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Physico-chemical factors that determine tracer substance flux from or into 
sealed vesicular structures are examined. Flux amplitudes are dependent 
on the average volume of a vesicle, while fhrx rates depend on the average 
number of transmembrane channels per vesicle. Gating processes leading 
to channel opening and/or closing affect both amplitudes and rates. 
Averaging over inhomogeneities in vesicle size and channel density leads to 
an explicit expression for time-dependent tracer content. Means for 
experimentally determining all variable factors in this expression are 
discussed. 

1. Introduction 

Electrical excitability of biological cells involves the flow of ions through 
transmembrane channels. There is good evidence that the time course of 
excitation events is controlled by specialized gating molecules. Several 
electrical signals resulting from various types of gating processes are known: 
(a) action potentials of nerves and muscles; (b) rapid post-synaptic potential 
changes elicited by neuroactivator binding to acetylcholine receptors of fish 
electric organs and skeletal muscle; (c) slow post-synaptic potential changes 
thought to be mediated by cyclic nucleotides. 

Biochemical characterization of the molecular apparatus underlying 
excitability involves isolation and purification of gating as well as ion 
transport components, though these need not be separate molecular enti- 
ties. Unequivocal verification of the intactness of the purified components 
requires their reconstitution into a membrane, whereupon both gating and 
ion transport properties of the reassembled excitation apparatus must be 
determined. Measurement of the kinetics of tracer ion flux from or into 
sealed membrane fragments (microsacs) can be used to investigate gating 
events. Such ion flux studies have been performed using homogenates of fish 
electric organs (Kasai & Changeux, 1971; Popot, Sugiyama & Changeux, 
1976; Hess et al., 1975; Bernhardt & Neumann, 1978; Miller et al., 1978), 
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vesicles containing reconstituted nerve sodium channels (Villegas et al., 
1977, 1979), rat parotid acinar cells (Landis & Putney, jr., 1979). At 
present, experimental techniques permitting resolution of flux events in the 
millisecond time range are being developed (Hess, Derek & Aoshima, 
1979). 

In a previous publication (Bernhardt & Neumann, 1978), a scheme for 
analysing flux kinetics was presented, For a well characterized example it 
was shown that (i) flux contribution controlled by a gating molecule can be 
determined from overall flux curves; (ii) both the time course and the 
amplitudes of ion flux reflect the gating process; (iii) physico-chemically 
well-founded parameters for gating events can be determined from flux 
data; (iv) inhomogeneities in size and composition of the membrane frag- 
ments can significantly distort ideal flux behaviour. 

However, the treatment was incomplete in several respects. The number 
of activatable channels per microsac was represented by a continuously 
varying density. Channel opening following ligand-induced activation was 
expressed in terms of a fixed fraction of open channels per microsac. 
Actually a statistical distribution of the number of open channels is to be 
expected. Finally, it was not indicated how inhomogeneities in the pre- 
paration could be accounted and corrected for. 

In this article a general expression linking gating kinetics to flux kinetics 
will be presented. The previously proposed scheme of analysis (Rernhardt & 
Neumann, 1978), will be modified and greatly extended to cover activation 
as well as inactivation phenomena. 

Recently Moore, Hartig & Raftery (1979) introduced the technique of 
controlled reduction of the number of activatable channels through binding 
of inhibitors. The expressions we present for the fractional distribution of 
inhibited channels over the microsac population, will permit quantitative 
determinations using this method. 

2. Single Microsac Flux 

In practice, initial conditions for flux experiments can be chosen to yield 
either a pure efflux of tracer (final number of tracer ions in a microsac is 
effectively zero), or a pure influx (initial number of tracer ions in a microsac 
is effectively zero). The respective flux events are describable as stochastic 
birth and death processes (see Appendix A). The time rate of change of the 
mean number of internal tracer ions xi(t), of a single vesicle i is 
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where here and throughout the following treatment the bars denote mean 
quantities. In equation (1) k is the intrinsic rate constant for ion transport 
through a single channel, Iii is the total number of activatable channels, and 
a(t) is the fraction of these that are open at time r. These equations are 
strictly valid only if tracer ion flux is not coupled to other non-equilibrium flux 
processes. However, experimental conditions can be adjusted to comply 
with this condition (Hess et al., 1975; Bernhardt & Neumann, 1978). 

The integrated solutions of equation (1) are for efflux: 

rt,(f) = ~i(())e-“‘““’ (2) 

where Xi(O) is the initial internal concentration of tracer, and for influx 

Xi(t) =Xj(O)[l -e-“‘K(f’] (3) 

where Xi(O) is the initial external concentration of tracer. The amplitude 
factor 

is necessary to account for the amount of tracer that has flown during the 
time intervals prior to t. Adoption of a time-dependent a(t) is indicated, to 
incorporate the time dependence of gating events that control the state of 
activation of channels. 

A purely exponential flux is expected only if the gating process (a) results 
in a permanent activation of channels i.e. (Y = constant, (b) is rapid on the 
time scale of flux events. If gating and flux occur on the same time scale, both 
the flux time course, and the flux amplitude depend on the kinetics of gating. 

3. Overall Flux 

The total number of internal tracer ions, X(t), is a sum of individual 
contributions, xi(t), due to all microsacs i 

X(t) =C Xi(t)* (5) 

For practical reasons it is difficult to prepare a perfectly homogeneous 
population of microsacs. One obtains instead, a mixture of vesicles, differing 
in size, and total number of activatable channels. 

For the purpose of statistical averaging, the mixed population of a total of 
Y vesicles may be divided into subsets of Y, vesicles, each having n activat- 
able channels per vesicle, where it = 0, 1,2 . . . , nrnax such that v = X, v~. 
Assuming the membrane fragments derive from tissue of fairly uniform 
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channel density, it is plausible that the number of channels per microsac, and 
the microsac volume are strongly covariant. This implies that one can 
express the initial equilibrium number of tracer ions x,(O) of a given 
microsac in subset n by a probability distribution P,, such that 

V"&(O)= ze(O)P,. (6) 

A fundamental assumption in our previous scheme of analysis (Bernhardt & 
Neumann, 1978) was that the number of open channels m(f) of any 
individual microsac can be approximated by the expression 

m(t) = m(t), (7) 

where a(t) is the fraction of active channels. The equation describing overall 
efflux is 

X(t) = vX(0) "E" P, exp [-SK(~)], 
n=O 

where 

K(f)= k ‘a(T) d7. 
I 0 

(9) 

Modelling P,, by a normal distribution, i.e. P, = P(n) dn = 
(2cT2)-1'2 exp [-(n - A)‘/27ra*] dn, and substituting integration over it for 
the summation, one obtains 

An analogous derivation yields the corresponding equation for overall 
influx: 

(lob) 

Equations (10) express all variable quantities in flux experiments in explicit 
mathematical form. 

4. Distribution of Fractionally Populated Microsacs 

The assumption that the number of open channels, m, per microsac can be 
represented by equation (7), requires closer examination. It applies only to 
the ideal case where the fraction of open channels on any given microsac 
equals the total fraction of open channels in the entire microsac population. 
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Actually a distribution in the number of open channels per microsac is to be 
expected. For simplicity, the following treatment will be for the case where 
all microsacs have the same number of activatable channels, IZ, though the 
conclusions also apply to the more general case of a mixed population. As 
shown in Appendix B for a single-step gating process, one can calculate the 
fraction pm of microsacs having exactly m open channels; ,z,,, is the 
probability of finding a microsac with m open channels. The mean number 
and variance of open channels per microsac, respectively, are therefore 

fit(t) = ii m/&n(t) (11) 
m=l 

(r*(t) = Z(t) - qiy (12) 

where 

m*(t)= $ m’/..&(t). 
m=l 

Assumption (7) is valid only if the ideal mean number of open channels ei is 
equal to fi calculated by equation (1 l), and the probability distribution cc,,, 
is sharply peaked [i.e. (r*(t) is small]. For a single-step gating process, with 
apparent forward and reverse rate constants ki and kL1, respectively, one 
has 

mi(t)=~ti(oo)+[~i(O)-~i(co>]exp [-(k; +kLl)t]. (13) 

In order to estimate the validity of equation (7), calculations for a single-step 
channel opening process were performed: 

(1) Computer solution of the matrix eigenvalue problem outlined in 
Appendix B was carried out. Eigensolutions km(t), with m = 1, . . , , IZ, 
were determined for the initial condition p,,,(O) = 0 for m = 0, and 
~~(0) = 1 (i.e. initiahy none of the channels are open). 

(2) The calculations were performed for variable IZ, and K’ where K’ = 
k;/kl_, is the distribution constant for gating; see Appendix B. In 
order to limit the number of variables, time was scaled to units l/kLI 
(i.e. kLl = 1). 

(3) The ideal mean number of channels was calculated from equation (13) 
with r&(0)=0, and tii(W)=nK’/l+K’. 

Calculations were performed for it = 5,10,15,20 and K’ = 1,lO and 100. 
In agreement with equation (7) it was found in all cases, that mi(t) = e(t), 
where 6((t) was calculated using equation (1 l), and that the maximum 
variance throughout the gating reaction, was always of the order of n/5. 
Figure 1 shows the time development of the probability distribution p,(t), 
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FIG. 1. The course of repopulation of microsacs according to reaction scheme (Bl), for a 

one-step channel opening process, with n = 5, K’= 100, at progressive times in units of l/k’-,: 
t=o,t=17,27... 5~ and infinity (final equilibrium): see equation (B2). 

for the representative case n = 5, K’= 100. Table 1 summarizes the cor- 
responding values of e(t), viii(t), and c?(t). 

These results indicate that the assumption of equation (7) is valid, and 
subsequently, that expressions (10) are correct. 

The same formalism is equally applicable to a reversible one-step 
inactivation process. For this case, p,,, must be taken to represent the 
fraction of microsacs with m inactivated channels. 

5. Irreversible Ligand Binding 

Equations (10) indicate that the total number of activatable channels per 
microsac (n) is a fundamental variable in flux experiments. For many gating 
systems (e.g. acetylcholine receptors, axonal sodium channels) practically 
irreversibly acting, inhibitory ligands of high specificity exist. Systematic 
inhibition of the gating molecules, allows controlled reduction of the 
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TABLE 1 

The ideal mean number of open channels (fii), the actual 
mean (fit>, and the variance (a2) for a one-step channel 
openingprocess, with n = 5, K’ = 100 atprogressive times 
in units of l/kl_*: t =O, t = lr, 27,. . .5r, and infinity 

(final equilibrium); see equation (B2) 

Time 

0.000 0 0 0 
l/SOS 0.897 0.897 0.736 
l/404 1.095 1,095 0.855 
l/303 1.403 1.403 l-00947 
l/202 1,948 1.948 1.18903 
l/101 3.129 3.129 1.171 

ccl 4.950 4.950 0 

number of activatable channels; n is therefore an experimentally accessible 
variable quantity in flux experiments. 

Often, the stoichiometry of the inhibition reaction, and the total number 
N of gating molecules in the preparation are known. The overall ratio 
a = M/N, of irreversibly inactivated to total gating molecules can therefore 
be adjusted by application of a determinate amount of the inhibitor. The 
constraints that M of N channels are permanently inactivated leads to a 
statistical distribution of the number of activatible channels per microsac. 
One can determine the fraction pm, of microsacs that have exactly m 
inactivated channels. As shown in Appendix C, 

pm= 
( > 

; a”(1 -Ly)n-m. (14) 

Two useful applications of controlled, irreversible inhibition of gating 
molecules exist: 

(1) One can “titrate” with inhibitor, and determine 6 and V’ at a fixed 
time from equation (lo)-all other factors being held equal. 

(2) One can use the relationship resulting from equation (14) for m = n, 
i.e. pE = LY n. Averaging over P, leads to the mean fraction having all 
channels inhibited: 

/.L = CY 
+i[l-u~/ZFilna] 

(15) 

The quantity fi,, can be directly determined from the flux amplitude P, since 
it is proportional to the decrease in amplitude AP due to reduction of 
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microsacs contributing to flux, i.e. ,& = AP/P. Again, titration with inhibi- 
tor, all other factors being held equal, permits determination of ti and (T’, 
according to the linear relationship in &/in (Y = 2 - &r2 in (Y. 

6. Discussion 

Investigation of the flux of ions from or into sealed membrane fragments, 
cells, or vesicles, is a generally applicable method for studying the function 
of gating molecules. The native environment of the gating system can be 
preserved as much as is possible in an in vitro measurement, yet a multitude 
of factors influencing the gating process are accessible to accurate experi- 
mental control. We have shown that the overall flux signal is explicitly 
dependent on a number of physico-chemically well-defined variables. The 
fundamental expression (10) for the total number of tracer ions x(t), can be 
recast to illustrate the connection with measurable quantities 

II , 
where D = density of the suspension (microsacs/unit volume), V = volume 
of suspension, CO = initial concentration of tracer ions, 6 = average volume 
of a microsac, fi = mean total number of receptor controlled channels per 
microsac, 02=variance in number of receptor controlled channels per 
miCrOSaC, I = amplitude factor. 

Aside from K(t), all variables are functions of the method of preparation, 
and of the materials used. They can be determined prior to the flux 
experiment-thus correcting for all sources of variability between pre- 
parations. 

All information about the gating process is contained in K(t), given by 
equation (9). As shown previously (Bernhardt & Neumann, 1978) for ligand 
induced inactivation of the acetylcholine receptor, the time-dependent 
fraction of open channels a(t), can be determined from the time course of 
the flux signal. 

An extremely useful fact to emerge from our analysis, which has recently 
also been utilized by Moore, Hartig & Raftery (1979), is that flux amplitudes 
themselves can contain information about the gating reaction. The 
frequently encountered case of a rapid activation phase followed by slow 
inactivation can be used as an illustration. The number of open channels 
prior to activation, and following completion of inactivation, is assumed to 
be negligibly small. The time dependent fraction of open channels is then 

a(t)=(~~e-~~~(l-e-~a?, (17) 



ANALYSIS OF GATED FLUX 

Q(t) 

f 

657 

FIG. 2. The fraction of open channels a(t) for rapid activation of the gating system, followed 
by slow inactivation [equation (17)] as a function of time, t; CQ is the amplitude of both the 
activation, and the inactivation reaction. 

where cro is the amplitude for activation and inactivation (see Fig. 2). k, and 
ki are, respectively reciprocal time constants for activation and inactivation. 
The corresponding amplitude factor [equation (9)] is 

I = aok 
e-uc,+ki)r- 1 e-kit- 1 

-~ 
k,+ki 3 ki ’ (18) 

For practical reasons it may not be possible to resolve the time course of the 
rapid activation phase. Knowledge of the initial time course of inactivation, 
assuming essential completion of activation, suffices to determine k,. In that 
time range one has ePkat<< 1, ePki’= - 1 -kit, and k, >> ki, which yields, upon 
substitution into equation (18), 

(19) 

Slope and intercept of this linear function of time allow determination of aok 
and k,. The overall amplitude factor K(W) = aok/ki, then permits further 
determination of ki. k, and ki are themselves functions of the elementary 
rate constants for the gating reaction, and of external factors that influence 
gating (e.g. activator ligand concentration, membrane potential, ions in the 
external medium). 

In summary, it has been shown that detailed analysis of tracer flux data can 
yield quantitative information about the kinetics of gating processes. 
Inhomogeneities in the preparation, and other sources of deviations from 
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ideal behaviour, have been explicitely considered. The only serious limita- 
tion to a general application is, in practice, the requirement that the flux 
process must be at least as rapid as the gating process. 
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APPENDIX A 

Under suitable conditions, efflux of substance from a single microsac can be 
modelled as a stochastic process discrete in sample space but continuous in 
time-a pure death process (McQuarrie, 1975). The probability P,(t), of 
finding I molecules still inside the microsac at time t, obeys the differential 
difference equation 

dP,/dt = -r&‘,(t)+ r(x + l)P,+,(f), CW 

where r is the rate constant for efflux from the microsac. The solution of this 
equation is 

P,(t) = (2) exp (-xort)(erf - l>xo-x for OlxzSx0 
= 0 for x > x0, 
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where x0 is the number of molecules in the microsac at t = 0. The mean 
number of internal molecules at a given time is 

f(t) = f xP, (t) = x0 e-“. WI 
x=0 

This is precisely the result obt$ned from the conventional deterministic 
treatment (i.e. the solution of X = -rX). The variance is 

cr’(t)=~-~2=xoe-rf(l-e-“). 643) 

An entirely analogous result may be obtained for influx of molecules. 

APPENDIX B 

The reaction scheme for a process involving microsacs with n gating units, 
for which each gating unit undergoes a reversible change is 

nk; (n-1)k; k; 
N -N-N 07 I- 2...N,-le-m 031) 

k’l 2kll nkLl 

where N, represents microsacs on which m gating units have reacted. 
During the course of the reaction a repopulation among species N,,, takes 
place. The fraction k,, of microsacs in form N,, can be determined from the 
kinetic equations for the reaction scheme. In equation (Bl), the intrinsic 
reaction step may involve the binding of an activator A to the gating system 
G according to A + Nrel .-- ‘N, with the intrinsic rate constants k1 and k-1. 
When the concentration of activator is large compared to the number of 
binding sites, ki = kl[A], kl_, = kwl, and K’= K[A] where K = kl/k-l is 
the intrinsic equilibrium constant. Therefore when experimental conditions 
can be adjusted so that all second-order steps become pseudo first order 
steps (e.g. buffer conditions for ligand binding), one can find explicit 
solutions for eigenvalues (inverse rate constants), and eigenvectors (normal 
modes) (Eigen & DeMayer, 1973; Ilgenfritz, 1977). The time dependent 
fraction pm is 

The reciprocal time constants are 

;=r(k; +kL,) r=l ,.*a, n. 032) 
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A similarity transformation by the matrix W (elements Wii) and its inverse 
W-l (elements I%$) diagonalizes the matrix of kinetic coefficients; here 

(-1)’ c 
W m,r+1- -- j=a : (,‘1-,“_‘;)! (m ,“11,,! (-KY r! co 

and w,,,,,= 1. 
K’ is the distribution constant K’= ki/kLI, and 

CT={“,-, for 
r<m 
r2-m 

[={L-l for :z,“-,” 

The equilibrium fractions are given by 

APPENDIX C 

The following analysis is applicable to all problems involving the random 
selection of M of a total of N elements from a set of Y units, each bearing n 
elements, so that N = nv. There are (s) ways of selecting the M 
elements. This corresponds to all possible configurations that arise from 
dividing&4 into subsets {mi}, such that mi < n elements are selected from the 
ith unit, and Xi mj = M; therefore 

The largest individual contribution to the sum arises from the configuration 
where each mi = fi. However, since all configurations having V, microsacs 
with mi = m are indistinguishable from an experimental point of view, there 
will be v!/&,P,! ways of choosing a given arrangement {v,}. The most 
probable distribution {&,} can be found by determining the largest contri- 
bution to the sum 

under the constraints I;, v, = v, and C, mv, = M. 
Straightforward application of the method of Lagrangian multipliers, leads 
to an expression for the fraction fim of the most probable distribution 

where LY is the probability of a selection. 
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The fundamental equations (10a) and (lob) are readily modified to cover 
the reduction of the total fraction (Y of receptors contributing to flux, 
following irreversible inhibition. Inserting equations (14) and (8) into equa- 
tions (lOa, b) yields for efflux: 

= d(O) P(n)[h(a, t)]” dn 
= vq))[A(a, t)]fi-&2 ln *(w) 

where 

h(a, t) = eeKct)+ a[1 -eC”‘], 

and for influx: 

X(a, t) = vX(O){l -[A(a, t)]ii-u2’21nA(a,t)}* 

Dependence of J?(a, co) on a can be utilized to determine E and a2 
experimentally (Bernhardt & Neumann, 1980, Neurochcm. Int., in press). 
Furthermore, the proof that r%(t) = fii(t), see equations (11) and (13) is 
simple. For perfectly random ligand binding to equivalent sites, 

/-L(t) = 0 ; [a(t)]“[l -a(t)]“-” 

where the time-dependent fraction o(t) of ligand-occupied sites is given by 
a(t)=a(a))+[~~(O)-a(a)]exp[-(ki +kL,)t].Thisexpressionforp,(t)is 
identical to the expression derived in Appendix B. Thus the distribution 
remains binomial throughout the repopulation (B 1); therefore equation 
(11) gives: 

iii(t)= f, pm(t)= fZa(t)= f+&(t) 

and equation (12) is 

v”(t)= ncZ(t)[l-o(t)]. 

For the case of ligand-induced activation discussed in the text a(0) = 0 and 
a(~) = P/(1+ K’). 


