M. Nibbering, *Ory. Mass Spectrom.* 17 (1982) 136; *S.* Ingemann, N. M. M. Nibbering. S. **A.** Sullivan. *C.* H. DePuy, *J. Am. Chem. Soc. 104* (1982) 6520.
- [7] a) Experimental conditions: The magnetic field strength was 1.4 T in all experiments. The cell of the FT-ICR mass spectrometer [6] was filled with \approx I.10⁻⁵ Pa of each of the two arenes and with \approx 8.10⁻⁵ Pa of methane. CH₃ and C₂H₅[®] ions, among others, were generated by an electron pulse (20 eV, *5* ms); they protonated the arenes in the following 200 ms to give ArH[®] and Ar'H[®]. Subsequently, all ions except ArH[®] (or $Ar'H^o$) were removed from the cell by "notch ejection" [8] (radiofrequency pulse with a scan length of **10** ms); then, in the following reaction time $(t_r=0 \text{ to } t_r=6290 \text{ ms})$, the ions formed from ArH[®] (or Ar'H[®]), ArH and Ar'H were measured. b) By applying a radiofrequency pulse for *m/z* 85 (amplitude *3.5* V peak-to-peak) during the entire reaction time I_i , all ¹²C₆HD₆ ions were removed from the cell within ≤ 300 µs after their formation. During this time, no collisions with molecules of the gas mixture took place (average rate of collision $\approx 10 \text{ s}^{-1}$).
- [8] a) A. J. Noest, *C.* W. F. Kort, *Comput. Chem. 7* (1983) *8* I ; b) J. C. Kleingeld, N. M. M. Nibbering, *Tetrahedron 39* (1983) 4193; c) A. G. Marshall, T. C. Lin Wang, T. Lebatnan Ricca, *Cfiem. Phys. Lelf. 105* (1984) *233.*
- [9] A fraction of the ions m/z 84 are $C_6D_6^{\circ\circ}$ molecular ions formed by charge exchange (cf. m/z 78, $C_0H_0^{\Theta}$: Table 1).
- [10] The ions ¹³C¹²C₅HD₆[®] (m/z 86, rel. abundance 0.066 [¹²C₆HD₆[®]] were *not* ejected and therefore generated ca. $1/16$ th of the $C_6D_7^{\oplus}$ ions formed without ejection of *m/z* 85.
- [11] PA(C_6H_6) = 777 kJ mol⁻¹, PA(C_7H_8) = 808 kJ mol⁻¹ (PA = proton affinity); D. H. Aue, M. T. Bowers in M. T. Bowers (Ed.): *Gas Phase Ion Chemistry. Vol. 2,* Academic Press, New York 1979, p. **33.**
- (121 a) M. Jasinski, J. **1.** Brauman, *J. Am. Cbem. Soc. I02* (1980) 2906: b) H. Zimmermann, *Angew. Chem. 74* (1964) **I;** *Angew. Chem. Inl. Ed. Engl.* 3 (1964) 157.
- [13] The proton-bound dimer $[C_6H_7^\circ \cdot C_6H_6]$ is more stable by $\Delta H=46$ kJ mol^{-1} than $C_6H_7^9$ and C_6H_6 ; M. Mautner, P. Hamlet, E. P. Hunter, F. H. Field, *J. Am. Chem. Sac. I00* (1978) 5466.

Reaction of Ethylene Oxide with Sulfur Dioxide in the Presence of Cesium Ions: Synthesis of 1 ,3,6,9,2~4-Tetraoxathia-2-cycloundecanone

By *Herbert W. Roesky** and *Hans Georg Schmidt*

Cyclic homologues of ethylene oxide have attracted great interest because of their unusual complexation **prop**erties in the presence of alkali metal ions and other cations.^[1] Their properties can be changed by incorporation

Tammannstrasse 4, **D-3400** Gottingen (FRG)

of further heteroatoms. Reactions of ethylene oxide and sulfur dioxide in the presence of catalysts have been well documented.^[2] Ethylene sulfite is formed. We have now found that the reaction of ethylene oxide, sulfur dioxide,

$$
3\quad \overline{\bigvee_{0}^{1\cdots 0}} + 50_{2} \xrightarrow{\text{Ca}^{+}} \begin{pmatrix} 0 & 0 \\ 0 & \overline{\bigvee_{0}^{5} & 0} \end{pmatrix} \qquad 1
$$

and cesium salts^[3] at room temperature leads to higher membered ring compounds, of which the title compound **1** has been isolated in 20% yield as a white solid.^[4]

In the field ion mass spectrum, M^+ of 1 (m/z 196) is observed as sole peak. **1** polymerizes on storage at room temperature for several weeks in a sealed flask. Poor quality single crystals were obtained from ethylene oxide and examined X-ray crystallographically.^[5]

Fig. 1. Crystal structure of 1.

The structure contains two independent conformationally isomeric molecules of **1** (Fig. I). **A** final refinement was not possible owing to disorder and/or thermal mo $tions$ ^[6]

> Received: April 4, 1985; **[Z** 1250 **IE]** Supplemented: May **13,** 1985 German version: *Angew. Cbem. 97* (1985) 71 I

- [2] Review: G. Dittus in *Houben- Weyl, Methoden der Organischen Chemie. Bd. 613.* 4th ed., Thieme, Stuttgart 1965, p. 482; Farbwerke Hoechst AG, Brit. Pat. 753872 (August **I,** 1956); *Chem. Absrr. 51* (1957) 5821; Chemische Werke Hiils AG, Brit. Pat. 783561 (September 25, 1957): *Chem. Abstr. 52* (1958) 5455; G. M. Gibson, C. R. Heald, D. J. Hartley, Brotherton and Co. Ltd., Brit. Pat. 844 104 (August 10, 1960); *Chem. Abstr. 55* (1961) I1 308; W. A. Rogers, Jr., J. E. Woekst, R. M. Smith, Dow Chemical Co., U. S. Pat. 3022315 (February 20, 1962); *Chem. Abstr. 57* (1962) 5802; A. J. Shipman, ICI Ltd., Brit. Pat. 898630 (June 14, 1962); *Chem. Abstr.* 57(1962) 13697; H. Distler, G. Dittus, BASF AG, DBP 1217970 (June 2, 1966); *Chem. Abstr. 65* (1966) 7189; H. Distler, BASF AG, DBP I223397 (August 1966); *Chem. Abstr.* 65 (1966) 20008.
- *[3]* F. Vogtle, F. Ley, *Chem. Ber. 116* (1983) 3000.
- [4] C_2H_4O (25 g, 570 mmol) and SO_2 (10 mL) were condensed into two 1.5 g (4.65 mmol) batches of $CsAsF_6$ in a Schlenk apparatus under vacuum. The mixtures were allowed to warm to room temperature and stirred for 48 h. The volatile products SO₂, C₂H₄O and dioxane were removed at 20 mbar. Both batches were then combined and distilled in a vacuum. Three fractions were obtained: 1) B.p. 38°C/0.05 mbar, C₂H₄SO₃, yield 1.9 g (1.5%) ; 2) B.p. 38-65°C/0.05 mbar, mixture of C₂H₄SO₃ and SO₂ with two and three ethylene oxide molecules, **0.8** g; *3)* B.p. 95"C/0.01 mbar, **1,** yield 15g (20.2%). m.p. 41"C.-IR (Nujol): *v=1300,* 1248, 1204, 1150, 1130, 1105, 1080, 1015, 905, 870 cm-', and further bands.
- [5] P2₁/c, $a = 11.873(4)$, $b = 18.219(6)$, $c = 8.981(3)$ Å; $\beta = 112.11(1)$ °; $\rho_{\text{calc}} = 1.448 \text{ g/cm}^3$ with $M = 196.22$ and $Z = 8$; $T = -40 \degree \text{C}$, $2\theta < 40 \degree$, direct methods.
- **[6]** G. M. Sheldrick, M. Noltemeyer, private communication.

^[*] Prof. Dr. H. W. Roesky, H. C. Schmidt lnstitut **fur** Anorganische Chemie der Universitat

[[]I] C. J. Pedersen, *J. Am. Chem. SOC. 89* (1967) 7017; J. Dale, G. Borgen, K. Daasvatn, *Acta Chem. Scand. 828* (1974) 378.