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Synopsis 

A molecular field theory, taking into account long-range electrostatic forces is used 
to study helix-coil transitions of polynucleotides. The theory predicts the existence 
of hysteresis when the electrostatic interaction parameter is large compared to the 
thermal energy. The theory is applied to the acid-base titration of poly(A).2 poly(U). 

INTRODUCTION 

The influence of cooperativity on conformational changes in biopolymers 
has been extensively studied both experimentally and theoretically.' 
Nevertheless relatively small attention has been paid to the existence of 
hysteresis cycles in some of these transitions. This might be due to the 
fact that non-reversible transitions are rather suspicious to many scientists. 
It is the merit of Aharon Katchalsky to have recognized the importance of 
hysteresis phenomena, especially as a mechanism for molecular memory 
recording. 

The aim of this paper is to present a theory of hysteresis in polyelectro- 
lytes and to apply it to  the helix-coil transition of the three-stranded com- 
plex poly(A) .2 poly(U) into the constituent polymers polyriboadenylate 
(poly(A)), and polyribouridylate (poly(U)). This conformational change 
preceeds the formation of the helix poly(A) .poly(A) in the acid titration 
of poly(A) -2 poly(U) according to Eq. (1) : 

The pronounced hysteresis loop observed in this system3 is represented 
in Figure 1, where potentiometric and spectrophotometric titration data 
are expressed in terms of the fraction of dissociated (A.2U) segments. In 
a multistranded helix like poly(A) .2 poly(U) the nucleotide segments can 
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Fig. 1. Experimental determination of 0, the fraction of open bases in poly(A).2 

poly(U) as a function of pH.* 0 and 0 potentiometric titration, pspectrophotometric 
titration. The lower branch of 
the cycle corresponds to the decrease of the pH, the upper branch to the increase of the 
PH. 

Temperature is 20°C, concentration of NaCl 0.1M. 

be in two different states, either closed or open. In the closed state an 
adenine base is associated with two uracils by H-bonds (see Fig. 2). This 
specific association is a condition for maximum stacking interactions in the 
helix. In the open state, H-bonding between opposite bases is interrupted 
and stacking interactions are mostly reduced. 

The free energy difference between the closed and the open state of a 
base can be divided into two terms: (i) a stabilizing term due to H-bond- 
ing and base stacking, and (ii) a destabilizing term resulting from electro- 
static repulsion between the charged phosphate groups of opposing strands. 

These two terms do not vary in the same way upon partial opening of 
the triple helix. The stabilization energy of a nucleotide is completely 
lost when this nucleotide opens. The electrostatic repulsion term, how- 
ever, decreases only when the nucleotides are able to move apart from 
each other. This means that the second term is strongly dependent upon 

Fig. 2. Schematic representation of the (U.A.U.) base pairing in a poly(A).2 poly(U) 
At acidic pH the NI nitrogen is protonated, and is no longer available for segment. 

hydrogen bonding. The adenine thus remains open. 
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- *t 
Fig. 3. Free energy F of a nucleotide in a polynucleotide helix as a function of the dis- 

tance d of the charged phosphate group form the axis of the helix. In the case repre- 
sented, the free energy of the closed nucleotide is less than the free energy of an open 
nucleotide far from the axis. The multistranded helix would then be the stable state 
and the single strands the metastable state. 

the state of the neighboring nucleotides. When many consecutive nucleo- 
tides are open, they are able to move apart from the triple helix axis and 
t,heir electrostatic energy is appreciably decreased. However an isolated 
open nucleotide has nearly the same electrostatic energy as when it is 
closed. Since it has lost its free energy of stabilization, it has then a rela- 
tively high energy. This dependence of the electrostatic energy of an 
open nucleotide upon the state of its neighbors is the origin of the energy 
barrier which can create metastability of the closed state relative to the 
open state of the system. Since the opening of the first nucleotide of a 
loop is energetically unfavorable, there exists a nucleation barrier similar 
to the nucleation barrier, due to surface tension, which is responsible for 
supercooling or superheating in liquid-gas, or liquid-solid, transitions (see 
Figs. 3 and 4). 

F 

Fig. 4. Average free energy F of an open segment as a function of the fraction of closed 
segments according to the linear molecular field approximation. 
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In  conclusion, interaction between neighboring nucleotides involves more 
than the nearest neighbors for two reasons: (1) The electrostatic forces, 
even screened, are rather long range forces: at a concentration of 0.1M 
NaCl, in the case of poly(A) a 2  poly(U), thirty bases are within the range 
of one Debye radius from a given phosphate group. (2) The electrostatic 
energy decreases appreciably in the opening process only if several neigh- 
b0rin.g nucleotides are already open. Nearest-neighbor models are thus 
inadequate to  describe the phenomenon since one has to take into account 
long-range interactions. 

Taking the opposite approach we propose to neglect short-range correla- 
tions and to  take into account only long-range interactions. We shall 
consider that an open base is submitted to  an electrostatic field depending 
only upon the degree of opening of the overall complex. This approach is 
called in physics a molecular field approach from the Weiss theory of ferro- 
magnet i~m.~ It has been already used, on a purely phenomenological 
basis, to  study the cooperativity of biological membranes by Changeux 
et  a1.6 

Apart from its 
simplicity, one of its main advantages over the usual calculations of parti- 
tion functions is that it can explain the occurrence of hysteresis. 

We shall develop the method in the next section. 

THEORETICAL MODEL 

We shall treat the case of a double helix and shall suppose that a nucleo- 

Closed state. 
Open state. The free energy of a nucleotide in the open state far apart 

from the other strand is taken as the reference free energy. We know 
that the free energy of a nucleotide depends upon its distance from the 
other strand, and that i t  is maximum when this distance is minimum. We 
shall then consider a mean free energy of the open nucleotides depending 
upon their mean distance from the other strand, which is supposed to  de- 
pend only upon the mean opening of the double helix (1 - f )  (f is the frac- 
tion of closed nucleotides). We shall furthermore suppose that the de- 
pendence of the energy upon the degree of opening is linear. This is the 
simplest possible dependence and we have no argument to  prove its validity 
when f varies between 1 and 0. But we can at least take i t  as a linear 
approximation when f is not much different from 1. For several other 
reasons we shall see that our calculations are valid mainly when f is close 
to 1. Taking B as the proportionality constant we write that the free 
energy of the open nucleotides 

tide can exist in two different states, closed state or open state. 
The free energy of the closed state is - A .  

Fopen nucleotides = Bf (2) 

In  this respect our approximation can be compared to the concept of 
molecular field introduced by we is^.^ Weiss writes that the influence of 
the surrounding magnetic moments on an elementary magnet can be de- 
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scribed as an internal molecular field proportional to  the mean magnetic 
moment per unit volume. He then writes that the energy of an elementary 
magnet is 

E = -  l4B.M (3) 
where pn is the elementary magnetic moment and M the intensity of 
magnetization, i.e., the magnetic moment per unit volume. 

The free energy F of the system is the sum of the contributions from the 
two states, plus a lowering term due to the mixing entropy of the two 
states : 

F =  - A f + B f ( l - j ) + k T [ f l n f + ( l - f ) l n ( l - f ) ]  

At equilibrium f is obtained by differentiating F with respect to  f. 

and 

--A + B(l - 2f) 
f = [I + exp(  kT 

which we write 
1 

= 1 + exp(-Bj + a) 
where 

-A + B 
k T  

a =  

and 
2B p = -  
kT 

The equation can be solved graphically by taking the intersection of the 
first bissectrix y = f with the curve y = +(f) = [l + exp(-pf + a)]-' 
which is very similar to  a Fermi-Dirac distribution function6 (see Fig. 5 ) .  
Depending on the respective values of a and @ there can be either one, two, 
or three solutions. We have, in fact, more than one solution for certain 
values of a, only if the maximum slope of the Fermi Dirac function is 
greater than 1. Since the slope is p/4 at the inflection point, we see that a 
necessary condition for the existence of three solutions is B > 4 which means 
B > 2kT. 

Let us describe the different situations occurring when a is increased 
from a large negative value to a large positive value, @ being constant and 
larger than 4. (This is realized experimentally by varying the pH of the 
solution.) Figure 5 represents the intersection of the two curves for 
different values of a and for p = 5 .  
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f 

Fig. 5. Graphical solution of the equation f = +(f) = (1 + exp (-a + pf))-l in the 
The curve +(f) correspond to different values of the parameter a: For case p = 5. 

curvea, a = 1; e', a = 1.6; b, 01 = 2 ;  c, a = 2.5; d, a = 3; f, a = 4. 

(a) 

(b) 

When a < 0 the straight line cuts the Fermi Dirac function only in 
one point where f = 1. The helix is nearly completely closed. 

When a increases one reaches situations like (b) where the straight 
line cuts the curve in the three points. One can understand the meaning 
of these points by coming back to the free energy F as a function off (Fig. 
6). The three points of intersection correspond to  the three extrema of 
F :  the two extrema values off correspond to  minima of F and the inter- 

I 
I 

f 

Fig. 6. The free energy F as a function off for given p and 01. 

curves a, b . . . f correspond to those of Fig. 
The notations of 

5.  
the 
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mediate value off to a maximum. The extreme values correspond then 
to stable or metastable state while the intermediate value is unstable. 
The metastable state is the state with the relatively higher free energy. 
Since the Fermi Dirac function is symmetric about the point f = '/2 one 
can deduce that the stable state is the nearly closed state when a < P/2 and 
the nearly open state when a > @/2. However if one starts from the closed 
state, as long as the energy barrier exists, the system remains in the nearly 
closed state when a increases. The helix opens up only when the barrier 
disappears, which occurs when the straight line is tangent to the curve 
(situation e). (f) In situation f ,  there is again only one solution, the al- 
most open solution. 

If one now starts from the open state (f), and decreases a, the same 
barrier that prevented a transition from closed to open state will now pre- 
vent a transition from open to closed state until point e', different from e, 
where the helix transits to the nearly closed state. 

The coordinates of the points e and e' are obtained by solving the equa- 
tion 

by substituting 

z = exp(a - pf) 
this equation becomes 

2 2  + (2 - @)z + 1 = 0 

The two solutions are: 

B 
2 

z = - - l &  

Approximate solutions in the limit B >> 1 are: 

1 1 
z = -  , f = l - -  

8 - 2  @ 
a = @ - 1 - ln@ - 2) 

for point e 

for point e' 

z = P - 2 , f = -  1 
P - 1  

(9) 

a=- @ + 1n(B - 2 )  
P - 1  

We are now able to sketch the hysteresis cycle showing the variation of 
Upon increasing a, opening occurs a t  point e (lower f with a (Fig. 7). 



1486 WElSBUCH AND NEUMANN 

a 
c 

I 

0 

C 

Fig. 7. The hysteresis cycle as predicted by theory. 0 is the fraction of open basa 
The dotted line is what one would expect, not taking andf the fraction of closed bases. 

into account the change of 0 when protonation occurs. 

curve) whereas upon decreasing a, closing occurs a t  point ef (upper dotted 
curve). 

In conclusion, our model predicts the existence of sharp transitions and 
hysteresis when p > 4. There exists then a critical temperature To = 
B/2k above which hysteresis is not observed any more. 

APPLICATION OF THE MODEL TO POLY A.2 POLY U 

Opening of the Triple Helix 

The opening of poly A . 2  poly U can be described by the following steps 

A-2U * A + 2U 

A + H +  * AH+ 

2AH+ a (AH+), 

opening reaction 

protonating reaction 

formation of the double helix 

Each of these partial reactions refers to bases and not to the entire polymer. 
In the process of opening, the number of open bases remains small until 

the occurrence of the vertical transition. The formation of the double 
helix involves two bases of two different triple helices which tend to repel 
each other electrostatically. For these two reasons we shall neglect the 
formation of the double helix as long as the triple helix has not changed to 
the almost open state. 

We remain then with the opening reaction which is shifted towards the 
righthand side by protonation. We can approximate the extent of protona- 
tion by using an equilibrium constant C 

This relation is only an approximation for a polyacid because the occurrence 
of protonation on a site changes the electrostatic energy on the neighboring 
sites thus changing C. But since we restrict ourselves to the beginning of 
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the opening process we shall take C as a constant until the transition point 
e.  Thus the proportion of protonated to non-protonated open bases is 

From Eq. (1) we know that the fraction of closed bases to open non- 
protonated is 

(13) 
[A  closed J A - B(l - 2f) 

kT 
= exp 

[ A  I 
then 

[A closed] 
= [A closed] + [A] + [AH+] 

and 

- A  + B(l - 2j) -1 

S = [ 1 + ( 1 + ,  lH+J) exp kT 1 (15) 

To compare with the theoretical model we take a as 

+ In (1 + 71) - A  + B 
kT 

a =  

and 

p = 2B/kT (17) 

This shows how a can be driven by the pH, a decrease of pH giving rise to 
an increase of a. 

How well does an experimental curve like the one on Figure 1 fit with 
the equations? Is it possible for instance to predict the coordinates of the 
point of transitions e? This needs the knowIedge of the three constants 
A ,  B, and C appearing in the equations. 

A can be calculated from the heat and the temperature of transition of 
poly(A).2 poly(U). In  the conditions of Figure 1 (temperature 20°C’ 
ionic salt concentration 0.1N) we obtain A by linear interpolation of the 
data of Krakauer and Sturtevant? The linear interpolation consists in 
supposing that the entropy of fusion is constant over an interval of 30°C 
and that A depends linearly on the logarithm of the concentration of ionic 
salt (Kotin’s approximation) .8 

A (0.1, 20°C) = 1 kcal/mole 



1488 WEISBUCH AND NEUMANN 

B has not been calculated directly. A rough estimate of its order of 
magnitude is given in the appendix. But we can determine it from the 
value off at the transition point (Fig. 1) 0.12 < 1-f < 0.2. (This large im- 
precision is due to  two reasons: polydispersity of the sample, and the 
fact that since acid drops are added into the solution, the local pH is in 
some places less than the pH of transition. Since the closed state is 
metastable this give rise to  some irreversible transitions before the pH of 
the solution reaches the pH of transition.) 

If we take p = 6 we 
obtain B = 1.8 kcal per mole. 

If we take pK = colog 
C = 4.5. (The pK generally admitted for poly A but never actually di- 
rectly m e a s ~ r e d ) ~  we find the pH of transition by solving the equation. 

This value off at the transition gives 5 < p < 8. 

As explained above, C is difficult to  determine. 

a = B - 1 - I n @  - 2 

- A  + B + 2.3 (PK - PH) = - 
kT 1 - In (p - 2) 

pH = 3.5 

This is the same value as found experimentally. Thus the proposed 
model predicts the lower branch of the hysteresis curve fairly well. 

Closing of the Triple Helix 

In  describing the opening of the triple helix we have neglected the in- 
fluence of protonation on p. In  fact, protonation, by decreasing the charge 
of the strand, decreases p. Since the degree of opening before the transi- 
tion is small, the assumption that p is constant is justified. The situation 
is completely different when one starts from the open state. The double 
helix poly Aspoly A is almost electrically neutral since the charge of the 
proton compensates the charge of the phosphate group. This means that 
the electrostatic barrier does not exist a t  the beginning of the closing pro- 
cess of the triple helix and that it is fully reestablished only after deprotona- 
tion has been performed. Since hysteresis exists only when p > 4 the 
closing branch of the hysteresis curve looks much more like an equilibrium 
curve and does not present any sharp transition. Instead of the dotted 
line which would correspond to  the constant 0 model we rather expect the 
continuous line (Fig. 5)  corresponding to  the gradual increase of p with 
pH. We are then able to  understand at least the qualitative behavior of 
the upper branch in Figure 1. 

CONCLUSIONS 

Let us first recall that our model is based on several simplifying assump- 
(1) We have taken into account only long-range interactions, thus 

(2) We have used a linear approxi- 
(3) All the numerical applications as well 

tions: 
neglecting short range correlations. 
mation of the molecular field. 
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as some formulas rest in the p >> 1 approximation. When p is close to 4 
we are approaching the critical region. It is a well-known fact that molecu- 
lar field theories are unable to give a quantitative description of critical 
phenomena. 

Within these assumptions the molecular field theory is sufficient to de- 
scribe the hysteresis cycle of poly(A) .2 poly(U). Furthermore from the 
measured value of p, we are able to explain the absence of hysteresis for 
the poly (A) poly (U) double-helix titration : the repulsive field experi- 
enced by a strand in a double helix is roughly half the field experienced by 
poly(A) in poly(A) . 2  poly(U). 

Then we expect that 

* 3  P(P0lY (A) 9 POlY (2U)) 
2 @double helix * 

Since PA.U < 4, no hysteresis is expected. 
I n  conclusion, the molecular field approach appears to be a powerful 

tool to  study cooperativity in polymers with predominantly long-range 
forces, particularly polyelectrolyte systems. The molecular field theory 
is currently being used as a basis for the analysis of hysteresis phenomena 
observed in lipoprotein membranes and globular proteins with a high 
density of surface charges. 

APPENDIX 
Evaluation of B 

To evaluate B, we have to  calculate the electrostatic energies of the different con- 
figurations corresponding to the same f and then to  take the mean energy by averaging 
each energy with the probability of occurrence of the corresponding configurations. 

Eu) = C EiPi 
i 

i corresponds to  configurations having the same energy. Let us examine the energies 
corresponding to  loops of 1, 2, 3,. . . n open consecutive segments. 

If n is large we shall admit that the phosphate charges lie on a circle in order t o  in- 
crease their mutual distance and to  minimize their electrostatic energy. If n is small 
the circle will be elongated due to  the stronger repulsion by the double or triple charged 
helix. 

If we still retain the circle approximation the radius of a loop of n segments is approxi- 
mately 

where a is the interphosphate distance. The mean deviation due to opening is then 

The mean energy of a segment in a loop of n open segments is then 
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where U is the electrostatic energy of a closed segment and c is the electric field at the 
surface of the helix (the factor (n + l)/n comes from the fact that a loop of n open seg- 
ments contains (n + 1 )  phosphates). 

When one neglects the short-range correlations, the probability that an open nucleo- 
tide belongs to  a loop of one open nucleotide becomes: 

( I t  is the probability for its two neighbors to be closed.) 
The probability that an open nucleotide belongs to a loop of n open nucleotide is 

P, = f%(l - fy -1  

(It is the probability of having n consecutive neighbors open, (1 - f)*-', multiplied by 
n, because the given base can be in n positions in this loop, and multiplied by the prob- 
ability that the two nucleotides at the ends of the loop are closed.) 

Then 

+- 2ca +- 

1 rz 1 
( E )  = c P a n  = u - - f 2  c (7% + 1)2 (1  - f)*-' 

- - u - 
(f + I + ;) r2 

When (E)  is developed as a series in 0 = (1 - f )  with f close to  one we have 

which gives B = 2ca/r2. 
This calculation is rather rough but it shows that the molecular field theory, neglecting 

short-range interactions, predicts a linear dependence of the mean energy of an open 
base as a function off, when f is close to 1. The linear dependence is only an approxima- 
tion limited to  the small deviation from 1. We can try to  calculate the order of mag- 
nitude of B. 

Let us first remark that we have overestimated the deviation of the isolated open 
base (see above remark). We can then take as 
an intermediate value B = E U / ~  per base and B = 3 a / 2  per segment for the triple helix. 
The electric field at the surface of the triple helix is X/21rdc where X is the charge per unit 
length, d the helix diameter, and E the dielectric constant. 

If we take it as 0, B becomes 9ea/r2.  

If we neglected screening at the surface of the polymer, we obtain 

B 'v 0.25 eV 

If we take into account screening, following calculation by M. T. Record,lo this result 
has to  be divided by 7 giving then B 'v 0.034 eV. 

The calculations of Record are based on linearization of the Poisson-Boltzmann 
equation, which is not valid near the helix where the electrostatic energy is higher than 
kT. Since these calculations predict a value of the field which is to  low, it seems rea- 
sonable to give for B an order of magnitude of 50-100 mV to be compared with 2kT = 
50 meV. 
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