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INTRODUCTION 

Transport of metal ions across biological membranes is frequently 
mediated by gating proteins which open and close membrane channels. 

The gating mechanism often involves the binding of activator mole- 
cules. A well-studied example of suoh an ion flux control system is 
the acetylcholine receptor of electric fish electroplax and of 
skeletal muscles. 

Unequivocal information about the gating mechanism controlling 
channel opening and closing can be obtained from a study of the 
transmembrane flow of ions (Neumann and Bernhardt, 1977). Transport 
of ions can be indicated electrically (e.g., conductance measurement), 
or chemically, by direct determination of ion concentrations. Very 
promising are electrical measurements with planar bilayers into which 
isolated gating proteins have been incorporated (Schindler and Quast, 
1980; Nelson et al. 1980). 

In the past the tracer ion flux technique has been used extensively 
as a qualitative indicator for gating processes. Tracer ion fluxes 
from or into sealed membrane fragments, vesicles or entire cells may 
be measured. In the case of the acetylcholine receptor gating 
system, sealed membrane fragments (microsacs) rich in receptors can 
be prepared from the homogenate of native tissue (Kasai and 
Changeux, 1971) ; flux properties can also be studied with lipid 
vesicles in which isolated receptors are reconstituted. The prime 
means of investigating gating processes is then the dependence of the 
flux rate upon the concentration of activator molecules which activate 
or inactivate the gating system. 

In a poineering study Kasai and Changeux (1970) showed that, for micro 
sacs from Electrophorus electricus, a phenomenological flux parameter 
based on the half-time for tracer ion efflux exhibits a ligand concen- 
tration dependence which parallels in vivo dose-response measurements 
of the electroplax. Since then there have been considerable advances 
in both experimental technique and theoretical analysis of flux data 
(Hess et al. 1975, 1978; Popot et al. 1976; Bernhardt and Neumann, 
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1978, 1980; Moore et al. 1979) . Most promising appears the recent 

development of rapid quench-flow methods for flux measurement in the 

ms time range (Hess et al. 1979; Aoshima et al. , 1980; Neubig and 
Cohen, 1980). 

Theoretically, the introduction of integrated flux rate coefficients 

(Bernhardt and Neumann, 1978) into the analysis of flux measurements 

provides a rigorous tool for the study of gating mechanisms. The 

recent application of this method to the acetylcholine system has 

revealed that the receptor in isolated membrane fragments of Torpedo 

marmorata a priori exists in two conformations: an activatable 

structure leading to ion flow upon activator binding and an in- 

activated, desensitized conformation. The functionally relevant, 

ion-conducting structure is a transient, metastable state; in the 

presence of activator the inactivated structure is the most stable 

state. The forward rate constant for inactivation is much larger 

than the backward rate constant. Inactivation occurs via the 

transient, short-lived conducting conformation but also (to about 20%) 

via direct binding of activator molecules to the inactivated structure 

(Bernhardt and Neumann, 1978; see also Neumann, 1979) . 

THE OVERALL FLUX 

A detailed derivation of the expression for the total amount of 

tracer ions, X(t) , having flown into or from a set of microsacs as a 

function of time, t, has been presented elsewhere (Bernhardt and 

Neumann, 1978, 1980) . Starting from the kinetic equation for single 

microsac flux it can be shown that flux gating processes occuring on 

the same time scale as the flux itself, require introduction of an 

integrated amplitude factor 

t 

K t) = k f~(T) dT (i) 

o 

where k is the intrinslc rate constant for ion transport through a 

single channel, and ~(t) is the (time-dependent) fraction of channels 

on a microsac that are open at time t. The amount of tracer ions 

x. (t) , within the i-th microsac in a tracer efflux experiment is 
1 

glven by 

x. (t) : x. (0) . exp [-n i <(t)] (2) 
l 1 

where n. is the total number of channels on the 'i-th microsac, and 

x (0) i~ the initial concentration of internal tracer ions. The 

t~tal number of tracer ions, in a collection of microsacs is then 

X(t) = Z x (t) (3) 
1 

i 

For practical reasons it is difficult to prepare a perfectly homo- 

geneous population of microsacs. One obtains instead, a mixture of 

vesicles, differing in size and thus in total number of activatable 
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channels. Introducing the probability P , that a given microsac has 
n 

a total of n activatable channels, one can rewrite the summation in 

Eq. (3): 

n=n 
X(t) = Vx(0) ~ max p exp[-nK (t)] (4) 

n 
n=o 

where 9 is the total number of microsacs, and x(0) is the average 
initial tracer content of a microsac. ~MO4elling ~ by a normal 
distribution, i.e. P = P(n)dn = (2~uz)-I/Zexp ~-~n-n) 2/(2~O2)~dn, 

n . 
and substituting lntegratlon over n for the summation, one obtains 
for efflux: 

2 
X(t) = ~x(0)exp{-n<(t) [ 1 -O--- ~(t)] } (5) 

2~ 

An analogous derivation yields the corresponding equation for overall 

influx: 

~(t) = v~(0) 
2 

1-exp{nK(t) [ I -  U__..__ <(t)'] } ). 
2n 

(6) 

EXPERIMENTAL DETERMINATION OF FLUX PARAMETERS 

The fundamental Eqs. (5) and (6) can be recast to illustrate the 
connection with measurable quantities. For efflu~ one obtains: 

2 
X(t) = DVC ~ exp { -n K(t) ![ i- O___ K(t)I } (7) 

o 2~ 

where 

D = density of the suspension (microsacs/unit volume) 

V = volume of suspension 

C = initial concentration of tracer ions 
o 

= average volume of a microsac 

= mean total number of channels per microsac 

02 = variance in number of channels per microsac 

The information on the mechanism of the gating process is contained 
in K (t) , given by Eq. (i) . As recently shown (Bernhardt and 
Neumann, 1978) for ligand-induced inactivation of acetylcholine 
receptors, the time-dependent fraction of open channels ~(t) , can be 
determined from the time course of the flux data. 

Aside from <(t) , all variables in equation (7) are functions of the 
materials used, and the method of preparation. It is not necessary 
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to determine the pre-exponential factors; this product is given by 

X(0) = DVC v. It is now convenient to express the measured flux 

data at a given total concentration of the activator ligand, A, in 

terms of a dimensionless quantity P(t) . For instance, in an efflux 

experiment, 

P(t) : X(O) X(t) (8) 

~:(o) ~(~, s) 

where X(~,s) is the minimum amount of tracer ions within the 

vesicles at t ÷ ~ under saturating concentrations of the activator: 

[A] >>[RT') . For efflux into a large volume of solution, at t + c~,, 

usually X(~,s) = X(~) << X(0) . If now during the time of the flux 

measurements, channels inactivate (desensitize) , then X(t) 

approaches a constant level X(~) ! X(~,s) corresponding to 

<(~) ~ <(~,s) ; the value of X(~) and thus K(~) depends on the 

activator concentration. For t ÷ ~, channel inactivation therefore 

leads to parallel efflux (or influx) curves which are accessible 

to a particularly simple flux amplitude analysis (Bernhardt and 

Neumann, 1978) . Note that with Eq. (5) , X(0) = D V C ~ : \Ix(0) , 

the fraction P(t) is independent of X(0) and that 05°P(t) ~ i. 

The parameters n and d 2 can be determined using a technique first 

employed by Moore et al. (1979) . Through controlled addition of an 

irreversibly acting inhibitor of the gating system, one can success- 

ively reduce the number of channels contributing to flux. However, 

as shown recently (Bernhardt and Neumann, 1980) , a broad distri- 

bution of fractionally inhibited microsacs results. The probability 

U In) that the i-th microsac has m of its n total channels inhi- 

bited is given by: 

(n) ~ m n-m 
Pm : ( ) (I-~) (9) 

Note that now ~=Zm /~n is the fraction of all irreversibly inhib- 

ited channels on all t~e microsacs of the suspension: i.e., moles 

of inhibitor added devided by moles of channels; (~) : n!/rn! (n-m) !] 

is the binomial coefficient. 

For efflux data, the dependence of X(t) on d is given by: 

n 
(n) -m< (t) 

X(O~,t) = x(O) fP(n) ~ !4 e 
m=o m 

dn (i0) 

= x(0) 1 [~-(°~/2)lnl] 

where 

l(~,t) = e -<(t) +~(1-e -<(t) ) 

In order to determine n and 02 it is necessary to measure the d- 

dependence of the relative flux amplitude 
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~(0) - ~(~,=) ~ (~,=) = 

~(0) - ~(0,~,s) 

( t l )  

derived by applying Eq. (I0) to Eq. (8) with X(d,0) = X(0) at t=0. 

Measurements according to Eq. (11) were implicitely carried out by 
Moore et al. (1979) ; their figure 3 is essentially a plot of P(~,~) 

versus ~, with K(~) = <(~,s) = k/k d where k is the flux rate constant 
(see Eq. (i)) and k~ is the forward rate constant for the inactivation 
process (Bernhardt-and Neumann, 1978). 

1.0 ¸ 

0.8 
n = 5  

fl=lO 

Pc=-1 

06- 

0.;~. 

f l= l  

0.2. 

o ~ Q~. d6 o~ 

Fig. "1 Reduction in the flux amplitude P(~,~) , 
with increasing fraction 5, of total 
channels irreversibly blocked by inhibitor 
(see text), according to Eq. (10) . The 
cases n=I,5, I0,25 and 50, with 02=0 and 
<(~,s)=l, are depicted. 

In Figure I, the dependence of P(~,~) on ~ is shown for various 
values of n with <(~,s)=l and 02=0. It is readily seen that the 
curve for nSl0 represents a good fit to the flux data of Moore et al. 
It is therefore not necessary ad hoc to invoke excess or spare re- 
ceptors (Moore et al. 1979; Neubig and Cohen, 1980) in order to 
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understand the curvature in P(d,~) versus ~ curves. The reason for 
the curvature when n>1 is solely due to the power law dependence on 

in Eq. (i0) . However, a single exponential (see Eq. (5) of Moore 
et al.) cannot adequately approximate Zhe summation implicit in 

Eq. (I0) of this study; for example, it would not account for the 
fraction ~(n)= ~[~ - (O2/2) In~ ] of microsacs with all channels in- 

D 
hibited which no longer contribute to flux (Bernhardt and Neumann, 
1980). 

Determination of n and 02 requires fitting of P(~,~) versus ~ data 

according to Eq. (i0) . Deviations from c2=0 can be used to determine 
02 from the d-dependence of the term (U2/2) in ~(~,~) in Eq. (I0) ; 

Bernhardt, Moss, and Neumann, in prep. 

THE INTRINSIC FLUX RATE CONSTANT 

The tracer ions may transiently bind to sites within the channel. 

The flux process can then be represented by the reaction scheme (of 
minimum complexity): 

k b k t k b 

N + R ~___T NR _ " NR ~" N + R (12) 

k k k 
-b -t -b 

where R denotes the unoccupied channel site, N denotes tracer ions 
inside the microsac, NR denotes tracer ions bound to internal 
channel sites, and the starred quantities are the corresponding 

s~ecies ~n the exterior of the microsacs. The quantities k ,k_b , 
k b and k_b are, respectively, the rate constants for internal 

and external binding and dissociation, and k t and k_t are the rate 
constants for transport through the channel. The corresponding 

equilibrium constants for channel ion-site binding and for transport 

are defined by Kb=k_b/k b and Kb=k_b/kb, and Kt=k_t/kt, respectively. 

According to Eq. (12) the flux kinetics is generally characterized by 
three distinct reaction modes. Depending on experimental constraints 
these modes may be widely separated on the time scale. Two limiting 
cases are discussed. 

(I) Binding of tracer ions is slower than transport. In general the 
rate of binding depends on the concentration of both tracer ions and 

channel binding sites. The effective total molar concentration of 

internal sites is given by [R T] = n/(v N A) where NA is the Avogadro 
number. Since the total number of microsacs is glven b~ g=D-V, see 
Eq. (7) , the molar concentration of external sites is [R T] = n g/ 
[NA(I-D v)] . Note that in a given preparation [RT] is always fixed 
while [RT] depends on the value of D chosen, and is thus an 
experimental variable. 

Assuming spherical size for the microsacs of average radius r, one 
obtains [R T] = n/[(4/3)~93, NAI~ 4xl0-6n/r 3 , M, where ~ is given in 
~m. Now, rapid binding equilibria involvin~ alkali metal ions are 
usually diffusion-controlled; i.e. k. and k, are in the order of 
1 0 1 0  ~ - 1  * - 1 - -  D D M-~S and K~ ~ K~ ~ 10 M. One then estimates that 

k ~ 109 s -1 . For acetylcholine receptor microsacs r is k-b -b 
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about 0.1<r<1~m, therefore [RT] kb<< k_bmk:b. Experience with 
Torpedo microsacs indicates that for relatively dense suspensions, 

[R~] < I0-6M, and therefore [RT]kb<<k:b~k_b . 

For irreversible transport as modelled by single microsac flux into 
a large reservoir dx. (t)/dt = -n..k:xi(t) , Eq. (12) reduces to 

. l ~ < • 

N+R...--~ NR ,~ N*R ~- N*+R, with [RT] ~ [R] . When [RT]kb < k_b~k_b and 
[RT]k~<<k b~k_b - ~ - is valid (as outlined above), the reciprocal 
reaction tlmes for the two slowest processes are I/~T4 = R~ k~ and 

+k* wher >> o i ~ • . . u I/Y2=k ~ b/K~, e T I T2, f r eff ux; and I/Tl= [RT]~ b and 
-- ;u - u ,~> . 

I/T'2=k b+k , K t, where T I %2' for influx. The intrinsic flux rate 
constants ape, for efflux: 

and for influx: 

k = kb/(NA-~) , (13) 

k = kbD/[N A, (I-Dv) (14) 

(II) Transport of tracer ions is faster than binding. Reducing the 
reaction scheme Eq. (12) to the form N+R #NR ~ N ~ + R yields a kinetic 
equation whose solution is characterized by one reaction time 

constant I/T = kt[RTI/(Kb+[R_]) for efflux, and. l<T ~ k_t[RT]/(Kb+[RT]) 
T" - <Kb, and [RTI <Kb, one obtains for influx. Thus, noting that [RTJ< 

for efflux: 

k = kt/ (NAVK b) , 15) 

and for influx: 

k = k_tD/[N A K b (l-Dv) ] 16) 

Limiting case (I) should apply to small cationic tracer spec as, 
while case (II) may be valid for large molecules with low transport 
rates (Adams et el. 1980; Dwyer et el. 1980) . 

One important modification in the above treatment is necessary to 
account for competition with other permeant species. In order to 
avoid complexities due to coupling of tracer ion flux to non- 
equilibrium fluxes of other ions, it is advisable to make the 
internal and the external media of the microsacs identical in the 
composition of non-tracer species (Hess et el. 1975). Tracer ion 
flux will nevertheless depend on the equilibrium concentration of 
these ions. The flux rate constant given by Eqs. (13)-(16) must be 
multiplied by a factor ~ given by 

¢ = (i + Z[~]K$ i)-i (17) 
I 

where [IJ is the concentration of species I, and K is the equili- 
brium constant for dissociation of I from the chan~el. Neglect of 
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competition of ions I for channel sites may account for some of the 

discrepancies found in comparing electrophysiologically measured 

channel conductances to tracer ion flux rates (Miller and Racker, 

1979). 

In summary, the introduction of integrated flux rate coefficients 

into the analysis of flux measurement has proved to be a powerful 

tool for the study of activator-receptor mediated gating of ion 

flows. In particular, the fact that microsacs with different 

numbers of open channels have different flux rates requires the 

development of a detailed formalism in terms of transient tracer ion 

binding and specific gating processes. It turns out that the dis- 
tribution of microsacs as well as that of open channels per micro- 

sac are important factors in a rigorous analysis of flux data. 
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