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Tracer ion flux measurements are a commonly used method for studying ion trxapnrt through memhranc~ of cellular 
systems. where the rate of ion flow is determined by gating procc~scs xx .h;ch control the opening and closing of tranzmcmbr;lnc 
channels. Due to recent advances in the theoretical analysis of trxcr flux from or into clowxl mcmhrant structurc~ (CSIS). rbc 
mechanism of gating reactions can. in principle. he derived from flux data. A physically well founded annIy& is prcscntcd for 
the dependence of the total tmcer ion content oT a collection of CMS on the gating procc~scs. For functinnall~ uncoupled 
gating units a mean single channel flux contribution (e -r’)=_[&-rr~(~.r) di- can hc defined. ~~hcrc X i> the intrinsic single 
channel flux coefficient. I the time over which flux is measured. and pt 5.1) is the probability that n given channel \~a> open ICY 

a total period T during f. This quantity reflects the mean time course of the tracer content due to flux through 3 Gn_glc channel. 

Expressions for (e-“) are derived that explicitly take into account a distribution in the lifctimc of open channch. On the 
basis of the results. kinetic and thermodynamic paramctcrs of multiphasic gntin_s rcnctions can hc dctcmmincd from tbc time 
course of the overall tracer content in a collection of CMS 

1. Introduction 

Gated ion transport through cell membranes is 
a fundamental process in many vital cell functions. 
In excitable membranes, molecular gating events 
controlling ion flows have been extensively studied 
on the basis of tracer ion flux from or into closed 
membrane structures (CMS) [l--S]. Examples of 
such CMS are sealed membrane fragments (rnicro- 
sacs [l]), reconstituted vesicular structures, and 
cells. 

Among the instructive results of a recently de- 
veloped tracer flux analysis applied to the 
acetylcholine receptor-mediated ion flow is that 
the ion-transporting conformation of this gating 
system is a relatively short-lived metastable state, 
which converts practically completely to noncon- 
ducting desensitized states in the presence of neu- 
roactivator molecules [4]_ 

Due to recent technical refinement 19-121, flux 
processes can now be investigated in the millisec- 
ond time range_ As a -method for quantitatively 

studying the kinetics of gating processes. the tech- 
nique is rapidly becoming a viable alternative to 
the measurement of electrical properties [ 13- 161. 

The feasibility of the method rests on the fact 
that reaction events controlling opening and clos- 
ing of transmembrane channels modulate ion flux. 
A general scheme of analysis for determining the 
time course of gating processes from tracer flux 
data has been presented [ 17.18]. It was shown that 
several physicochemical factors must be explicitly 
considered before it is possible to extract informa- 
tion about reaction events of single channel gating. 

The signal actually determined in tracer flux 
experiments (e.g., counts per minute, fluorescence 
intensity) is a direct measure of the total number 
of tracer ions X(t) inside a collection of CMS at 
time t. This overall signal is thus a sum of contri- 
butions from individual CMS, so that X(r)= 
Z&X,(~), where xi( t ) is the number of tracers ions 
in the ith CMS. 

The time dependence of the tracer content x(r) 
of a single CMS is determined by several factors 
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[IS]: diffusion and transient binding of the ions to 
channel sites. transport through channels. and 
coupling of tracer flux to fIux of other ionic species. 
In addition. at low tracer ion concentrations. it is 
necessary to consider explicitly the stochastic na- 
ture of the flux process [17_19]. A general mathe- 
matical description. accounting for the depen- 
dence oi flux on all these factors_ valid for all 
possible experimental conditions. would be quite 
complex. In practice. analysis of flux data can be 
carried out only if the dependence of s( t) on time 
is simple. It is particularly important to avoid the 
complex time dependence that can arise from a 
coupling of tracer transmembrane transport, and 
tracer diffusion in the CMS external. or CMS 
internal medium. Fortunately, severa physical fac- 
tors connected with the experimental conditions 
underlying tracer flux are accessible to accurate 
control [181. It is therefore possible to choose 
experimental constraints for which a simple ex- 
ponential dependence of x(r) on time results. Ex- 
periments can be carried out under efflux condi- 
tions (fhrx of tracer from CMS into a large bath 
initially containing no tracer)_ or under influx 
conditions (flux of tracer from a large bath into 
CMS initially containing no tracer)_ The expres- 
sions for the tracer content of a single CMS will 
then be 

efflux 
._X ( ? ) = 

1 

x (0) e - r’ir (l-1) 

x(30)(1 - e-‘lil) influx (l-2) 

where 7r is the time constant for the flux process, 
and the flux amplitudes s(O) and x(00) refer to 
r = 0 and to r - co. respectively_ Two limiting con- 
ditions exist, for which eqs. (1.1) and (1.2) hold: 

(1) Transmembrane transport of tracer is a dif- 
fusion-controlled process, and the CMS has a uni- 
form high surface density of open channels_ Under 
these constraints the entire CMS surface will con- 
stitute a ‘sink’ for tracer ions. For spherical CMS, 
flux can then be described in terms of the usual 
mathematical treatment employed for diffusion- 
controlled reactions [20]. After an initial transient 
period of short duration. eqs. (1.1) and (1.2) will 
hold. The reciprocal flux time constant will equal 
the rate constant for reactions in the diffusion 
controlled limit. i.e. 

$ = 47;rD (l-3) 

where r is the radius of the CMS. and D is the 
diffusion constant. 

(2) Transmembrane transport of tracer ions is a 
stationary flux. The essential features of the flux 
process can be described by the reaction scheme of 
minimum complexity [ 181: 

N+RL;+NRk N*R=N*+R (l-4) 
h A-, 

where R denotes the unoccupied channel site. N 
the tracer ions inside the CMS, NR the tracer ions 
bound to the internal channel sites, and the quan- 
tities with asterisks are the corresponding species 
in the exterior of the CMS. k, is the rate constant. 
for a single channel. of tracer transport from the 
interior to the exterior of the CMS, and k _ i is the 
corresponding rate constant for transport from the 
exterior to the interior; k, and k_, are, respec- 
tively, the rate constants for binding to and dis- 
sociation from the channel sites. 

The reciprocal flux time constant in eqs. (1.1) 
and (1.2) can be expressed as 

1 
- = ,,lk 
Tf 

(l-5) 

where trz is the number of open channels of the 
CMS, and k the intrinsic fhrx rate constant of a 
channel. If the volume of the CMS is very much 
smaller than the volume of the bath, efflux is 
essentially a unidirectional process. and influx is 
an ‘equilibration’ process. As shown in Appendix 
C. for steady-state conditions. L, 

k= 
k,- k, 

vNA(kb-K’+kl) (l-6) 

where IV* is Avogadro’s number, v the internal 
volume of a CMS, and K’ the apparent dissocia- 
tion constant for tracer binding to channel sites; 
K’ = k _,, /k,,_ Note that influx was previously ap- 
proximated by a unidirectional flux [18]; this led 
to separate expressions of k for efflux and influx. 
For the experimentally more realistic condition of 
equilibration with a large external bath, eq. (l-6) is 
valid for both efflux and infhrx. The dependence 



of Ic on D will be explicitly treated in section 4. 
Eq. (1.3) for l/rr under diffusion-controlled 

conditions does not depend on the number of 
open channels_ Therefore, it cannot be used to 
obtain information about gating processes. The 
simple relationships, eqs. (1.1) and (1.2). can be 
used to study channel gating only when transport 
is much slower than diffusion. 

Both efflux and influx ‘conditions have been 
used in tracer flux experiments. In principle. they 
yield the same information about the gating pro- 
cess. However, the requirement that equilibration 
cf ion concentrations by diffusion be rapid is more 
readily met in the interior of a CMS than in a 
large bath. In practice, efflux is therefore more 
suitable for quantitative studies than influx. 

In previous theoretical treatments cf flux [ 17,181, 
the overall tracer content X(t) was represented as 
a sum X(r)=&X,(t) of contributions X,,(r)= 
&x(“)(t) from CMS having different total num- 
ber; PI of functionally intact channels. All CMS of 
a subpopulation with 11 channels were modelled by 
a single representative CMS having a mean num- 
ber 1x(z) = na(t) of its channels open, where a( I) 
is the total fraction of open channels at time I. 
Integration of the kinetic equation for flux 
d[N],‘d z = -rZ( t )k[N] led to the introduction of 
an integrated rate coefficient ~(1) given by 

K(Z) = k 
/ 

‘a( t’) dr’ 
0 

(1.71 

where t’ is a dummy variable of integration. The 
mean overall tracer content T(t) was found to be 

i 

2 X,(O)e -“xtr) efflux (1-S) 

Z(r)= ‘t 
~Z~(w)[l -e-nrcr’] influx. (1.9) 
P) 

The mean flux amplitude contributions x,(O) and 
x”(w) can be expressed in terms of a probability 
P,, as z”(O) = z(O)P, and x,(00) = @cc)P,_ Meth- 
ods for experimentally determining Pm have been 
presented [ 17,181. Taking into account the depen- 
dence of the measured overall tracer content X(r) 
on P,, implicit in eqs. (1.8) and (1.9). then permits 
determination of x(t)_ From eq. (1.7) it is further 
possible to determine the fraction of open chan- 

nels e(r) at time I. which reflects the time course 
of the overall gating process. 

In this article a more fundamental treatment 
will be presented. A physically more realistic aver- 
aging technique will be adopted. to replace the 
simplifying assumption of a single representative 
CMS. It will be shown that an experimentally 
determinable quantity_ the mean single channel 

contribution to the flux amplitude (e -xr). can be 
expressed in terms of the effective kinetic con- 
stants for the gating process. The derix-ation es- 
plicitly takes into account a distribution in the 
lifetimes of open and closed states of a channel. 
The treatment therefore entails similar fundamen- 
tal assumptions to those underlying the analysis of 
electrical current fluctuations [21]. 

2. The gating process and ion transport 

No consistent usage of the terms gating. and 
channel opening and closing has evolved in the 
literature. In this article the term gating system 
will denote that portion of an ion transmembrane 
translocation apparatus that can undergo dynamic 
changes in state. The term channel will denote that 
portion through which ions are passively trans- 
ported across a membrane. To each state G, of the 
gating system there corresponds an intrinsic ion 
transport rate constant X-, (in units of ions per unit 
time) of the associated channel. This will be strictly 
true only if there is a rate-limiting step in the 
channel transport of ions. so that coupled trans- 
port modes due to multiple activation barriers to 
transport in the channel interior [22] need not be 
considered. A consistent interpretation of current 
fluctuation data has been found possible [21] un- 
der the assumption that channels can be either 
fully open or fully closed. This would imply that 
k, can assume the two values 

x- = k channel open 
b 

I 0 channel closed 
(2.1) 

where k is the intrinsic rate constant for the ion 
transport through a fully open channel. Transi- 
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tions in state of the gating system are thought to 
influence only the overall rate constants of open- 
ing and of closing of channels; in the following 
treatment assumption (2.1) will be adopted. In 
section 4 an extension to more complex cases will 
be considered. For flux experiments k in eq. (2.1) 
is given by eq. (1.6). 

In the special case of the acetylcholine receptor 
of fish electric organs. several functionally signifi- 
cant states of the gating system have been identi- 
fied 1231: a resting state (channel closed). an active 
state (channel open)_ an intermediate state (chan- 
nel closed). and an inactive state (channel closed). 
Neuroactivator binding to the receptor induces a 
repopulation among these states. resulting in a 
transiently varying overall change in the rates of 
opening and closing of channels. Such a sequence 
of reaction events may be termed a gating reac- 
tion_ 

1.2. Distribution of fractional!,: populared CMS 

In a collection of CMS. w-here the gating units 
are localized on the surface of the CMS, the overall 
fraction a,( I) of gating units in state G, at time t. 
neglecting localization on the CMS, is given by 
a,(t) = [G,]/X,[G,]. where [G], is the ‘concentra- 
tion’ of G, at time t, and the summation is over all 
possible states. When a set of gating units present 
in more than one state is localized on a collection 
of CMS. a mixture of fractionally populated CMS 
results. A given CMS can be ‘assigned a set of 
occupation numbers {m,} = nr,, ntz, m3 _.... where 
>~r, is the number of gating units on the CMS in 
state G,_ During the course of a gating reaction 
there will be a change in the fractional population 
of the CMS. Assuming that the transitions of state 
of different gating units. whether or not on the 
same CMS, are statistically uncorrelated, a multi- 
nominal distribution will result. The fraction 
#“‘((nrs}: t) of CMS having a total number of 
gating units n, and occupation numbers {~?I~} at 
time z, will be given by 

The mean value of nz,(r) for the entire collection 

of CMS is 

Z?51,(r)=a,(r)~~zP”. (2.3) 
,I 

and the variance is 

According to assumption (2.1) the gating unit states 
G, can be divided into states G:“‘, associated with 
a fully open channel, or states GF), associated 
with a fully closed channel. The overall fraction 
a@‘(t) of states for which the channel is open is 
a(“)( 1) = Z,aiO)( t). where a:@( t ) = [G,‘“‘]/Z,[G,] 
and the summations are over all possible states. 
The overall fraction &j(z) for which the channel is 
closed is #)(I) = 1 - a@‘)(z). 

From eq. (1.4) it follows that, for flux experi- 
ments carried out under the constraints stated in 
section 1. the rate of tracer flux from or into a 
CMS is directly proportional to the number of 
open channels. The fraction JL~)( Z) of CMS having 
a total of n gating units, of which m are in an open 
channel state, is given by the binomial distribution 

p:)(t) = P,- (I,) -[a(“)(t)]“‘-[l -a(“‘(t)]“--nr 

(2-5) 

The mean number Z?(“)(Z) of open channels per 
CMS is given by 

~‘“‘(t)=a(o’(f)-~n~, (2-b) 
II 

and the variance in the number of open channels 

by 

(2-7) 

A detailed derivation of these results has been 
presented elsewhere 1171. Eqs. (2.5)-(2.7) are now 
seen to be a special case of eqs. (2_2)-(2.4). 

2.3. FIux and the mechanism of garing 

Qualitatively, the effect of the gating reaction 
on flux may be expressed by eqs. (l-4) and (2.6). 
The time course of the flux process will be changed 
by all transitions in state of the gating system 
kinetically coupled to at least one transition lead- 



ing to a change in at”‘(t). In principle, the time 
dependence of a@‘(t) could be of arbitrary com- 
plexity_ However, in all physiologically relevant 
gating reactions so far investigated. the mechanism 
of gating involves an initial increase. followed by a 
decrease, in a@‘(t) with time (activation- 
inactivation sequence). 

A particularly well studied case is the gating 
reaction induced by neuroactivator binding to 
acetylcholine receptors of fish electric organs [23]. 
Initially, the gating units are predominantly in the 
closed channel (resting) states. Ligand binding 
leads to a large increase in the population of the 
open channel (active) state. In the absence of 
acetylcholinesterase activity, this is followed by a 
slower increase in the population of the closed 
channel intermediate state. Finally, there is an 
even slower increase in the population of the ther- 
modynamically most stable state- the closed 
channel (inactive) state (so-called desensitization). 

When the gating reaction occurs in several 
phases that are well separated on the time scale, a 
partkularly simple analysis of the kinetics of gat- 
ing is possible_ Each phase will then correspond to 
a distinct reaction mode. Often it is possible to 
adopt experimental conditions for which such a 
collection of separate modes results. 

For the remainder of this article the following 
restrictive assumptions will be made about the 
gating reaction: 

(1) There is no interaction between individual 
channel gating units. 

(2) The gating reaction involves a single activa- 
tion phase, during which da’“‘/d t S 0, and one or 
more inactivation phases, during which da’“‘/& < 
0. 

(3) Each phase constitutes a separate reaction 
mode, with a characteristic time constant (‘relaxa- 
tion time’). 

(4) The activation mode (a) is more rapid than 
the inactivation modes (i). 

(5) The time dependence of the fraction of 
open channels, a’“‘(t) is given by 

a@‘(t) = 

1 a:‘( co) + [a:‘(O) - a:‘( cm)] - e -+= 

activation (2-S) 
a!“‘( a) + [ aI”’ - a:@( co)] - e-‘j5* 

inactivation (2.9) 

where -ra and 7i are. respectively. the reaction mode 
time constants for activation and inactivation. 
a’“‘(m) is the value of a@‘(t) upon completion of 
t<e activation mode, but prior to the onset of 
inactivation_ a:‘(O) is the true value of a’,“‘( I) at 
t = 0. a?‘(O) is the value of a@“( I) after completion 
of all more rapid modes prior to the inactivation 
mode i. at”‘(m) is its value after completion of 
inactivation mode i. 

(6) The reciprocal reaction mode time con- 
stants are given by 

1 
-=k, +k_, (2.10) 
5 

1 
-=ki +k_i (2.11) 
Ti 

where ii, and k_, are, respectively, the effective 
rate constants for the forward and the reverse 
reaction during the activation phase. ki and k._; 
are, respectively, the corresponding forward and 
reverse rate constants for the inactivation phase i. 
These rate constants will depend on the rate con- 
stants of the rate-limiting step of the respective 
mode, on the equilibrium constants of more rapid 
steps, and on ligand concentration, when gating is 
ligand controlled. When a mode involves a 
bimolecular step, a pure exponential time course 
of a(O)(t) will result only under special limiting 
conditions (e.g., near equilibration of the mode. or 
for buffering concentrations of one of the re- 
actants in the bimolecular step). 

3. Single channel gating events and tracer content 

of the CMS 

3-I. Total period of openness of channels and tracer 

content 

Consider a single CMS with tt gating units. 
During the course of the overall gating reaction 
each gating unit will pass through a sequence of 
open channel and closed channel periods. This is 
shown schematically in fig. 1. The total time, TV. for 
which the r th gating unit was actually in an open 
state in the time interval from 0 to t is given by 



open 

closed 

Fig. I. !Schcmotic reprcsentntion of successive channel opening 
and channel closing cvcnts of an individual channel. AT, rcpre- 
smts the time interval the channel WLIS open during ifa rth 
period of opening 

where LX$~’ is the amount of time the tth gating 
unit was in an open channel state during its lth 
period of opening. The tracer content x(“)(r) of 
the CMS at time I is given by eqs. ( 1 -I). (1.2) and 
(1.4) as 

Eqs. (3.2) and (3.3) have important imphca- 
tions. The tracer content at time t is seen to 
depend only on the sum of the total time during 
which each of the n gating units was in an open 
state up ta time r. It does not depend on the 
number of open periods, nor on the overiap of 
open periods of different gating units. 

This suggests that in analogy to eqs. (1.8) and 
(1.9) the mean overall tracer content z(t) of a 
collection of CMS can be expressed as 

efflux (3.4) 

X(r)= 

i 
n _ 
T X,( co) - [1 - *n{r)] influx (3.5) 

(3-6) 

where P,( { T,}) is the probability of occurrence of 
the set of totaf times (~~1 =r,, r2,.__~n for a CMS 
with n gating units. For the sake of clarity a 
summation over all possible sets (T,}, where 0 G rr 
S r, has been chosen in eq. (3.6); i.e., variation of 
each 7r occurs in discrete increments. Actually, 
P((,;}) is a continuously varying function of {TV}, 
and should thus be represented by a probability 
differential. 

Note that in contrast to the previously derived 
eqs. (1.8) and (1.9) for j3( :), eqs. (3.4) and (3.5) 
contain a superposition of exponentials. The quan- 
tity @Jr) represents the time course of the change 
in tracer content of a collection of CMS with n 
gating units per CMS. 

Since the gating units are assumed to be in- 
dependent. P,,((T,)) in eq. (3.6) can be factored to 
yield 

@Jr) = p, 
I 

r,*ap(r)e+*] 

= <eVArY (3.7) 

with the mean singIe channel flux contribution 

(e -nr> given by 

(eMAT>= i p(T)e-kr 
i=o 

-+J’e-*~p(~.t) dr (3.8) 
0 

where summation has now been replaced by in- 
tegration In the integral of eq. (3-Q ~(7,t) repre- 
sents a probability density funtion The probabil- 
ity differential dtt=p(~,t) dr expresses the proba- 
bility that a channel was open for a total time T’, 
where 7 < 7’ 4 7 + dr, in the interval 0 to 1. 

The constraints expressed by eqs. (2.8)-(2.1 I) 
imply that during each phase of the gating reac- 



tion the reaction process 

G(C) $ G’“’ (3.9) 
L 

leads to a change in a(“)( t ) and &)( t )_ G(“) and 
GCC) denote. respectively, all open channel and 
closed channel states of the gating system that 
participate in a given reaction mode. The rate 
constants for net channel opening k,. and for net 
channel closing k,, are given by 

k, = k, and k, = k _-a activation phase (3.10) 

k, = k _i and k, = ki inactivation phase. (3.11) 

For simplicity, general indices U, TV and w can be 
introduced. Each index will denote either an open 
(0) or a closed (c) channel state. in connection with 
a’@( t ). cdc)(r ), G(“) and G(=). or chancel opening 
(0) or channel closing (c). in connection with k, 
and k,. 

The fraction of channels dU’(t) in state G’“’ at 
time t, given by eqs. (2.8) and (2.9): contains no 
information about the history of opening and clos- 
ing of the channels_ Each channel that is in a state 
G(“’ at time t was generated in that state at some 
time I’, where 0 < t’< t. Subsequently, it remained 
in that state for an interval t-t’_ Therefore. an 
alternative expression for a(“)(t) is 

&“I( r) zz a(“‘(o)x”yt) 

-!- o’g(y)( t’),y’( t - t’) dt’ 
/ 

(3.12) 

where g’“‘(t’) is the probability density function 
for the generation of gating units in state G(“). 
and X’“‘(t - t’) is the probability that a gating unit 
generated in state G(“’ at time t’ will remain in 
that state up to time t. 

If the reaction event (3-9) is a simple Markov 
process, an exponential distribution in the lifetime 
of states G(“) will hold 1191. One then obtains 

,(U’( * - *‘) = e-~.W--r’)* U + 0 (3.13) 

where the inequality u+ 0 implies that either u 
denotes o and u denotes c, or altematlively u 
denotes c and u denotes o. 

g’“‘( t’) is that fraction of gating uniw generated 
in state G(“) in the time period 0 to t which were 
generated during the interval t’ < t” < t’ + dt’. 

From the kinetic equations for reaction process 
(3.9) one obtains 

g’“‘( t’) = k,,a’“)( t’). N i D. (3-14) 

3.3. The mean single channel fI14s contrihutio?z dur- 
ing a gatitlg reaction 

According lo eqs. (2.8) aad (2.9). a(“)(t) will 
vary continously during a given phase of the gat- 
ing reaction. From eq. (3-14) it fo!lows that g’“‘(t) 
will therefore also vary_ g(“)(t) reflects the net rate 
of generation of gating units in state G(“) at time 
t. It contains no information about whether a 
gating unit thus generated was in stage G(“) at any 
time prior to t. It is possible to express d”)(t) and 
g’“‘(r) as a sum of component contributions. 
CI!,~-“‘( t) and gL:‘_” (t ). that reflect previous stages 
of the gating units. One obtains 

18, = 0 

(3.15) 

Substitution into eq. (3.14) yields 

g’“‘(t) = 2 [g;;;!?,(t) +gy;;“)(t)]_ Z~=L (3.16) 
,,I = 0 

where 

g!,:‘:C,‘( t ) = k,.azmw)( t )_ t‘ + H.. (3.17) 

In a::,:‘-“‘( I) and g,, (rr*r-)( t). the first superscript (24) 

denotes the state G:“) of the gating unit at time 0. 
the second superscript (D) the state G”” at time t. 
The subscript nz denotes the number of times the 
gating unit underwent a change of state in the time 
interval from 0 to t. The subscripts 21,~ and 21~ +- 1 
in eqs. (3.15) and (3.16) reflect the fact that an 
even number of ‘transitions leads to 24 = o_ ahd an 
odd number of transitions leads to u i G. Explicit 
expressions for a:-“(I). for all possible U. c and 
222. are derived in Appendix A. 

The probability density function p(~.t), given 
by eq. (3.8). can be expanded to yield 



where both p( r,r) and the component probability 
density functions pip’“‘(T.t) are assumed to be 
normalized over the interval 0 to t. &-“‘( 7.1) 
represents the probability that the species of gat- 
ing unit specified by indices u, v and m was in an 
open channel state for a period T, in the interval 0 
to t. Substitution of eq. (3.18) into eq_ (3-S) yields 
the expansion 

111 = 0 

+a~,;“)(t)(e-*~)y;~$ u+u (3.19) 

where the component single channel fhrx contribu- 
tions are defined as 

.+ --kf)r$or = 
I 
o~~j,,Z’~v)(s,t)e-“5d’i-_ (3.20) 

Explicit expressions for p2”)( T,Z) for all possible 
14, v and m are derived in Appendix B. Substitu- 
tion of eqs. (BI), (B2), fBl0) and (Bll) into eq. 
(3.20) yidds 

(e _k)b’.C = 1 (3.21) 

(e -kr)~.o) = e --kt (3.22) 

e-kt _ e-_(k,-k,)r 

where lim,_a (c-“‘)C~r =]im,_o{e-k’}(~O) = 1, 
Eq. (3.24) has the special limiting cases 

(3.24) 

<e-“‘)(f”‘=kr[ ,r;:,,],k=k,-k, (3.25) 

” Ce_‘> (F”’ = (kt)-‘(1 -e+), k, = k,. (3.26) 

3.4. The eqtdibrium mean single chunnelfiux contri- 
bution 

A special limiting case results when nonequi- 
librium phases of the gating reaction are of negli- 
gible duration compared to the period over which 
ffux is measured. When the reaction process (3.9) 
of a given mode of the gating reaction reaches 

steady-state or equilibrium, @r(t) and &r(t) will 
assume time-independent vafues. For equilibrium, 
the relationship a&r = Kag holds, where K= 
k,/k, is the equilibrium constant_ From eq. (3.14) 
it follows that g@‘(t) and g”(t) will then attain 
the constant equilibrium value @ = kOa(z = 
k&z = gg_ Under these conditions c II annel open- 
ing (and closing) will be a purely random process. 
The probability T~( t), that a given gating unit was 
generated in an open channel state m times in the 
interval 0 to t is given by the Poisson distribution 

T~(f)=f?-sz$ (g$)*t)m/m! (3-27 j 

The equilibrium mean single channel fhrx contri- 
bution (e -“& is given by 

(eekt& = g ~~(t)[(e-“‘),J”’ (3.28) 
n1=0 

where (es”*}, is the mean contribution during a 
single opening of the channel. When t B k;’ the 
limiting value 

(e -k’)50 = ( k,r)_ Do (e-X’>(pc’ = lim 
( 1 

& (3.29) 
C 

is obtained from eq. (3.23). Substitution of eq. 
(3.27) by g:g’ = k,k,/(k, + k,), and of eq. (3.29) 
into eq. (3.28) yields 

(e-kr)eq = e-“cqI (3-30) 

where the effective fhrx rate constant for the equi- 
librated gating system k, is given by 

k¶=+-+) (x-k) (3.31) 

4. Discwion 

ft has been shown that, when gating units con- 
trolling channel opening are not functionally cou- 
pled, the overall tracer ion content X(Z) at time t 
can be rigorously expressed in terms of the mean 
single channel contribution to flux (e--k’). From 
eqs. (3.4), (3.5) and (3.7) one obtains 

ZX~(0)(e-kt)” efflux (4-l) 

ix,(oo)[l - (e-“‘>nl influx. (4.2) 
n 



Previously proposed schemes of analysis 
[4,17,181 were based on the assumption that the 
mean number of open channels at a given time 
determines overall tracer content. In this article a 
physically more realistic approach was adopted. A 
distribution in the total time for which a channel is 
open was explicitly considered. In order to arrive 
at simple expressions for the mean single channel 
flux contribution it was necessary to express 
(em&*) as a weighted sum of component contribu- 
tions (e -kr)($D) for subspecies of gating unit 
states. Upon equilibration of the gating reaction 
(e -“) approaches its equilibrium value ( e-kr)Cq_ 

From eqs. (2.8) (2.9) and (3.15) it is seen that 
the net change Aa( in the fraction of gating 
units in state G(“) up to time t, is given by the 
expressions 

A&“)(t) = a’“‘(0) - cK(U’( t ) 

=&‘(O) - 5 [c&“‘(r) +a;;;&)], 
r=O 

U2V (4-3) 
=Aa’~‘(oo)[l -e-(k,+&)r],u+v 

(4-4) 

where Aacu)( co) = atU)(0) -- atu)( co). 
With increasing nr, the maximum value of the 

component fractions a$“)( z) decreases in magni- 
tude, and occurs at progressively later times. Trun- 
cation of the summation in eq. (4.3) at some value 
r =p, leads to an approximate expression Aap)( t)_ 
The error ep( Z) made in approximating A&“)( 1) by 
Aaj,“)(t) is given by 

r=p+ I 

When the reaction process characterized by reac- 
tion scheme (3.9) is unidirectional, eq. (4.4) re- 
duces to AacU)(co) = Aa$,“‘(r) = A(Y’~)(co)( 1 - 
e -k=r)_ Therefore, in general, approximation of 
Aa(U)(i) by Aa$“‘(r) leads to an error 

cO( t ) = Aa(“)( 1) - Aa&“‘{ t ) 

= Aat”)(oo)e --k,‘(l - e--k.r), u + o_ (4-6) 

From this result it follows that when k, B k,, a 
dominant portion of the amplitude change AarU)( t) 
will be accurately approximated by Aa(oU)( t)_ Terms 

with r> 0 in expression (4.3) will constitute a 
small correction, -modifying the time course of 
Aag)(t) during the later stages of the gating reac- 
tion_ 

This suggests that. when k, >k,, the expan- 
sions for a(“)(f), g(“)(t).p(“)( 7.1) and (e-“I) given 
by eqs. (3.15) (3.16) (3.18) and (3.19) can be 
approximated by the terms corresponding to 112 = 0. 
1. For (eekr) one obtains 

+a~.d(t)(e-ky.d + ai,c.o,(t)(e-kr>c;.o, 

(4.7) 

where flux contributions due to both channels that 
are initially open, and channels that are initially 
closed are explicitly considered_ It is useful to 
examine expressions that result for eq. (4.7) under 
special limitin,o conditions. 

4.1. Activation phase of the gating reaction 

The limiting case of irreversible channel open- 

ing is expressed by the reaction scheme GcC) - ‘, G Co)_ 

Initially. all gating units are in the closed channel 
state. From eq. (2.8) one obtaines a@)(t) = ap”)( I) 
= , _ e -&,I a(')(t)= ar)(f)= e-kd, and @o)(r) 

= a(lo.c)( t) do. Substitution of these expressions. 
and of eqs. (3.21), (3.24) and (3.25) for (e-rr)F) 
and (e -Az)clc_o), into eq. (4.7) yieIds 

(e-“‘>=(k, _X_)-‘[k,e-k’ --e-L.‘] 7 

k+k, (4.8) 

(em”‘>= (1 + kt)e-“, 

k=k cl- (4-9) 

Note that the limit k, - 0 has to be taken in eq. 
(3.24) for (e -k’)(~o)_ 

Eqs. (4.8) and (4.9) are the exact expressions for 
(e -‘*) in the case of an irreversible channel open- 
ing process. In the more general case of a reversi- 
ble net channe1 opening process with k, > k,, they 
will constitute an asymptotic approximation to 
(e-“*). The intrinsic flux rate constant k must 
then be replaced by the effective constant k, 
given by eq. (331). Deviations from the purely 
biphasic time course expressed by eqs. (4.8) and 



(4.9) will occur when the activation process ap- 
proaches equilibrium. 

4.2. hractiL2ation phase of rhe goring reaction 

The limiting case of irreversible channel closing 

is expressed by the reaction scheme Gt“) + A, G(C)_ 

Initially, all gating units are in an open channel 
state. From eqs. (2.9) and (A9) one obtains a@‘)(t) 
= abo_o’(t) = e-“C’, &‘(t) = @.c0(t) = ] - e-X’Cr, 

and ar)( t ) = ap) (t) = 0. Substitution of these 
expressions. and of eqs. (3.22) and (3.23) Into eq. 
(4.7) yields 

(e-‘I)= (k+k,)-‘[k, +ke-(k.‘“c’;l. (4.10) 

In the limit f - CYJ this expression does not vanish_ 
One obtains the mean single channel flux ampli- 
tude contributions 

k 
(e-Lr), = lim (e-“I) = k+k. 

I-ZC E 
(4.11) 

Eq. (4-10) is the exact expression for (eek’) for 
an irreversible channel closing process. It will be 
an approximation to (e -“), in the more general 
case of a reversible inactivation mode following a 
rapidly equilibrating reversible activation mode. 
providing that for the inactivation process k, > k, 
holds. Deviations from the time course described 
by eq. (4.10) will then occur during the later stages 
of the inactivation phase. These deviations will 
vanish as (X-,/k,) - 0. Since the activation mode 
is in a steady state during the inactivation phase, k 
in eqs. (4.10) and (4.11) must again be replaced by 
the effective constant k,. given by eq. (3.31), with 
kinetic constants k, and k, for the activation 
phase. 

4.3. Transition between state: with different flux rate 
ConstaFlts 

A special case results when postulate (2.1) does 
not hold. In the limit of an irreversible transition 
between states G(r) and G(*’ the reaction scheme 

G’” kl2 
-. G(‘) will apply, where k,? is the rate con- 

stant for the transition_ The intrinsic single chan- 
nel ion transport rate constants k, and k,, for 
states G(r) and G”), respectively, are assumed to 

be finite and nonequal_ The fractions a(‘)(t) and 
d”(t) of gating units in the respective states. are 
,U)(t) = e -A,zr and a(?)( t ) = 1 - e --I, IZ’_ 

In analogy to eq. (3.20) one can write 

(e-“‘)‘;_” = 
/ 

re -XC~ -~zcr-~)p:r.2)( 7,t) dT, (4.12) 
0 

where p\‘“‘( t) reflects the probability that a gating 
unit is in state G”’ for a period 7 during the 
interval 0 to t. For a unidirectional transition from 
G”’ to G(“), the expression for p\‘.‘)( 7-z) is identi- 
cal in form toeq. (BlO) forpy)(T,t), with k, = k,,. 

Substitution into eq. (4.12) yields 

(e-r1)y2) = k I2 

k,, +k, -k, 

x e 
[ 

--A,r - e -_(h,~ix,,r 

1 - e-k,2l l- 
(4-13) 

The mean single channel flux contribution is 

<e -‘I>= a”’ 
(t)(e-xr>~I.l~ ;,(-)(,)(,-Ir)C;.~, 

= (k,? + k, - k2)-‘[k,2e-‘~r 

+ (k, -kZ)e-‘X,z-k,)r] (4.14) 

where, in analogy to eq. (3.22), (e-“‘)g-” = e-‘I’. 

4.4. Approximation by a single ex-ponential 

The averaging process implicit in eq. (3.8) can 
be approximated by the expression 

(e-Xr),e-L.Sr) (4.15) 

where the mean time 7(t) a gating unit was in an 
open channel state, in the interval 0 to t, i’s given 

by 

F(t) =Lkp(q) dT_ (4.16) 

Substituting the expansion (3.18) into eq. (4.16) 
yields 

m=o 

+ay(t);ii(~;‘yz)]. u+o (4.17) 

where the component mean open times ~2,“‘“j(t) 
are given by 



Explicit expressions for 7(t) in the case of an 
irreversible channel opening or channel closing 
reaction are derived in Appendix B. The resulting 
eqs. (B16) and (B17) can also be obtained as 
special cases of the general relationship 

7 (I) =/‘a(-)( I’) dr’ 
0 

(4.19) 

where a(“)(t) is given by eqs. (2.8) and (2.9). This 
suggests that the ‘integrated rate coefficient’ K( 1). 

introduced in previous treatments of flux [ 17.18]. 
which is given by eq. (1.7). can be written as 

K(2) =X-F(r)_ (4.20) 

A comparison of eqs. ( 1.8) and (1.9) with eqs. (4.1) 
and (4.2). leads to the equality 

(e-L’)=e-L(‘)_ (4.21) 

Substitution of eq. (4.20) into eq. (4.21) yields eq. 
(4.15). The assumptions underlying the previous 
schemes of analysis thus lead to a single exponen- 
tial approximation of (e -kr). with a mean open 
time 7(t) given by eq. (4.19). 

4.X Inhonrogeneiries 

As discussed elsewhere [ 171, inhomogenei ties in 
parameters connected with a collection of CMS 
will influence the flux behavior_ A separate distri- 
bution of two classes of parameters must be con- 
sidered: parameters connected with the CMS size 
(e.g., CMS internal volume o), and parameters 
connected with the amount of gating units (e.g.. 
number of gating units per CMS ~1, surface density 
of gating units p)_ In general, there may be an 
arbitrary degree of covariance among the two types 
of distribution_ Expressions (4.1) and (4.2) for 
x(r) are implicitly funtions of the CMS internal 
volume, since according to eq. (l-6) k depends on 
1). 

The effect of inhomogeneities can be accounted 
for by averaging r;‘i t) over the volume distribution 
functions Q,(u); Q,(u) represents the normalized 
probability that a CMS with n gating units has a 
volume u. From eqs. (4.1) and (4.2) one obtains 

efflux (4.22) 

T(r)={ ‘I 
I zF”(cc)[l- (@“),.I. influx (4.23) 

I, 

where (Q,,),. represents the volume average 

Particularly simple expressions result for spherical 
CMS with a constant surface density p of gating 
umts. The volume u,?, of a CMS with II gating 
units, is then given by 

(4.25) 

Substitution of u,, for D in eq. (l-6) for k leads to a 
flux rate constant li, dependent on II. Introduction 
of k,, for k in the expressions for (e -*r) derived 
above yields corresponding expressions (e - ‘*r’) 
dependent on 11. Substituting these into eqs. (4.1) 
and (4.2) leads to 

efflux (4.26) 

X(t)= ‘I 1 zX,(c-c)[l -(e- ‘n’)rr]. influx. (4.27) 
I ,I 

in conclusion it can be said that general expres- 
sions describing the time-dependent tracer content 
of a collection of CMS have been derived. These 
will apply to tracer flux experiments carried out 
under restrictive conditions stated in section 1. If 
there is a heterogeneity in the number of gating 
units per CMS, and/or in the CMS internal 
volume, the probability distribution P,, and/or 
Q,,(u) must be determined experimentally. Special 
techniques for preparating highly homogeneous 
CMS are being developed 1241. Thus, the tracer 
flux method promises to be a general and widely 
applicable technique for studying the detailed 
kinetics of ion flux gating processes. 

Appendix A 

The reaction process characterized by reaction 
scheme (3.9) can be viewed as a sequence of uni- 



directional steps 

A, Ax. x-z7 A-” GA”’ _ G:s’ _ G’“’ _ G’“’ _ 
z 3 _.. (Al) 

where u f v, and where Gz’ and Gizc’ denote 
subspecies of Sating unit states, which have under- 
gone m transitions in the time interval 0 to I. The 
kinetic equations for reaction scheme (Al) are 

d[G$““! r _ 

dr 
- -kCIG$‘)]I. 

d [Gj/‘l z 

dr 
= -k,[G$‘] I + k,[Gjj,? ,] ,, 

642) 

nz > 0 and no even (A31 

d[Gk”‘l, _ 
dt 

- --k,[G:‘],+X-,[G:!,],, 

PII > 0 and m odd (A4) 

where [GA,“‘], and [Gz’lI are the respective con- 
centrations of species GA”’ and Gz’ at time t. 
Laplace transformation of these equations yields 
the corresponding relationships 

[G:::,]w= i 
(A61 

where [G$‘)],,, and [Gz)], represent the respective 
Laplace transforms of [Gz)], and [Gz)],, and 
where r=O, 1, 2 ,___ _ Inverse Laplace transforma- 
tion Ieads to the convolution integrals 

[Gr)], = [G~Y)]~~-Q (A7) 

X ,-(k-k,,7 d,-_ (-1 

The fraction a?)(t) of gating units in state 
G(“’ at time 0, and in state G(“‘r at time t, which 
underwent m transitions of state in the interval 0 
to t, is Siven by apW’(r) = a(“)(O)[G~rJ”‘],/ 
)3Z,,{[G$;‘], + [G’“’ Zri ,lr}_ Explicit evaluation of 
expressions (A7)-(A9) for m = 0, 1 and 2 yields 
the equations 

&-“‘( 2) = &‘(O)e --k,r (A 10) 

a\“-“(t) = at”‘(O) ( k k,k ) [e--k”r - .-01, 
” ” 

UfV (Ai 1) 

xCe -k,z _ (?--“,r _ (k” -lc,)te-q. 
(A121 

Appendh B 

The functions p!$O' (7, t) occurring in eqs. (3. IS) 
and (3.20) can be expressed in terms of the func- 
tions x“)(r) and _g$‘-“j(r) given by eqs. (3.13) and 
(3.14). For the tnvral case m = 0 one obtains 

py(7,t)=O (Bl) 

pg.@( 7,tj = s(t - 7) 032) 

where Q( t - 7). is the delta function. The cases 
m > 0 can all be expressed as 

p(“*D)( T,?) = x(“‘( T)F(‘.“)(T, t)/ m 

I ,rh’“‘( T)FL~-~‘( 7,~) d7 (B3) 

where h’“)(7) = e -k=r_ The denominator in eq. (B3) 
assures that p!,f-")( 7,t) is normalized over the in- 
terval 0 to t. The functions FjO)( 7, t) for m = 1, 2 
are given by 

F,‘O”‘( 7,t) = a?-@(O) W) 

F,(C*o’( 7,t) =gF@(r--7) (BS) 

Fz”“( 7,z)=[gl'"'(r'-7) dz’ (B6) 

Fz’““‘( 7,t)= ab""' 0 ( )~g$='~='~(r - 7') dr’. (B7) 



Expressions for nt > 2 can be generated from the 
relationships 

I 
d7’ (BS) 

X 
[J 

‘-‘;‘F;,!!$(T~,~‘) dz’ 
I 

d#. (B9) 
0 

From eqs. (3.14). (AIO), and (B3)-(BS) one ob- 
tains, for tn = I, 

p:““‘(T,t) =k,e-“J/(l -e-Q) (RIO) 

py-ol( I,t) = (k, - k,)e --(I;,--x-,W 

Xii-e -_(L-,--x-,)I -1 
I - 0311) 

Substituting the expressions (Bl), (B2), (BlO) and 
(Bli) into eq. (4.18) for the mean open time one 
obtains 

(B14) 

0315) 

+“.=)f t) z k, i - l ‘_” ,“: .i 
c 

For the special hmidng case of irreversible channel 
opening discussed above, substitution of eqs. (Bt2) 
and (B15) into eq_ (4.17) yields 

-r(r) =aybC.E)(t)+Q(t) -i-al’.“‘(t)?:C*O)(t) 

= r-k,‘(l -L?-~,~). W6) 

Similarly, for an irreversible channel closing pro- 
cess, substitution of eqs. (B12) and (B15) into eq. 
(4.17) yields 

Appendix C 

A stationary flux of tracer ions will rest.& for 
the transport process represented by reaction 
scheme (1.4) when the condition 

df NR] 
y= -(k, +k_,)[NR) i-k,]N][R] =0 

dr 

holds. One then obtains 

[NR] = ( k, :i_b) fN]lRf- 

The rate equation for unidirectional effIux of tracer 
ions is 

d[Nl 
-= -k,fN][R] + k_,[NR]. 

dt fC3) 

Substitution of eq. (C2) leads to 

where K’= k-,/k, is the apparent dissociation 
constant, [Rr] the total ‘concentration’ of internal 
channel sites, and a the fraction of open channels. 
To obtain the corresponding rate equation for 
influx, assuming the external bath is buffered in 
tracer ions, a constant rate of influx term must be 
added to the right-hand side of eq. (C4). The 
time-dependent tracer content of a CMS, obtained 
as a solution of the rate equations, is given by 

X(t) = 
x (0) - e --mkr, effhrx CC5 ) 

x-(oo)[l - e-“‘k’], influx (Cc ) 

where nz = a - [R,] - NA - u is the number of open 
channels on the CMS, NA Avogadro’s number, and 
D the CMS internal volume. The intrinsic flux rate 
constant k, that results when [Rr]>[NR] (i.e., at 
low tracer ion concentration). is given by 

k, 
k=NA-s(X'+kJkb)- (C7) 

In the special case K’ 2 (k,/k,), eq. (C7) becomes 
identical to the result previously derived for efflux 
under the more restrictive assumption that tracer 
ion binding is much more rapid than transport 
through a channel f 18 J_ 



Acknowledgement 

we gratefully acknowledge financial support Sy 
the Deutsche Forschungsge~~inschaft, Grant Ne 
227, and the Stiftung Volkswagenwerk, Grant 
I/34706. 

References 

M. Kasai and J.-P. Chattgeux. J. Membrane Biol. 6 (19X) 
1. 
J.-L. Popot. H. Sugiyama and J.-P. Changeux. J. Mol. B&I. 
106 (1976) 469. 
G.P. Hess. J.P. Andrew. G-F. Struve and SE Coombs. 
Proc. Nafl. Acad. Sci. U.S.A. 72 (1975) 4371. 
J. Bcmhardt and E Neumann. Proc. Nati. Acad. Sci. 
U.S.A. 75 (1978) 3756. 
D. Mifler. HP. Moore. P- Hartig and M.A. Raftery. 
B&hem. Biophys. Res. Commun. 85 (1978) 632. 
R. ViIIegas. GM. ViIIegas. F.V. Bamola and E Racker. 
Adv. Cvtopharmacol. 3 (1979) 373. 
J. Yam&k, M. Fosset and M. Lazdtmski. J. Bin]. Chem. 
253. (1978) 73x3. 
H.H. Grfhthagen. Neurochem. Inc. 2 (1980) 73. 
G.P. Hess. D.J. Cash and H. Aoshima. Natnre 282. f 1979) 
329. 

[lo] D.J. Cash and G.P. Hess. Proc. Natl. Acad. Sci. U.5.A. 77 
( 1980) 842. 

[I I] R.R. Neubig and J.B. Cohen. Biochemistry 19 (1980) 
2770. 

[ t2] H.-P. Moore and M.A. Raftery. Proc_ Nat]. Acad. Sci. 
U.S.A. 77. (1980) 4509. 

[ 131 B. Katz and R. Miledi. Nature 226 ( 1970) 962. 
1141 CR. Anderson and CF. Stevens. J. Physiol. 235 (1973) 

655. 
[ 151 E Neher and B. Sakmann. Nature 260 (1976) 799. 
[ 161 H. Schindler and U. Quast. Proc. Natl. Acad. Sei. USA. 

77 ( 1980) 3052. 
[ 17] 3. Bemhardt and E Neumann. J. Theor. BioI. 86 (19X0) 

649. 
[ Ifi] J. Bemhardt and E Neumann. NeurocItem. Int. 2 (1980) 

243. 
[ 191 D.A. McQuarrie. in: Physical chemistry and advanced 

treatise. vol. 9. ed. A. Henderson (Academic Press. New 
York. 1975) chapter IO. 

[20] O.G. Berg. Chem. Phys. 3 I (1978) 47. 
1211 E Neher and C-F_ Stewns. Annu. Rev. Biophys. Bioertg. 

6. (1977) 345. 
[22] E. Frehland and P. Lluger. J. Theor. Biol. 47 (1974) 189. 
[23] J.-P_ Changeux, in: Harvey Lectures. 1980, in the press. 
[24} J. Bemhardt. K. Moss. R. Luckingcr and E Neumann. 

FEBS Lett. I34 (1981) 245. 


