outside the cavity (Figure 1).¹⁶ This suggests that, in the absence of strong interactions between the solvent and the solute, these porphyrins in solution will exist in a **sym**metrical conformation and their 'H NMR will be assignable as shown for **4** in the data of ref 13. Since **5** is not soluble in CDCl₃, its ¹H NMR spectrum was taken in DMSO- d_6 and acetone- d_6 . The ¹H NMR in DMSO- d_6 shows four NH signals in the region from δ -5.2 to -6.1, two benzylic proton signals, and two methylic proton signals in the region **6 4.8-5.7** and a complex aromatic region from 6 **7.0** to **10.0."** In contrast, the 'H NMR spectra of the corresponding tetraprotonated species (prepared by adding excess trifluoroacetic acid to **5)** in different solvents (acetone- d_6 , DMSO- d_6 , CD₃OD, and CF₃COOD) show assignable peaks. For example, the ¹H NMR in acetone- d_6 shows a pyrrolic NH proton at δ -4.3, a broad signal at δ **5.0** corresponding to the benzylic and methylic protons and integrating 28 protons, four phenylic proton signals at δ **7.1,7.9,8.0,** and **8.2** each integrating 8 protons, one meso signal at 6 **8.25** integrating 16 protons, and four pyridinic proton signals at δ 8.75, 9.4, 9.7, and 10.1 each integrating **4** protons. These **results** are anticipated from the structure of tetraprotonated **5.**

Comparison of the 'H NMR spectrum of **5** to that of its biszinc and tetraprotonated derivatives in DMSO shows a dramatic conformational switch between them. This indicates that DMSO interacts with the porphyrin moieties and this interaction is inhibited by inducing species such as $\mathbb{Z}n^{2+}$ or H^+ in the center of the porphyrin rings. The same phenomenon was observed with other dimeric porphyrins such as **4** and 6. The conformational change on transfer from CDCl₃ to DMSO- d_6 with these dimeric porphyrins can also be observed from their UV/vis spectra by the blue-shifting of the Soret band and red-shifting of visible bands (see table). The emission spectrum of the dimeric porphyrin **4** in DMSO is red-shifted and its intensity is increased by 30% compared to that in $CHCl₃$, whereas the emission spectrum of the monomeric porphyrin **7** in DMSO is unchanged and its intensity is 90% higher than that in CHCl₃. The increase in the intensity of the emission band by DMSO is due to general solvent

(16) The starting geometries of structures 4, 5, and Zn_2-5 were generated in the 2D molecular construction routine of Quanta (Polygen, Corp.) using the X-ray file of tetraphenylporphyrin (TPP) and minimized structures of pyridinesulfonamide and its N-methyl derivative and they were extensively minimized in CHARM_m with steepest descents and adopted basis Newton-Raphson.

(17) Similar spectrum waa obtained using acetone-de **aa** a solvent.

effects which are dependent on the dielectric constant of the solvent.¹⁸ The relatively low effect of DMSO on the intensity of the emission bands in the dimer may be attributed to a specific interaction between DMSO and the fluorophore molecules of the dimer. Monomeric porphyrins such **as 2** and **7** do not show any 'H NMR or **UV/vis** spectral changes upon switching from CDCl₃ to DMSO- $d_{\rm g}$. Varying the concentration of all the dimeric porphyrins examined from 1×10^{-2} to 5×10^{-6} M caused no change in the UV/vis and ¹H NMR spectra. The combined results reveal that the source of the effect seen in DMSO solutions is a result of an interaction between DMSO and the two porphyrin rings in the dimer, rather than aggregation,¹⁹ and this interaction causes the two porphyrin rings to approach closer to each other **as** judged by the upfield **shift** of the pyrrolic N-H resonance and the quenching of the emission band intensity. Further work is currently underway to explore this phenomenon and to prepare other metal complexes of **5** for studies in aqueous and organic solutions.

Acknowledgment. This work was supported from grants from PROTOS corporation and the National Institutes of Health.

(18) *Lakowia,* J. R. *ph'ncipk8 of Fluorescence Spectroscopy;* Plenum Press: New York, 1983; Chapter **7.**

(19) The same phenomenon waa observed in acetone.

Synthesis and Conformational Behavior of Fenestrindans (Tetrabenzo[5.5.5.5]fenestranes) with Four Bridgehead Substituents'

Dietmar Kuck,* Andreas Schuster, and Ralph A. Krause

Fakultdt far Chemie, Universitdt Bielefeld, Universitdtostrat!3e 25, **0-4800** *Bielefeld 1, Federal Republic of Germany Received February 26, 1991*

Summary: **all-cis-Tetrabenzo[5.5.5.5]fenestranes** (fenestrindans) with four bridgehead substituents **(4-10)** and two doubly bridged, centrohexacyclic analogues, the bisendo-peroxide **11** and the bis-disulfide **12,** have been synthesized from the tetrabromofenestrindan **3.** Pronounced steric interactions between the substituents at opposite bridgehead positions have been revealed by *NMR* and DNMR spectrometry, showing remarkable size-dependent hindrance of the degenerate interconversion of the two S_4 symmetric conformers of the fenestrindans.

Fenestranes have attracted much interest because of the geometric constraints induced by the mutual fusion of the

^{(1) (}a) Benzoannelated Centropolyquinanee, Part **IX.** Presented in part at the Sixth European Symposium on Organic Chemistry (ESOC
VI), Belgrade, Yugoslavia, 1989, paper B-O 017. Part VIII: Paisdor, B.; Kuck, D. J. *Org. Chem.*, in press. (b) For a review on centropolyindans,
see: Kuck, D. In *Quasicrystals, Networks, and Molecules of Fivefold*
Symmetry; Hargittai, I., Ed.; VCH Publishers: New York, 1990; Chapter
19.

four rings at a common, tetracoordinated carbon atom. In particular, the flattening of the rigid molecular framework
at the central carbon atom has been studied.²⁻⁴ The at the central carbon atom has been studied. $2-4$ degree of angular or "planoid" distortion' has been evaluated in recent papers, which concentrate on the effects of ring *size,* unsaturation, and ring fusion stereochemistry at the molecular periphery, that is, at the bridgehead positions. For the latter factors, [5.5.5.5]fenestranes appear most attractive because several synthetic routes to them have been developed in recent years.^{1b,2,5-7,10g}

Bridgehead substitution constitutes another structural feature that should affect the geometry of the fenestrane skeleton. The four substituents X in the as yet unknown **a11-cis-[5.5.5.5]fenestranes (1)** form two pairs of syn-oriented atoms or atomic groups (Scheme I), the interaction of which could lead to skeletal torsion and/or changes in

Ibid. **1982,30, 844-849.** (3) Krohn, K. In Organic *Chemistry* Highlights; Mulzer, J., Altenbach, H.-J., Braun, M., Krohn, K., Reissig, H.-U., Eds.; VCH Verlagsgesell-
schaft: Weinheim, 1991; pp 371–377.
(4) (a) Luef, W.; Keese, R.; Bürgi, H.-B. Helv. Chim. Acta 1987, 70,

(5) (a) Mitachka, R.; Cook, J. M.; Weim, U. *J.* Am. Chem. SOC. **1978. 534-642.** (b) Luef, W.; Keeee, **R.** Ibrd. **1987, 70,643-563.**

100, **3973-3974.** (b) Desphande, M. N.; Jawdosiuk, **M.;** Kubiak, G.; Venlratachabm, M.; Web, U.; Cook, J. M. *J.* Am. Chem. SOC. **1985,107, 4786-4788.** (c) Venkatachalam, M.; Desphande, **M.** N.; Jawdosiuk, M.; Kubiak, G.; Wehrli, S.; Cook, J. **M.** Tetrahedron **1986,42,1597-1605.** (d) Kubiak, G.; Fu, X.; Gupta, A. K.; Cook, J. M. Tetrahedron Lett. **1990, SI, 4286-6288.** (e) Gupta, A. K.; Fu, X.; Snyder, J. P.; Cook, J. M., to be published.

(6) (a) Km, R.; Pfenninger, A,; Roeale, A. Helu. Chim. Acta **1979, 62, 326-334.** (b) Luyten, M.; Keese, R. Angew. Chem., Int. Ed. Engl. 1**934,** 23, 390–391. (c) Luyten, M.; Keese, R. *Helv. Chim. Acta* 1984, *67,*
2242–2245. (d) Luyten, M.; Keese, R. *Tetrahedron* 1986, 42, 1687–1691.
_{".} (7) (a) Kuck, D.; Bögge, H. J. Am. Chem. Soc. 1986, 108, 8107–8109.

(b) Kuck, D., to be published. (c) Seifert, M. Doctoral Thesis, University of Bielefeld. 1991.

of Bielefeld, 1991.
(8) Crimmins, M. T.; Mascarella, S. W.; Bredon, L. D. Tetrahedron **(9)** *F,* J.; SchBttel, **5.; Zhamg,** C.; Bigler, P.; MUer, C.; Keeee, R. Lett. **1fp36, 26,997-1000.**

the two unbridged bond angles (α) at the central carbon atom.^{4b,56} Fenestranes bearing bridgehead substituents are very rare, and only three derivatives with two substituents at opposite bridgehead positions have been described.^{8,9} However, to the beat of our knowledge, no fenestranes with $four$ independent, i.e. nonbridging, 9 substituents have been reported to date, with the exception of the recently synthesized tetrabromo derivative 3 of tetrabenzo[5.5.5.5] fenestrane 2 (X = H, fenestrindan).^{7a,10a} We report here on the synthesis of several new fenestrindans with four identical bridgehead substituents, **4-10,** and two heterobridged analogues, **11** and **12, as** well as on some preliminary results concerning their stereochemical properties.

Tetrabromofenestrindan **3, as** a 4-fold benzhydryl halide, readily undergoes S_N1 -type reactions under hydrolytic or Lewis acid assisted conditions. The tetrachlorofenestrindan **4** is obtained in 90% yield by reaction with excess HCl/AlCl₃ and forms, as do all the new fenestrindans reported here, a stable, crystalline material.^{11,12} The tetrabromide **3** does not react readily with methylmagnesium bromide or methyllithium, but the 4-fold methyl-substituted fenestrindan **5** is obtained in **good** (73%) yield upon treatment with trimethylaluminium at rt for 10 min. The synthesis of tetrafluorofenestrindan **6** from a suspension of 3 and AgF in acetonitrile requires ultrasound to afford a moderate (ca. 40%) yield. The reaction is extremely sensitive to moisture, but the crystalline product **6,** obtained after separation by **MPLC,** is stable both thermally and toward hydrolysis in normal atmosphere. Hydrolysis of the tetrabromide **3** in aqueous

⁽²⁾ (a) **Rao,** V. B.; *Agoeta,* W. C. Chem. Reu. **1987,87, 399-410.** (b) Krohn, K. Nachr. Chem. Techn. Lab. **1987,35,264-266.** (c) Keese, R.

Helu. Chim. Acta **1989**, 72, 487–495.
(10) **Fenestranes with one or two homo- or heterocyclic bridges be**tween bridgeheads have been reported. See refs 6a and 6b as well as the following: (a) Kuck, D.; Schuster, A. *Angew. Chem., Int. Ed. Engl*. 1988, 27, 1192–1194. (b) Kuck, D.; Paisdor, B. 200th ACS National Meeting, Washington, D.C., 1990, Paper ORGN 316. (c) Paisdor, B. Doctoral Thesis, University Bielefeld, 1989. (d) Schuster, A. Doctoral Thesis, University Bielef

⁽¹¹⁾ All new fenestrindans reported here, except 7, gave satisfactory combustion analyses $(\pm 0.4\%)$. The identity of 7, which was found to cocrystallize with THF, has been confirmed by high-resolution mass

cocrystallize with THF, has been confirmed by high-resolution mass
spectrometry. (12) Selected physical data of the new compounds, 4: colorless needles;
mp 325–330 °C dec; ¹H NMR (see Figure 1b; CDCl₃) δ 7.88 (d, Hz, 4 H), 7.55–7.45 (m, 12 H), ABCX spin system; ¹³C NMR (CDCl₃) *δ*
144.7 (q), 140.9 (q), 130.3 (t), 130.1 (t), 125.5 (t), 123.0 (t), 88.1 (q, cen-
tro-C), 79.6 (q). 5: colorless crystals; mp 341 °C; ¹H NMR (CDCl (d, ${}^{3}J = 7.1$ Hz, 4 H) and $7.33-7.21$ (m, 12 H), ABCX spin system, 1.25 (s, 12 H); ¹³C NMR (CDCl₃) δ 151.8 (q), 146.3 (q), 127.5 (t), 127.1 (t), 123.7 (t), 121.6 (t), 88.3 (q, *centro-C*), 58.9 (q), 28.3. 6: wh concentration; ¹⁹F NMR (DMSO-d₆) δ -139.5 (s). 7: colorless crystals containing some THF; mp 305 °C dec; ¹H NMR (see Figure 1a; CDCl₃) δ 7.68 (8 H) and 7.44 (8 H), AA'BB' spin system, 4.10 (4 H); ¹³C NMR (CDCl₃) δ 145.4 (q), 129.7 (t), 124.0 (t), 90.3 (q), 78.4 (q, centro-C). 8: crystalline powder (which explodes upon shock or heating); decom-
 extremely low and has not been identified unambiguously. 9: white
powder; mp 288 °C dec; ¹H NMR (CDCl₃) δ 7.97 (d₁, δ 7 = 8.1 Hz, 4 H),
7.65 (m, 12 H), ABCX spin system; ¹³C NMR (CDCl₃) δ 137.8 (q), 137 (CDCl₃) δ 7.90 (d, $\delta J = 7.6$ Hz, 4 H), 7.34 (m, 12 H), ABCX spin system, 0.81 (s, 12 H); ¹³C NMR (CDCl₃) δ 145.8 (q), 142.5 (q), 128.6 (t), 127.8 (t), 126.7 (t), 124.3 (t), 69.6 (q), 14.7 (p), the signal for missing. 11: colorless crystals; mp 230 °C dec; ¹H NMR (CDCl₃) δ 7.63 (8 H), 7.44 (8 H), AA'BB' spin system; ¹³C NMR (CDCl₃) δ 142.6 (q), 131.0
(t), 126.6 (t), 123.9 (q, centro-C), 100.6 (q), 12: colorless c

6 [PPM]

Figure 1. 'H NMR spectra **(300 MHz,** CDC13, **30 "C)** of (a) **tetrahydroxyfenestrindan** *(I),* (b) tetrachlorofenestrindan **(a),** and (c) of bis-disulfide **12.**

sulfuric acid/THF gives the tetraalcohol **7** in good yield.13 Alkaline hydrolysis, by contrast, does not afford satisfactory yields.

In analogy to other activated alkyl halides, 14 tetrabromofenestrindan **3** reacts with trimethylsilyl (TMS) azide and with other trimethylsilyl "pseudohalides" like TMS cyanide and methyl TMS sulfide under **catalysis** with SnC1, in methylene chloride. Remarkably, the tetraazidofenestrindan 8 has been obtained in good yields **as** a crystalline solid, which is, as expected, highly sensitive to thermal treatment and mechanical shock. Analogous reactions of 3 with TMS cyanide and methyl *TMS* sulfide give the fourfold bridgehead nitrile **9** and tetrathioether **10.** The latter two conversions have not been optimized yet but promise the possibility of inducing various bonding interactions between opposite bridgehead functionalities.

By Ag(1) ion assisted reaction of tert-butylhydroperoxide,16 **3** can be converted to the bis-endo-peroxide **11,** which represents a new centrohexacyclic (topologically non-planar) molecule, reminiscent of the Simmons-Paquette molecule^{10e-8} and of centrohexaindan.^{10e-d} Peroxide **11** readily crystallizes from THF solutions in beautiful, half-inch, thin plates. The analogous bis-disulfide **12** has been obtained by reaction of 3 with elemental sulfur at **250 "C** in **40%** yield. The synthesis of further tetrathiahexacycles **as** well **as** other heterobridged fenestrindans is under current investigation in our laboratory.

The ground-state conformation of solid fenestrindan **2** $(X = H)$ has S_4 molecular symmetry, but the two S_4 forms interconvert rapidly in solution, giving rise to degenerate NMR resonances corresponding to the formal D_{2h} symmetry.^{7a,16} The ¹H and ¹³C NMR spectra of the substituted fenestrindans **3-12** clearly reflect the two types of molecular symmetries, depending on the individual bridgehead substituents. Three typical examples are reproduced in Figure 1. For small substituents $(X = F$ and OH), the NMR spectra show simple AA'BB' proton spin coupling (cf. 7 , Figure 1a) and only three arene ¹³C resonances, respectively. Not surprisingly, the bis-endo-peroxide **11** shows the same behavior; thus rapid interconversion occurs in all three cases in rt solutions. By contrast, fenestrindans **3,1h 4** (Figure lb), and **8-10** all exhibit ABCX spin **systems** with characteristic downfield doublets representing four ortho **protons,** and six 4-fold-degenerate ¹³C arene resonances. Hence, in these cases the interconversion of the S_4 conformers is slowed down or almost suppressed at least at ambient temperatures. The rt **'H** NMR spectrum of the bis-disulfide **12** (Figure IC), **as a** borderline case, displays two broad, nearly coalescenced signals, whereas only three **13C** lines are observed for the benzo nuclei.

The dynamic behavior within the series **3-12** appears to be very different. The observation of "static" conformers on the **NMR** time scale for the fenestrindans **3-5** and $8-10$ demonstrates that the interconversion of the $S₄$ rotamers is drastically hindered by unfavorable steric interactions within each pair of bridgehead substituents. In fact, no coalescence is observed upon heating both 3^{10a} and 4 to 120-130 °C in $C_2D_2Cl_4$, indicating that the activation barrier toward interconversion of the two rotamers is >100
kJ·mol^{-1,21} The ¹H NMR spectrum of tetramethylfenestrindan 5 shows significant signal broadening at those temperatures, and coalescence is observed at **65** *"C* in ita ¹³C NMR spectrum (activation parameters: $\Delta G^*_{298} = 69$ $f{t}$ **f** $f{t}$ *h* $f{t}$ *AH^{*} = 49* \pm *10 kJ·mol⁻¹, and* $\Delta \bar{S}^*$ *= 70* J.mol-'.K-' **22).** *^I*

⁽¹³⁾ Tetrol7 hae been prepared also by reaction of fenestrindan 2 (X = **H)** with **dimethyldioxirane and methyl(trifluoromethy1)dioxirane:**

Curci, R.; Fusco, C.; Schuster, A.; Kuck, D., to be published.
(14) (a) Prakash, G. K. S.; Stephenson, M. A.; Shih, J. G.; Olah, G. A.
J. Org. Chem. 1986, 51, 3215-3217. (b) Sasaki, T.; Nakanishi, A.; Ohno,
M. *Ibid.* 1982

⁽¹⁵⁾ Porter, N. A.; Mitchell, J. C. *Tetrahedron Lett.* **1983,24,543-546. (16) Similar conformational dietortione of the formal molecular symmetry have been found for other solid centropolyindans (ref 17) and for [5.5.5.5]fenestranetetrone (stauranetetrone, ref 18) and have been calculated for several centropolyquinanes (refs 19, 20).**

⁽¹⁷⁾ Kuck, D.; Mllller, A,; B8gge, H., to be published.

⁽¹⁸⁾ Mitschka, R.; Oehldrich, J.; Takahashi, K.; Cook, J. M.; Weiss, U.; Silverton, J. V. Tetrahedron 1981, 37, 4521–4542.
U.; Silverton, J. V. Tetrahedron 1981, 37, 4521–4542.

(19) Ermer, O. Aspekte von Kraftfeldrechnung

Verlag: München, 1981; Chapter 4.6.3, pp 382–464.

(20) Burkert, U.; Allinger, N. L. Molecular Mechanics; American

Chemical Society: Washington, 1982; Chapter 4, pp 113–114.

(21) Oki, M.; Iwamura, H.; Hayakuwa, N. Bull.

^{37,1865.} Kurland, R. J.; Robin, M. B.; Wise, W. B. *J. Chem. Phys.* **1964,** *40,* **2426.**

⁽²²⁾ The coalescence of the two adjacent resonancea **of the meta nuclei (6 127.5 and 127.1 ppm) was evaluated.**

The results presented here show that a range of fenestranes with fourfold bridgehead substitution has become synthetically accessible. The NMR data clearly reveal that the barrier to **conformational** interconversion, and thus the unfavorable steric and, probably, dipolar interactions, increase in the order F, $\overrightarrow{OH} \ll \overrightarrow{CH_3} \ll \overrightarrow{CN}$, N_3 , $\overrightarrow{SCH_3}$, Cl , Br , much different from substituent trends in substituted cyclohexanes.29 We feel that **2** represents an interesting parent system to study both dynamic and static effeds of bridgehead substituents on the fenestrane framework. Preliminary force-field calculations suggest that the "planoid" distortions at the central carbon atoms of fenestrindans **3-12** are considerably affected by the nature of the bridgehead substituents. 24 Detailed investigations

(23) March, J. *Aduanced Organic Chemistry, Reactions, Mechaniums, and Structure, 3rd ed.; John Wiley & Sons: New York, 1985; pp 125-126.* are underway including X-ray crystal structure analysis of bridgehead-substituted fenestrindans.

Acknowledgment. We are grateful to Professor H.-F. Griitzmacher for support of our research and to Mr. K.-P. Mester and to Dr. B. Paisdor for performing, and for help evaluating, the dynamic NMR measurements. We thank Professor J. M. Cook for a preprint (ref 5e). Financial support by the Deutsche Forschungsgemeinschaft (Ku 663/1-1) is greatfully acknowledged.

Supplementary Material Available: Full experimental and **spectrometric data of compounds 4-12 (6 pages). Ordering information is given on any current masthead page.**

Articles

Homolytic Alkylation of Enamines by Electrophilic Radicals'

Glen A. Russell* and Keyang Wang

Department of Chemistry, Iowa State University, Ames, Iowa 50011

Received November 6, 1990

The electrophilic radicals $R^* = p \cdot O_2N C_6H_4CH_2^*$ or $Me_2C(NO_2)^*$ add readily to $CH_2=C(NMe_2)_2$ to yield $RCH_2C(NMe_2)_2$, which undergoes electron transfer with $p-O_2NC_6H_4CH_2Cl$ or $Me_2C(NO_2)_2$ to regenerate R^* . Hydrolysis yields p-O₂NC₆H₄CH₂CONMe₂ and Me₂C=CHC(NMe₂)₂⁺, respectively. p-Nitrobenzyl radicals add **readily to N-pyrrolidino- or N-morpholino-1-cycloalkenes to yield after hydrolysis the a-(p-nitrobenzy1)cyclo**alkanones. Photostimulated alkylation of *N*-pyrrolidino-1-cycloalkenes by Me₂C(NO₂)₂ is not observed although in competitive reactions between the enamine and $Me₂$ C=NO₂Li, the product from attack of $Me₂C(NO₂)$ ^{*} upon the enamine double bond is formed. The N-pyrrolidino-1-cycloalkenes are more reactive toward p -O₂NC₆H₅CH₂^{*} **than their morpholino analogues.**

Introduction

The free-radical chain reaction between $PhCOCH₂HgCl$ and 1-morpholinocyclohexene has been reported to involve addition of the acceptor radical $PhCOCH_2$ ⁺ to the electron-rich double bond of the enamine followed by the electron transfer of reaction 1.2 Perfluoroalkyl halides are also recognized to react with enamines by a radical chain process presumably involving electron transfer. $3,4$

Attempts to utilize simple alkylmercury halides in photostimulated reactions with enamines failed to yield **Scheme I** $(\mathbf{R} = \mathbf{Me}_2\mathbf{C}(\mathbf{NO}_2))$ or $p \cdot \mathbf{O}_2\mathbf{NC}_6\mathbf{H}_4\mathbf{CH}_2)$

the alkylation products observed with $PhCOCH₂HgCl$, presumably because facile addition to an electron-rich system requires an electrophilic radical. In a search for further examples **of** radical alkylations **of** enamines, we have examined reactions with $p-\mathrm{O}_2\mathrm{NC}_6\mathrm{H}_4\mathrm{CH}_2\mathrm{Cl}$ and $Me₂C(NO₂)₂$, substrates known to react with a variety of anions in a free-radical chain sequence. $5,6$ Photostimulated alkylation reactions were indeed observed between these substrates and various enamines. With p -O₂NC₆H₄CH₂Cl

⁽²⁴⁾ MMPMI and MM2(87) force-field calculatidn programs (QCPE, University of Indiana, Bloomington) both gave $\alpha = 112.5^{\circ}$ for $2(X = H, S_{\text{chem}})$. Scheme 1), considerably lower than the X-ray value $\alpha = 116.5^{\circ}$ [7a], and a gradual increase of α up to 117-118° for X = Cl and Br.

⁽¹⁾ Electron Transfer Processes. Part 53. This work was supported by the National Science Foundation and by the donors of the Petroleum **Research Fund, dminbtered by the American Chemical Society. (2)** Ruesell, **G. A.; Kulkami, 5. V.; Khanna,** R. **K.** *J. Org. Chem.* **1989,**

^{66,1080.}

⁽³⁾ Cantacuzene, D.; Dorme, R. *Tetrahedron Lett.* 1975, 2037.
(4) Rico, I.; Cantacuzene, D.; Wakselman, C. *Tetrahedron Lett.* 1981, *22.* **3405.**

⁽⁵⁾ Russell, *G.* **A.; Danen, W. C.** *J. Am. Chem.* **SOC. 1966,88, 5663. (6) Komblum, N.; Michel,** R. **E.; Kerber,** R. **C.** *J. Am. Chem. SOC.* **1966,88,5662.**