Vol. 111, No. 3, 1983 BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS March 29, 1983 Pages 1027-1033

KINETIC SCHEME FOR Ca²⁺-ARSENAZO III INTERACTIONS

Peter L. Dorogi, Carl-Roland Rabl and Eberhard Neumann*

Max-Planck-Institut für Biochemie D-8033 Martinsried/München, F.R. Germany

Received January 24, 1983

SUMMARY: Temperature-jump relaxation kinetic studies show that the complex formation between Ca^{2+} and the metallochromic dye arsenazo III (Ar) is associated with a rapid mode ($\leq 10 \mu$ s-range) involving both Ca^{2+} and Na⁺ of the Na-salt of Ar and a slower mode (-10 ms range) which can be attributed to structural rearrangements in the 1:2 complex $CaAr_2$. The kinetic data suggest the scheme: $Ca+2Ar = CaAr+Ar = CaAr_2 = CaAr_2$. The relatively slow rate-limiting step sets a limit for the use of arsenazo III to study the kinetics of Ca^{2+} processes in cell biology.

A variety of cytoplasmatic reactions involve appreciable changes in the concentration, [Ca], of free intracellular Ca²⁺ ions. The metallochromic dye arsenazo III (Ar) has been found useful for detecting rates of Ca²⁺ release and uptake by numerous biological preparations; for example, by fragmented sarcoplasmic reticulum (1), postsynaptic membrane in frog muscle (2) and in <u>Limulus</u> photoreceptor cells (3). To obtain the actual rate of [Ca] change due to a biological reaction, it is in general necessary to deconvolute the observed dye signal with the rate constants describing the Ca-Ar reactions. Equilibrium binding studies indicate both 1:1 and 1:2 Ca-Ar complexes at cytoplasmic [Ca] values (4,5), and a 2:1 complex when [Ca] > 1 mM (5).

Temperature-jump experiments allow determination of the Ca-Ar reaction rate constants from formal analysis of the dye absorbance relaxation modes. The present study demonstrates that, at cytoplasmic Ca²⁺ and Na⁺ concentrations, the overall

^{*}To whom correspondence should be addressed.

Vol. 111, No. 3, 1983 BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS

Ca-Ar interaction equilibrates relatively slowly and that the amplitude of the total optical signal contains significant contributions from Na⁺-Ar complexing.

MATERIALS AND METHODS

Arsenazo III (Aldrich Chemical Co.) was purified according to the method described by Kendrick (6); Ca^{2+} and Na^+ contents of the purified dye and of stock $CaCl_2$ solutions were determined by atomic absorption spectroscopy. The Ca^{2+} content of dye-pH buffer solutions varied between 1.0 and 2.5 μ M; the pH buffer used throughout was the Na^+ salt of piperazine-N,N'-bis(2-ethane sulfonic acid) (Pipes buffer), which at pH 7.0 is 50% deprotonated. All vessels, including the temperature-jump measuring cell, were washed with 1 mM EDTA solution to remove any contaminating Ca²⁺ and then rinsed with reflux-distilled water (conductivity of 0.9 μ S cm⁻¹ at 20° C).

Temperature-jumps were applied to aliquots (1 ml) containing 7-50 μ M arsenazo III, 1-100 μ M CaCl₂ and 30 mM Pipes buffer at pH 7.0; solution temperature was raised from 18 to 21° C. Because of the low salt content, the Joule heating time of the solutions was about 10 μ sec. Resulting changes in the optical absorbance at the Ca²⁺-sensitive wavelength 602 nm were on the order of 0.1%, but could be reliably and reproducibly recorded with a high-resolution chemical relaxation spectrometer (7), registered in a Bryans transient recorder and displayed on a Tektronix dualbeam oscilloscope. The evaluation of relaxation times and amplitudes was done by superimposing simulated relaxation spectra from a calibrated multi-exponential function generator. Calculations for a variety of trial reaction models were carried out with a VAX/VMS computer system.

RESULTS AND DISCUSSION

The overall relaxation signal has a rapid part whose kinetics are too fast to be reliably resolved (time constants $\tau \leq 10 \ \mu$ s) and a slower part with resolvable kinetics associated with time constants in the 10 ms time range. The fast-mode amplitude, ΔA_F , reflects at least two reactions: ΔA_F is positive at [Ca] < 5 μ M and becomes progressively smaller and negative as [Ca] is raised. This amplitude can thus be attributed to Na⁺-Ar interactions at low [Ca] whereas the rapid Ca²⁺-Ar interactions dominate the fast modes at high [Ca]. Because cation-complexed Ar has a higher absorbance at 602 nm than free dye, it is concluded that Na⁺-Ar complexes are stabilized, and Ca²⁺-Ar complexes are destabilized, by a temperature increase, ΔT , from 18 to 21° C.

Vol. 111, No. 3, 1983 BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS

Calculations using a variety of different reaction models show that the slow mode is due to configurational rearrangements in the CaAr₂ complex. Previously reported (static) equilibrium titrations demonstrate that at [Ca] \leq 100 μ M, Ca²⁺-Ar complexing involves the reactions Ca+Ar=CaAr and CaAr+Ar=CaAr₂ (5). The present kinetic study indicates that this simple model must be extended to a four-step scheme:

 (K_{Na}) (K'_{1}) Na + Ar \rightleftharpoons NaAr, Ca + Ar \rightleftharpoons CaAr,

$$(K'_{2}) \qquad (k_{3})$$

$$CaAr + Ar = CaAr'_{2} = CaAr_{2}, \qquad (1)$$

$$(k_{-3})$$

where the steric rearrangement of the 1:2 complexes described by rate constants k_3 and k_{-3} is rate-limiting in the overall complexing of Ar with Na⁺ and Ca²⁺. K_{Na} is determined from Na⁺ titrations of Ar in the absence of Ca²⁺ and:

$$K_{1}^{\prime} = K_{1}^{\prime} / (1 + K_{Na}^{-1} [Na]), \qquad (2)$$

$$K'_{2} = K_{2} (1+k_{3}/k_{-3}) / (1+K_{Na}^{-1}[Na]), \qquad (3)$$

with $k_3/k_{-3} = K_3^{-1}$. Numerical values see Table 1.

The slow-mode time constant, τ_2 , is obtained from normal mode analysis of eq.(1) assuming rapid equilibration of all bimolecular steps:

$$\frac{1}{\tau_2} = k_3 \left[\frac{\alpha [Ar]}{K_2^{+} ([Ca] + [Ar] + K_1^{+}) + \alpha [Ar]} \right] + k_{-3} ; \qquad (4)$$

where $\alpha = [CaAr] + 4[Ca] + [Ar]$. The value of K' was selected by least square fitting to give optimal consistency with the slopeintercept ratio k_3/k_{-3} in Fig. 1 according to eqs.(3) and (4); this is a discriminatory self-consistency check.

 $10^{3} \cdot \alpha \cdot [Ar] / \{ K'_{2} \{ [Ca] + [Ar] + K'_{1} \} + \alpha \cdot [Ar] \}$

Dissociation reaction enthalpies, ΔH , can be calculated from the variation of the fast and total relaxation amplitudes, ΔA_F and ΔA_T , with dye and calcium concentrations. After considerable algebraic manipulation and using the van't Hoff relation $\Delta K/K = \Delta H \cdot \Delta T/(RT^2)$, R is the gas constant and ΔT the temperature increase, the relaxation amplitudes are given by: $\Delta A_F = F_{Na} (\Delta K_{Na}/K_{Na}) + F_{1F} (\Delta K_1/K_1) = (F_{Na} \Delta H_{Na} + F_{1F} \Delta H_1) \Delta T/RT^2$, (5)

$$\Delta A_{T} = F_{Na} (\Delta K_{Na}/K_{Na}) + F_{1T} (\Delta K_{1}/K_{1}) + F_{2T} (\Delta K_{3}/K_{3})$$

$$= (F_{Na} \Delta H_{Na} + F_{1T} \Delta H_{1} + F_{2T} \Delta H_{3}) \Delta T/RT^{2}$$
(6)

As shown in the appendix, the various amplitude factors F_{Na} , F_{1F} , F_{1T} and F_{2T} are complicated functions of reactant concentrations and extinction coefficients ε_{602} at 602 nm. The relative changes $\Delta K/K$ in the equilibrium constants and the ΔH -values are determined from slopes and intercepts in Figures 2 and 3 (see Table 1).

Figure 2: Evaluation of the total amplitude $\Delta A_{\rm F}$ of the fast relaxation mode ($\tau \leq 10 \mu s$) in terms of the amplitude factors $F_{\rm Na}$ and $F_{1\rm F}$ according to Eq. (5) of the text. The symbols refer to the various arsenazo III concentrations given in the legend to Fig. 1.

Figure 3: Data evaluation according to eq. (6) of the text, yielding $\Delta K_3/K_3$ from intercept (at $F_{1T}/F_{2T}=0$); symbols as in legend to Fig. 1.

In summary, the present study provides a quantitative kinetic reaction model which can be used to calculate biological [Ca] changes when arsenazo III is used as Ca^{2+} indicator. The higher cytoplasmic Na⁺ level as well as the presence of Mg²⁺ may, however, alter the Ca^{2+} -Ar complexing parameters compared to those in Table 1. In any case, the present kinetic data are consistent with the previous result (5) that arsenazo III forms 1:1 and 1:2 Ca^{2+} -Ar complexes which coexist also under physiological ionic conditions. The inherent Ca^{2+} -complexing rates of the dye can well approach, or even be slower than the rates of physiological [Ca] changes. This kinetic information must be taken into account when Ca^{2+} release into, or uptake from

Reaction	Equilibrium constant	Dissociation enthalpy (kJ/mol)	Extinction coefficient (10 ⁴ M ⁻¹ cm ⁻¹)							
Na+Ar=NaAr (fast)	K _{Na} =2.7x10 ⁻² M	∆H _{Na} =-5.0	$\epsilon_{NaAr}^{\epsilon} = 1.14$ $\epsilon_{Ar}^{\epsilon} = 0.78$							
Ca+Ar=CaAr (fast)	К¦ =5.2x10 ⁻⁶ м ^(а)	$\Delta H_{1}^{i} = +7.7^{(b)}$	^e CaAr ^{=4.4}							
CaAr+Ar=CaAr (fast)	$\frac{1}{2}$ $K_2' = 1.33 \times 10^{-1} M^{(c)}$	(d)	(đ)							
CaAr2=CaAr2 (slow)	K ₃ =1.2x10 ^{-3 (e)}	∆H ₃ =+16	[°] CaAr ₂ =7.5							
(a) from eq.(2) of the text with $K_1 = 11 \ \mu M$ (5),										
(b) $\Delta H_{1} = \left[\kappa_{1} \{ \kappa_{Na}^{2} + \kappa_{Na} [Na] \} \Delta H_{1} - \kappa_{1} \kappa_{Na} [Na] \Delta H_{Na} \right] / \left[\kappa_{1} \{ \kappa_{Na} + [Na] \}^{2} \right],$										
(c) from eq.	c) from eq.(3) of the text,									
(d) since CaAr' is very small, ΔH_2^{\prime} and $\epsilon_{CaAr_2^{\prime}}$ cannot be determined reliably.										
(e) from Fig	. 1, intercept: k ₋₃	=28s ⁻¹ , slope: k	$_{3}$ =2.3x10 ⁴ s ⁻¹ .							

Table	1.	Optical p	param	neters	at	602	nm,	appa	aren	tε	equi	libri	JM
		constants	s at	ionic	stı	engt	:h 0	.030	М,	pН	7,	T=21°	с.

cytoplasm following physiological stimulus is to be measured with arsenazo III as Ca-indicator.

ACKNOWLEDGEMENT

We gratefully acknowledge the excellent technical assistance of Ute Santarius and the financial assistance of the Deutsche Forschungsgemeinschaft, grant Ne 227 and of the Stiftung Volkswagenwerk, grant I/34706.

REFERENCES

- 1. Mollman, J.E. and Pleasure, D.E. (1980) J. Biol. Chem. 255, 569-574.
- 2. Miledi, R., Parker, I. and Schalow, G. (1980) J. Physiol. (London) <u>300</u>, 197-212.
- 3. Harary, H. and Brown, J.E. (1981) Biophys. J. 33, 205a. 4. Gorman, A.L. and Thomas, M.V. (1978) J. Physiol. (London) 275, 357-376.
- 5. Dorogi, P.L. and Neumann, E. (1981) Biophys. Chem. 13, 125-131.
- 6. Kendrick, N.C. (1976) Anal. Biochem. 76, 487-501.
- 7. Rigler, R., Rabl, C.R. and Jovin, T.M. (1974) Rev. Sci. Instrum. 45, 580-588.

Vol. 111, No. 3, 1983 BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS

APPENDIX

A. Calculation of time constant (eq.4)

Denoting the instantaneous deviation from equilibrium concentration for a reactant c_i by δc_i , for the slow step in scheme (1)

$$\frac{d \delta CaAr_2}{dt} = k_3 \delta CaAr_2 - k_3 \delta CaAr_2 .$$
(A1)

Because the perturbation of equilibrium is small, differences in mass action relationships can be linearized:

$$Ca] \delta Ar + [Ar] \delta Ca = K'_1 \delta CaAr , \qquad (A2)$$

$$[CaAr] \delta Ar + [Ar] \delta CaAr = K_2' \delta CaAr_2'. \qquad (A3)$$

Mass balance equations have the form

$$Ca + \delta CaAr + \delta CaAr_{0} + \delta CaAr_{0} = 0$$
(A4)

$$\delta Ar + \delta CaAr + 2 \delta CaAr_2' + 2 \delta CaAr_2 = 0 .$$
(A5)
Equations (A2)-(A5) can be solved for $\delta CaAr_2'$:

$$\delta CaAr_{2}' = \frac{-\left[\beta r\right]\left(\left[CaAr\right]+4\left[Ca\right]+\left[Ar\right]\right)}{K_{2}^{2}\left(\left[Ca\right]+\left[Ar\right]+K_{2}^{2}\right]+\left[Ar\right]+4\left[Ca\right]+\left[Ar\right]+4\left[Ca\right]+\left[Ar\right]\right)} \delta CaAr_{2} ; \qquad (A6)$$

 $K_2'([Ca] + [Ar] + K_1') + [Ar] ([CaAr] + 4 [Ca] + [Ar])$ this expression for δ CaAr2 reduces eq. (A1) to a single term with the time constant given in eq. (4).

B. Calculation of amplitude coefficients.

δ

The absorbance change due to the temperature-jump has the total magnitude in the fast relaxation region and overall, respectively, $\Delta A_{r} = \epsilon_{A,r} \Delta_{F} \left[Ar \right] + \epsilon_{C_{2}A,r} \Delta_{F} \left[CaAr \right] + \epsilon_{C_{2}A,r} \Delta_{F} \left[CaAr \right] + \epsilon_{A,r} \Delta_{F} \left[NaAr \right] , \qquad (B1)$

$$\Delta A_{\rm T} = \epsilon_{\rm Ar} \Delta_{\rm T} \left[{\rm Ar} \right] + \epsilon_{\rm CaAr} \Delta_{\rm T} \left[{\rm CaAr} \right] + \epsilon_{\rm CaAr} \Delta_{\rm T} \left$$

Using the appropriate mass balance and mass action relations, and noting that the slow step can be neglected in ΔA_F , allows eqs. (B1) and (B2) to be written as in eq. (5) and (6) with $\epsilon_{CaAr_2} \approx \epsilon_{CaAr_2}$,

$$\begin{array}{c} \mathbf{F}_{1\mathbf{F}} = (\mathbf{\epsilon}_{A\mathbf{r}} + \mathbf{\epsilon}_{CaA\mathbf{r}} - \mathbf{\epsilon}_{CaA\mathbf{r}_{2}}) \mathbf{X} + (\mathbf{\epsilon}_{CaA\mathbf{r}_{2}} - 2\mathbf{\epsilon}_{CaA\mathbf{r}}) \mathbf{Y} \\ \mathbf{X} = \mathbf{K}_{1}' [\mathbf{C}aA\mathbf{r}] (2 [\mathbf{A}\mathbf{r}] + \mathbf{K}_{2}') / \{\mathbf{K}_{2}' ([\mathbf{C}\mathbf{a}] + [\mathbf{A}\mathbf{r}] + \mathbf{K}_{1}') + [\mathbf{A}\mathbf{r}] ([\mathbf{C}aA\mathbf{r}] + \mathbf{4} [\mathbf{C}\mathbf{a}] + [\mathbf{A}\mathbf{r}])\} \\ \mathbf{Y} = \{ [\mathbf{C}aA\mathbf{r}] \mathbf{K}_{1}' - ([\mathbf{C}\mathbf{a}] - \mathbf{K}_{1}] \mathbf{X} \} / ([\mathbf{A}\mathbf{r}] + 2\mathbf{K}_{1}') . \\ \mathbf{F}_{Na} = - \mathbf{\epsilon}_{Na}\mathbf{A}\mathbf{r} [\mathbf{N}\mathbf{a}] [\mathbf{A}\mathbf{r}] / ([\mathbf{N}\mathbf{a}] + [\mathbf{A}\mathbf{r}] + \mathbf{K}_{Na}) \end{array}$$
(B4)

$$F_{1T}=K_{1}^{\prime}(\epsilon_{Ar}-\epsilon_{CaAr2}/2)(G+C)$$

$$C = \left\{ \left(\left[Ar \right] - \left[CaAr \right] \left(2 \left[Ca \right] + \left[Ar \right] \right) \left[CaAr \right] \left(K_{3}+1 \right) - w \left[CaAr \right] \right\} / \left\{ w \left(\left[Ca \right] + \left[Ar \right] + K_{1}^{\prime} \right) \right\} \right\} \\ w = \left(K_{3}+1 \right) \left[Ar \right] \left(\left[CaAr \right] + 4 \left[Ca \right] + \left[Ar \right] \right) + K_{2}^{\prime} K_{3}^{\prime} \left(\left[Ca Ar \right] + K_{1}^{\prime} \right) \right\}$$
(B5)

$$\begin{array}{l} & W=(K_{3}+1) \left[Ar \right] \left[CaAr \right] + 4 \left[Ca \right] + \left[Ar \right] \right] + K_{2}K_{3} \left(\left[Ca Ar \right] + K_{3}K_{3} \left[Ca Ar \right] + K_{3}K_{3} \left[CaAr \right] \right] \\ & G=-C+2(K_{3}+1) \left\{ \left(\left[Ar \right] - \left[CaAr \right] \right) \left[CaAr \right] \right\} \end{array}$$

$$\mathbf{F}_{2\mathbf{T}} = \mathbf{K}_{3} (\boldsymbol{\epsilon}_{\mathbf{Ar}} - \boldsymbol{\epsilon}_{\mathbf{CaAr}_{2}}/2) (\mathbf{H} + \mathbf{D})$$
(B6)

 $\begin{array}{l} & D = \left\{ V(K_3 + 1)(2 \ \mbox{[cal + [Ar] }) - W \ \mbox{[caAr]} & (2 \ \mbox{[cal + [Ar] }) \right\} / \left\{ W(\ \mbox{[cal + [Ar] + K_1']} \right\} \\ & V = \ \mbox{[caAr]} & K_2'(\ \ \mbox{[cal + [Ar] + K_1']} + \ \mbox{[caAr]} & \ \$