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STOCHASTIC MODEL FOR ELECTRIC FIELD-INDUCED MEMBRANE PORES
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Electric impulses (1-20 kV em ™', 1-5 ps) cause transient structural changes in biological membranes aad lipid bilayers.

leading to apparently reversible pore formation (electroporation) with cross-membrane material flow and. if two membrznes
are in contact. to irreversible membrane fusion (electrofusion). The fundamental process cherative in electroporation and
electrofusion is treated in terms of a periodic lipid block model. a block being a nearest-neighbour pair of lipid molecules in
either of two states: (i) the polar head group in the bilayer plane or (ii) facing the centre of a pore (or defect site). The number
of blocks in the pore wall is the stochastic variable of the model describing pore size and stability. The Helmholiz free energy
function characterizing the transition probabilities of the various pore states contains the surface energies of the pore wall and
the planar bilayer and. if an electric field is present. also a dielectric polarization term (dominated by the polarization of the
water layer adjacent to the pore wall). Assuining a Poisson process the average number of blocks in a pore wall is given by the
solution of a non-linear differential equation. At subcritical electric fields the average pore size is stationary and very small. At
supercritical field strengths the pore radius increases and. reaching a critical pore size, the membrane ruptures (dielectric
breakdown). If, however, the electric field is switched off. before the critical pore radius is reached. the pore apparently

completely reseals to the closed bilayer configuration (reversible electroporation).

1. Introduction

Biological membranes are known to become
transiently more permeable by the action of short
electric field pulses [1,2] when a certain threshold
value of the field strength is exceeded [1]. The
electrically induced permeability increase leads to
a transient exchange of matter across the per-
turbed membrane structuress. When two mem-
branes are in close contact with each other electric
fields not only enhance material exchange but also
cause membrane-membrane fusion [3-5]. A fur-
ther aspect of electric field effects on membrane
structures is the artificial transfer of macromole-
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cules or particles into the interior of biological
cells and organelles [6,7]. Recently, it was shown
that homogeneous electric fields can be used to
transfect culture cells in suspension with foreign
genes [8].

The mechanism of electrically induced mem-
brane permeability changes is not known. There
are various proposals and estimates [1,6-12]. It
appears that high electric fields cause pores to
form in the membranes [1-14}; the fundamentals
of a general thermodynamic treatment of electric
pore formation (electroporation) were given [8].

In any case, the primary action of electric fields
is on the charges and dipoles of the membrane,
favouring charge and dipole configurations associ-
ated with a larger overall dipole moment. This in
turn may lead to a thinning of membrane patches
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and to an increase in the defects in the membrane
structure and. finally, to the formation of holes
[8.11].

Molecularly. in the framework of the inverted
pore model [11]. the pore edge is assumed to be a
curved half-toroid surface [11.14-16]. This edge
concept [15] may have been borrowed from the
Hartley model for micelles {17]. In particular,
Fromherz [18] has stressed that the Hartley model
is not consistent with the experimental data. Here
we present a new model for a bilayer pore struc-
ture: the periodic block model. According to this
model. the pore wall contains blocks of two lipids
which are rotated 90° compared to the lipid posi-
ton in normal planar bilayers.

The periodic block model is shown to describe
quantitatively the essential features of electric pore
formation in planar and vesicular lipid bilayer
membranes.

2. The block model for a2 pore

A pore in a lipid bilayer may be viewed to
consist of a pore wall and the pore interior. In our
block model the pore wall is a periodic arrange-
ment of lipids in normal bilayer position and of
rotated lipid blocks (fig. 1). A block is defined by
two nearest-neighbour lipids within a layer of the
bilayer. A rotated block contains two lipids tilted
by about 90° relative to the normal lipid position
in a layer. Generally, the size of a block may
depend on the number. p. of lipid molecules neces-
sary to just cover the hydrophobic part of another
lipid that is perpendicular to the former ones (fig.
2). Thus p=h/l where h is the length of the
hydrophobic part and / the average *thickness’ of
the lipid. For cholesterol #=1.65 nm and /= 0.9
nm [19). hence p =

Although the block rotation (fig. 2) brings the
hydration water of the polar head group into the
membrane interior. this energetically unfavourable
configuration becomes stable in the presence of a
transmembrane voltage.

In the periodic block structure the periodic
sequence of a 90°-rotated block and a row of
lipids in normal bilayer position is energetically
favoured compared to an aperiodic sequence. The
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Fig. 1. Periodic block structure of a section (upper layer) of a
pore in a lipid bilayer. (a) Cross-section; the circles represent
the polar head groups of the membrane lipids. (b) Top view of
the pore mouth: the shaded area represents the planar part of
the pore wall: o is the thickness of the bilayer,  the radius of
the pore and Ar* the thickness of the water layer adjacent to
the wall edge.

periodic structure ensures that the apolar parts of
the lipid molecules which are in the membrane/
water interface are everywhere surrounded by the
polar head groups of the neighbours. This head
group envionment reduces the extent of direct
exposure of hydrophobic groups to water. Al-
though the ordered structure of the water in the
membrane/ water interface is loosened it is cer-
tainly not completely interrupted. If two
neighbours in the inner surface of the wall (edge)
are two adjacent blocks of rotated lipids or two
lipids in normal bilayer position, in both cases
apolar groups are exposed to solvent to a larger
extent. For the sake of a rough comparison the
periodic block structure of the wall may be associ-
ated with the surface tension (v,,) of the cholesterol
bilayer/water (v,, =2 X 10"* N/m [11.19]). The
surface tension characteristic for the aperiodic
block structure may be cleser to the value vy, =
0.05 N/m of the oil/wal.: interface [19]. Since
Y << Yo w» the periodic block structure appears to
be favoured.
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Fig. 2. Elemental *block transitions' in a lipid fayer of a planar bilayer membrane. (1) Rotatian of a block (of two lipids) by approx.
90° with one¢ (possible) intermediate state: /1 is the length of the hydrophobic part of the lipid molecule an:t / the thickness of the lipid
molecule. (b) Shift of lipids from bulk layer into the pore wall (lateral diffusion) to (stepwise) form on additional block in the wall,
The two shifting lipids considered here are shaded. (¢) Block model for the flip-flop mechanism in lipid bilayers.

2.1. Pore size

The wall of a pore in the bilayer may be viewed
as a hollow cylinder. The surfaces of this cylinder.
which are exposed to water, are two rings of inner
radius r and outer radius r+ /2, where d is the
bilayer thickness, and the inner surface of the pore
(‘edge surface’) of the area 27rd. The inner cir-
cumference of the cylindrical pore is 2ar. It is
useful to define the pore size N by

N = 2ar/l n

where / is the *average thickness’ of a lipid mole-
cule in contact with other ones. Thus, the pore size
N is the number of *blocks’ and lipids in normal
bilayer position along the contour line of the cir-
cumference 27r. Note that the total number of

blocks in a pore wall is 2/N; the pore model in fig.
1 is characterized by the pore size N = 12 with 24
blocks.

For comparison with the so-called edge energy
of other pore models [11,14-16j. it is noted that
the surface tension of our poie model, y,. refers to
both the inner pore surface 27rd as well as to the
two planar ring suifaces #w[(r + d/2)2 — r2] (fig. 1)
because in both regions apoiar molecular parts are
exposed to solvent.

2.2. Elemental block transitions

The block rotation by approx. 90° represented
in fig. 2a appears a sterically possible, stepwise
process because the length (&) and width (2/) of
the block are comparable. The course of the rota-



214 1. Sugar. E. Neumann /Stochastics of membrane pores — electroporation

tion may include transient changes in the relative
position (shearing) of the hydrophobic lipid tails
of the two lipids of the block. At 90° there is
maximum contact between a rotated block and the
neighbouring lipids in normal bilayer position.

The biock shift shown in fig. 2b is the lateral
diffusion of two lipids into the pore edge such that
a new block increases the pore size from N to
N+ 1.

2.3, Flip-flop

Our block model and the two types of lipid
movements. block rotation and shift. may also be
used as a basis for a new interpretation of the
flip-flop phenomenon of (slow) lipid exchange be-
tween the two layers of a bilayver. The sequence of
events comprising a {lip-flop may be viewed as in
fig. 2c. including two block rotations and lLipid
exchange in the planc of the edge area of a pore or
of another *defect site’ in a bilayer. In the pro-
posed mechanism  flip-flop would also be en-
hanced in the presence of a transmembrane volt-
age.

2.4 State rransitions in a pore

The periodic block structure may bc described
in terms of pore states ¢ (¢ = 0. 1. 2. 3....) related
1o the pore size N by 2a = N, In fig. 3 the enlarge-
ment of a pore is described in terms of a state
transition from « to ¢ + 1. In our block model of

1
Pore state a

—

pore formation this transition occurs through two
energetically unfavourable intermediates. At first a
*block shift’ increases the pore size N by 1; the
free energy barrier for this step being «. represent-
ing two adjacent blocks in the same ‘direction’.
(The barrier for an initial block rotation within the
periodic block structure (N, @) is larger than «
because in this case three blocks would be in the
same direction within the pore wall.) The block
shift (N — N + 1) is followed by a block rotation
in the pore wall. The rotation changes neither the
pore size nor the (unfavourable) free energy level
(see fig. 3). A second shift of lipids in between the
two rotated block builds up again an energetically
favourable periodic state (¢ + 1) with (N +2)
blocks. If a > AT (the molecular thermal energy).
pore formation is a rare event. The extremely low
conductivity of planar bilayers at low transmem-
brane voltage confirms the inequality a > AT.

3. Thermodynamics of electroporation in planar
bilavers

The conductivity changes in planar lipid bi-
layers. observed when the transmembrane voltage
exceeds a threshold value. have been analyzed in
terms of membrane pores {11.20]. In an attempt to
describe thermodynamically the electric field-in-
duced pore formation (electroporation) let us re-
call the Mueller-Rudin bilayer system (fig- 4). Here.
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Fre. 3. Elementary steps during pore formation in the upper layer of the bilayer membrane. Helmholiz free energy changes associated

with the intermediate steps between two periodic pore states.
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Fig. 4. Planar lipid bilayer set-up according to Miiller-Rudin. (a) m. bilayer; t. torus; s. solvent (H,0): c. plane capacitor plates: (b)
enlarged section of an intact bilayer (without pores): E,,. electric field strength in the bilayer caused by the applied voltage of the
capacitor; ¢,,. relative dielectric permittivity of the bilayer; d, thickness of the bilayer. (c) Bilayer with a single pore: (d) enlarged
section of the pore of radius r; E\,. electric field strength in tne border range of thickness Ar* adjacent to the pore wall: £,,. electric
field strength in the inner part of the pore; ¢, . relative dielectric permittivity of the solvent (H,O).

the electroporation process occurs in a closed
two-phase system: the planar lipid bilayer and the
torus on the one hand and the aqueous electrolyte
solution bathing the lipid phase in between a
planar plate condensor on the other.

Since during electroporation volume changes
may occur (electrostriction) the appropriate ther-
modynamic work function is the Helmholtz free
energy F. In a homogeneous eclectric field the
change in the Helmbholtz function is given by
[21.22]:

dF=—SdT — Pde+ ) _p dn, +ydd4+ EdM 2)

where § is the entropy, T the absolute tempera-
ture. P the pressure, v the volume, and g, and #,
the chemical potential and the amount (in mol) of
component ;j of the homogeneous phase, respec-
tively; y is the surface tension and A4 the surface
area; M is the overall electric dipole moment
(parallel to F in plate condensor geometry: fig. 4).

In order to have the electric field strength as an

independent variable. a transformation of F to the
(for electric field effects) characteristic Helmholtz
free energy F is necessary [21,22] according to

dE=dF—d(EM) (3)

Noting that d(EM)= EdM + MdE substitution
of eq. 2 into 3 yields

dF=—SdT~Pdv+ Y p,dn, +ydd~ MAE (4)

It is recalled that it is F (and not F) that has a
minimum at equilibrium in the presence of an
externally applied electric field [22]. For a multi-
phase system the total change in F is given by
dF=—8SdT~ Pdo+ 3, 3 p3dn?+ Y v°dA° — Y M°dE"
a g o a

(s
where the summations are over all phases a and
interfaces o.

In the simplest case the electroporation process
is considered at a constant voltage ¥ between the
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condensor plates. at constant temperature and
constant external pressure. During pore formation
lipid molecules move from the metastable bilayer
phase [11] of volume ¢, into the torus of volume
r,. At the same time solvent molecules ‘fill’ the
pore voiume v, from the bulk solvent phase of

P
volume v_. Because v, > v, and y, > v, both the

torus and the bulk solvent phase may '{)e consid-
ered as large reservoirs. Therefore, the chemical
potentials u; and p, of the lipid and the solvent
molecules. respectively. follow the approximations
Bi =M, and p ,=p_. Durning pore formation
the system remains closed. hence dn,, = —dn, ,
and dn_ = —dn,_. Therefore. in eq. 5 we may
approximate Pdv =0 and )] X ptdny=0. Un-
der these conditions and at constant temperature.
pressure and volume. eq. 5 reduces to

(dF Y, =2 v°dda® - ) AfdE" )
For a single pore (p) the change in the characteris-

tic Helmholtz free energy may be written in two
terms:

AFpY=AF +AF, (N

where for the two-phase system the surface tension
term is given by

AF, =y, + oy, A, (8)

and the electric polarization term is expressed as
A= - [MAE, - [M.dE, 9)

The subscripts p and m refer to the pore region (p)
and the normal planar bilayer (m). respectively.

3. Interfacial tension rerms

In our pore model (fig. 1) the pore surface A 4
associated with Y, has two contributions. In addi-
non to the cyvlindrical inner surface 25 - r - d there
arc the two rings of the planar part of the pore
wall. Hence

Sy = 2mrd + 27 [(r+ d /207 = 12 (10)

During pore formation the surface A 4, of the two
circle areas #(r+ d/2)? disappears from the bi-

layer region associated with v,,,. Thus
Ad,, = —2=(r+d/2) an

The relative change in the torus surface may be
assumed to be negligibly small in view of v, > v, ;
the large torus volume increases by the small value
of 4.

We now introduce the pore size N from eq. 1
into egs. 10 and 11 and substitute into eq. 8. After
term rearrangement.

AF, =8N+ X, N+ G, (1)
where the definitions

By =—vml*/(2%)
Xo= (27, — Y ) 1d
Co={Yp— Ym)wd?/2 (13)

are utilized. The extrapolation to zero pore size.
ie, r=0. N=0. formally yields AF,=(vy,~—
Ym)wd?/2: thus, y,(r=0)=y,. consistent with
the physical picture of a normal bilayer not inter-
rupted by pores. The surface tension v, of the pore
wall is only defined for r > 0, i.e., N = 1.

3.2. Electric polarization terms

The continuum expression for the electric
polarization of material of volume v in a homoge-
neous electric field E is given by

M=¢,{(c-1)rE (14)

where ¢ is the permittivity of a vacuum and e the
relative dielectric permittivity. Since during elec-
troporation bilayer volume disappears at the ex-
pense of solvent-filled pores, the M values in eq. 9
are M, > 0 and M,, <0. At higher ionic strengths
(=1 M) the electric conductivity of an aqueous
solvent phase is so much larger than that of the
planar bilayer that the applied voltage V' only
drops across the bilayer (fig. 4). In terms of the
constant field approximation, the average field in
the bilayer is given by E_, = V/d and the field
strength in the bulk electrolyte may be approxi-
mated by E, = 0.

The electric field within the solvent-filled pore
is inhomogeneous. decreasing from the value £ in
the pore wall/solvent interface toward the pore
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center. We now define a layer of solvent molecules
adjacent to the inner cylindrical part of the pore
wall. of thickness Ar* (fig. 1) within which the
field intensity E,, is approximated by E, = £,,. For
larger pores where r>Ar*, the electric field
strength in the region r > Ar* is considered to be
E,_ = 0. For small pores where r < Ar*, the homo-
geneous field approximation E, = E_, holds.

According to Jordan {23}, at 1 M ionic strength
the electric field becomes highly inhomogeneous if
r = d/5. For these conditions the relation r=Ar*
== d /5 specifies the largest pore size N* to which
the small-pore field approximation E, = E,_,, may
be applied. Using eq. 1 and 4= 3.3 nm [12] and
! = 0.9 nm we obtain N* = 4.6, as an average value
for oxidized cholesterol; at 0.1 M ionic strength
(7I), N* increases with decreasing J [23].

3.2.1. Small pores

The small-pore approximation is characterized
by r<Ar* E,=E_. N<N* and E, =~ 0. Accord-
ing to eq. 14, the electric polarization of the
water-filled small pore of volume v, = 7rd is given
by

M, =eg(e, —1)7ridE,,. (15)

where €, is the relative dielectric permittivity of
the electrolyte solution. The loss of polarization
due to the decrease of the normal planar bilayer
part during pore formation is given by

M, =eo(e,,— 1 —mrid)E, (16)

Insertion of eqgs. 15 and 16 into eq. 9 and integra-
tion yields

Aﬁ;lzéeo(‘m_‘w)""szi (17)

because e, > €, AF,; <0, and the electric polari-
zation contribution favours pore formation. Intro-
ducing now the pore size N from eq. 1 and using
E_ = V/d we obtain

- fm— €w 3

AR =B(V) N (18}
with

B(V) = €ge,—1)V2/(8=d)} (19)
3.2.2. Large pores

In large pores (r> Ar*) it is only the solvent

ring of volume =[r2 — (r - Ar*)?1d that is appre-
ciably polarized by E, . For the rest of thc pore,
E = 0. Analogous to egs. 15-17 we have

AF, = —;coE,%;.,-d{(sw-1)[r2—-(r-—Ar‘)2] —(cm—l)rz}
(20)

and, after introducing Ar* = N*/,/(27) and r=
NI/(Zw) fromeq. 1 and E_ = V/d. we obtain

AR =B(V)N* +x(VIN+C(V) (21)
where

(V) = = eolen. ~1) N*2V2/(4d )

C(V) =l —1) VU (N*Y /(87d) (22)

and B(V') is defined by eq. 19.
3.3. Free energy of electroporation

Recalling egs. 7, 12, 18 and 21, the specific
expressions for the characteristic Helmholtz free
energy change of a single pore of size N are:

(a) small pores (r <4Ar* N < N*):
AF(p) - {B(V)EE"-‘—T?‘+B¢)]NZ+XON+C«, 23)
(b) large pores (r > Ar*, N > N*):
AF(p)=[B(V)+Bo N +[x(V )+ xo] N+ C(V )+ Cy(24)

Egs. 23 and 24 permit calculation of the energy
profiles as a function of the pore size and trans-
membrane volta_.e. For this purpose we use the
numerical values -f an experimental bilayer sys-
temn: oxidized chc esterol [12,19]. The data set
Y =107 N/m, v,=19X10"* N/m [19,24], d
=33 nm, e, =21{1220]. /=09 nm. T=- 313 K.
and 2 < N* <6 was introduced into the expres-
sions for B, x and C (eqs. 13, 19 and 22).

It is remarked that y, may be derived from x,
by eq. 13. The edge energy (v* = 107" N [11.15])
of our model is given by X/ /=08 x10"" N;
with this value eq. 13 yields v, = 1.9 X 107> N/m,
consistent with previous estimates.

In fig. 5 the resuits of the computations are
represented graphically in terms of the molar value
AF = N, AF(p), where N, is the Loschmidt-
Avogadro constant, relative to the molar thermal
energy RT at various transmembrane voltages for
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Fig. 5. Change in the characieristic Helmholtz free energy A F

relative to the thermal encrgy (R7T) as a function of the pore
size. Voin planar bilaver at various transmembrane voltages. V.

N* =& (see section 3.2). In accord with previous
analysis of pore formation [11.14-16] there is a
larger energy barrier for pore formation at low
transmembrane voltage. At N =0, AF/RT=C, =
3.5. In previous models for small pores this ratio
(60-80 [14]) is appreciably larger. Thus. in our
model there is a finite chance for small pores: in
accordance  with  experimental experiences the
number of pores at V=0 is very small.

It is found that at a critical membrane voltage
1.V = 0.4 V the barrier for pore formation disap-
pears and in the range 0.4 V < IV 1.15 V the pore
size may increase unlimited at a constunt voltage.
The value of 'Y computed with the data set for
oxidized cholesterol (without any parameter fit-
ting) is in good agreement with the experimental
value ( = 0.4 V. ref. 28, fig. 11) of this system.

At higher voltage our model shows a qualita-
tively new phenomenon: there is a second critical
voltage 177, beyond which a global minimum ir.
AF/RT appears at large pore sizes (N > 500).
Large pores at ¥ > V!'® become stationary stable
when the (unfavourable) surface tension terms are
balunced by the (favourable) eleciric polarization
terms (see egs. 7 and 24). Eq. 24 svields the second
critical voltage

l;*l): 2‘len,ti/{c,,(<",;“ii} . (25)

179 = 1.15 V for the data set of oxidized
cholesterol.

The pore size of the stable single pores at
V > V3 in the supercritical voltage range depends
on the actual vaiue of the transmembraneg voltage;
it approaches asymptotically a limit value

With €, =80, €, = 2.1, N;,, =72 N*. For N* = 6.
Nym is much larger than any N value correspond-
ing to the barrier maximum (N =40) in fig. 5.
Therefore. when the voltage is switched off the
pore is already so large that the size increases
further until rupture (dielectric breakdown) oc-
curs. However. in any real case of a Miiller-Rudin
bilayer there will be several pores developing in a
planar bilayer. Pores of increasing size may over-
lap and the membrane may rupture before the
region of stable pore size for single pores is at-
tained.

4. Thermodynamics of electroporation in vesicles

Thansient permeability changes caused by elec-
tric field pulses were first found in vesicular cell
organelles [1]. Because of the lack of the buffering
torus (of planar bilayer systems) electroporation in
vesicles is associated with different surface changes.
In addition. whereas planar bilayers are metasta-
ble systzms the bilayers of large vesicles may be
considered as equilibrium systems. The reference
areas for the field-induced pore formation are the
curved inner and outer bilayer surfaces of the area
A, in the absence of pores. When pores are present
the total surface of the vesicle exposed to solvent is
larger than A by the inner cylindrical area 2wrd
of a pore of radius r. The change in surface area
4 A4 during the formation of a single pore is given
by

3A=34,+AAd,=A +2ard — A, (27)

Analogous to the treatment of planar bilayers our
periodic block model yields:

Sy =2x{rd+ [(r+a/2)*~ ] )

A.4m=-27.-[(r+ d/Z):—rz} (28)

for pores in vesicles of radius r,. Pore formation in
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larger vesicles (r, > r) of (slightly) curved bilayers
may be treated in the same manner as planar
bilayers. Tnerefore, we apply eq. 8 for the surface
tension termc

AFy = YpAA, + v 84,
= (27 = Ym) 1N + (v — Ym) 7d7/2
=xoN +Cp (29)

and eq. 9 for the electric polarization terms.
Finally, the changes in the characteristic

Helmholtz free energy of the formation of a single

pore in a vesicle are:

(a) small pores {r < Ar¥)

— €y

_ € a
AF(P) =B(I)-T—T" N+ xoN + Co (30)
m

(b) large pores (+ > Ar¥)
AFy(P)=B(VIN*+[x(V)+xo]N+C(V)+ Gy 31

where B, x and C are defined by eqs. 13, 19 and
22.

In fig. 6 tha stability regio.:s of pores in vesicles
are shown at various transmembrane voltages in
terms of the molar ratio A Fy,/RT. In the frame-
work of our model, pore formation in vesicles is
always reversible and no rupture occurs. In reality,
however, this feature only applies to large vesicles
and not to =lectric {ields of long duration. Long-
lasting high fields may deform the shape of the
vesicle [25-27]. Eqgs. 30 and 31 and fig. 6 therefore
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Fig. 6. The characteristic Helmholtz free energy change of pore
formation in vesicular bilayer membranes, as a function of pore
size at various transmembrane voltages, V; see fig. 5.

only apply to short ( < 1-10 us) pulses. The results
presented in fig. 6 are obtained using the same
values as those used for the planar bilayer system
of oxidized cholesterol (section 3.3). However. for
vesicles the critical voltage V! = V!2 = |/ (corre-
sponding to [d(AF,/RT)/3N]=0 at N =N*) is
0.32 V; it is smaller than that (0.4 V) of the planar
bilayer system. The equilibrium pore size decreases
with increasing transmembrane voltage until ap-
parently a limit size is attained.

5. Dynamics of electroporation

Pore {ormation and resealing of iipid bilayers
may be treated as a stochastic process in terms of
a Markov chain. The fundamental pore states (a)
and the state transitions between nearest
neighbours are shown in fig. 3. The general sto-
chastic state transitions are given by the scheme

- 5 - —-
WO B Wa—1) TP 32
= 0 = &= __= = = e=... (32)
By ¥y Wa+1)

1 2 3 (a—=1) a (a+1)

where W(a) and W( a) represent the ‘rate con-
stants’ or transition probabilities per unit time for
the steps a — (¢ + 1) and ¢ — (a — 1). respectively.

5.1. Transition probabilities

Denoting by A- a small time interval within
which one state transition a — (a + 1) occars, the
transition probability of this state change is given

by
W(a)ar= (4a%d1/7) exp(— AFy .\ /AT) (33)

where 7 is the characteristic transition time and
1/7 the transition frequency representing the num-
ber of trials per unit time:; note that ¥V =24 (fig.
3). The ractor 4a? = N2 describes the number of
possible @ — (a + 1) transitions. The rate-limiting
step of this transition is the diffusion of lipids
from ke bulk bilayer into the pore wall; that may
occur at N different sites in one layer of the pore
wall or at N? sites independently in both layers of
the bilayer (fig. 1). AF, \, rtefers to the free
energy difference between pore size N 4+ 1 and N.
Note that the surface energy of the periodic block
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structure in a pore wall is lower by the energy «

compared to that of the aperiodic structure (fig. 3).
We now apply egs. 23 and 24 to three limiting

cases:

(a) N+ 1 < N* (small pores) associated with the

transition probability W(a) = w'(a),

_ - 1 a
-‘F’,\_,\-u:[B(V)(: _(1m+BoJ(N+1)_"‘XoN+C0+“
€m — €y 2
_[B(V) .« —1 +BO]N_+.‘(UN+C0
€n " €w
=(4a+1)[/3(V)ﬁ—]——+/30]+a. (34)

(b NS N*< N+ 1, W(a)y=w"(a):

AFT o= [(2u+1)2—4a2"“”‘“]3(v)
- €,—1

+(Ba+1)By+x(V)+C(V)+a (35)

(¢) N> N* (large pores) associated with W'(a)=
wi(a):

4i‘.\,5’¢|=(4”+l)[B(V)+Bn]‘*‘X(V)+“ (36)

The state transition: a — (¢ — 1) is dominant dur-
ing the resealing of pores. Analogous to eq. 33 the
transition probability of the a —» (a—1) step is
given by

B (a)Ar=(adr/7) exp(— AFy v_1/KT) 37

The rate-limiting step of the resealing process is
the movement of a non-rotated block (figs. 2 and
3) from the pore wall edge into the bulk bilayer.
Within one layer annealing of a non-rotated block
can be realized N /2 times and in the two layers
the number of realizations is (/V/2)>. Analogous
to eqgs. 34-36 we obtain:

(a) N < N* (small pores), W(a) =w'(a),

. €

AR = —4a)[B(V)‘:‘—_

= +B0]—2xu+a (38)

(b) (N = 1)< N* < N: W(a)=i"(a)

€m

Ky [ a~1)° Cw —-402][3‘(1/')

€n,—1
+(1=4a)By —2[xo+ ax(V)]-C(V)+a (39)

(¢) (N — 1)> N* (large nores), W(a)= w(a).

AFy v 1= (1-3a)[B(V)+ B8]~ x(V)—2x0 + (40)

For the states a =0 and a= —1. the transition

probabilities are
W(0) = =" exp(— AFy, /kT)
W(—1)=0. (41)

5.2. Master equation of eleciroporation

The probability of occurrence of state a at time
t+ At is given by

P(a.1+A1)=W(a—1)AtP(a—1.1)
+W(a+i)ArP(a+1.1)
+{1-[W(a)ar+W(a)ar]} P(a.1) (42)

The difference equation (eq. 42) may be trans-
formed into the master equation

9PLA-D _@(a—1)P(a=1.0)+W(a+ 1) P(a+1.1)
~[W(a)y+W(a)]P(a.r) (43)

Experimental data refer to average values of pore
size and to the variance of fluctuations in the pore
size. The average pore state a is related to the
average pore size {(N) by {(a) = (N> /2. From eq.
43 we readily obtain

dar dtu—O

HKay _ 4 > aP(a.r)= 3. [W(a)-W(a)]P(a.1)
a=0
(44)
Assuming now a Poisson process, eq. 44 is trans-
formed into a non-linear ordinary differential
equation (see the appendix):
ENTN®*/2

KL X ([F ()~ #(@)] = [F (@)= #(a)]} P(a.r)

a=0

+{[#(a)—w"(a)]-[w(a)—#(a)]} P(a’. )+ (¥ — &)
(45)
where the definition a’= ENT(N*/2 + 1) holds
and ENT is the integer of a numerical value p qgrs;
e.g. ENT(p grs)=p.
It is remarked that the pore formation corre-

sponds to d{a)/dr> 0 and that the resealing of
the membrane refers to d{a)/dr <0, formally.

5.3. Stable and unstable stationary solutions

The stationary solutions (d{a)/d¢=0) of the
master equation (eq. 45) are repesented as a phase
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Fig. 7. Phase diagram of electroporation in lipid bilayers. The solid lines represent the stationary solutions of the electroporation
master equation (eq. 45) of the text; the lines separate two reversibie electroporation domains from regions of nonstationary states
where either resealing of the pore ((N) < (N ).) or rupture (dielectric breakdown) of the bilayer may occur ((N) > (N ).). See text.

diagram in fig. 7. There are two lines in this
diagram (attraction lines) on which the average
pore size is stationary and stable at a given trans-
membrane voltage. The phase diagram contains
two domains which are associated with critical
voltages !V and VP, respectively; V3> i,
They are called reversible electroporation domains
(1 and 2). Within these domains the right-hand
side of eq. 45 is negative, 1.e., resealing to a smaller
stationary pore size occurs. Qutside these reversi-
ble electroporation domains the right-hand side of
eq. 45 is positive, i.e., the pore size increases at a
given voltage.

For V=0 and N* =6 our model yields the
stable stationary solution, {N);=1.5X 1073, ie,
the average value of N in the absence of a trans-
membrane voltage is very small. At V< ¥V the

pore size { N} increases but remains small: switch-
ing off the voltage in this range leads to a (reversi-
ble) return of the system to (N}, (see, for in-
stance, the pathway a = b — b’ — q; fig. 7).

The two reversible electroporation domains are
separated from each other by a rupture domain.
Within the transmembrane voltage range VP < V
< V! the pore size at constant voltage may in-
crease unlimited until the membrane ruptures. If,
however, the voltage is switched off before the
pore size has attained a critical value (N )_, the
system ‘jumps’ into the reversible electroporation
domain (1) and is ‘attracted’ to the stable sta-
tionary attraction line (1) (see, for example, the
pathway a — ¢ — e — f — a; fig. 7). When the pulse
lasts longer such that (N) > (N )., switching off
the voltage, for instance, at point g causes (/) to
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trace the pathway g — A: at 4 the system is further
‘repelled’ toward higher NV values until rupture
occurs.

The transmembrane voltzge range V > V2 de-
fines a supercritical domain and the reversible
clectroporation domain (2). If an electric pulse of
> I7¥ lasts long enough, a ‘second atiraction
line” of stable stationary pore sizes is attained: for
instance. along the pathway a — d — d’. At higher
I values the average pore size on the attraction
line (2) decreases slightly toward a saturation value.
Switching off the voltage at point d’ leads to
membrane rupture because {N(d")) > (N)_.

It is emphasized that the phase diagram in fig. 7
refers to the average pore size. However. there may
be large fluctuations in N. At V < VY, for exam-
ple, at point b the “distance” A(N ) between point
5" on the attraction line (1) and the corresponding
point on the repulsion line at V= V(b") is com-
parable to the fluctuations in N. Therefore, after
the first passage time the pore size can exceed the
unstable stationary value on the repulsion line and
can increase unlimited un:il the membrane rup-
tures.

Within the typical range (2 < N* < 6) of the
small-pore approximation the form of the phase
diagram is oniy slightly ¢ependent on N* (not
shown in fig. 7).

6. Kinetics of electroporaticn
6.1. Pore formation

The master equation for the average pore size,
eq. 45. may be numerically integrated in the form

= oy _ g _ fCuten d{ua)
(3t/7) exp( — a/kT) f<--«m> )
where f({a). V') is the right-hand side of eq. 45.
{a(0)) the stable stationa:y value at V=0 and
{a(1)) corresponds to the average pore size at
time ¢ after application of V at r=0. Eq. 46
permits the calculation of the average time interval
At within which a given pore size is obtained. For
instance. At may refer to the time interval where
the pore starts to conduct hydrated alkali metal
ions.

(46)
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Fig. 8. The interval 37 of building up of the lower limit pore
size (N, ) for the conduction of alkali metal ions. normalized

by the scalling factor 77 'exp(— a/kT). as a function of the
transmembrane voltage, V. at threshold pore size (N,) =2
(------ ) and at (N, > =6 ( )- If the scaling factor is

10* s~ ! the ordinate on the right-hand side marks the absolute
time scale of 31 (@) Experimental data of Benz and
Zimmermann [28].

It is found that A7 is almost invariant to N*
within 2 < N* < 6. However, the smaller the trans-
membrane voltage the larger is Ar; at V= !,
A7 —» oo. Fig. 8 is a graphical representation of eq.
46 for two values of N*. Experimental data of
Benz and Zimmermann (ref. 28: fig. 11) can be
satisfactorily fitted when the scaling factor
(7 'exp[—a/kT]) is 10 s~'. The deviations of
the calculated curves from the experimental data
at longer voltage durauons (charging times) may
arise from the actual fluctuations in the pore size,
which increase with increasing pulse durations. In
particular, if V= VL.“’, fluctuations in N may lead
to permeability changes and concomitant ion con-
ductaace which are much larger than those predic-
ted for the average value {(N) of the pore size.

6.2. Resealing of ion conducting bilayers

When the electric pulse is switched off before
the critical pore size (N ). is attained, the mem-
brane system (at ¥ =0) is in the reversible elec-
troporation domain (1) and reseals to the sta-
tionary pore size (N ). In order to compare with
experimental data on resealing times of oxidized
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Tig. 9. Relative time course of the pore resealing process in
terms of the average poor size (N) (------ ) according to eq.
46. Resealing is considared as the reverse cf pore formation
formally replacing 8¢ ty (—A¢) (see fig. 8). The solid line
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with (N, ) = 1.5 [20]. If the same scaling factor 10* s~ (as for
pore formation) is used for the resealing process. the upper
abscissa marks the absolute time scale for {N(7)).

cholesterol [20], we may formally treat the reseal-
ing process as the reverse of the pore formation.
For the calculation of resealing times we replace
(A7) in eq. 46 by the term (— At), where (— A7)
may represent the time interval of resealing after
switching off the voltage. The resealing process is
initially not a simple exponential when (N} is far
from the stable stationary value.

In fig. 9 the dashed curve represents eq. 46 in
terms of the relative resealing time given by
[(— A7) /7) exp(— a/kT). The solid curve is calcu-
lated from eq. 46 in terms of (N )2 — ( N, )> where
{N, ) is the average threshold pore size [20]. For
{N) < {Ny) no ions are conducted anymore. The

shape of this (solid) curve is the same as that of -

the experimental conductivity vs. time curves [20].
Therefore, as is physically plausible, the ion con-
ductance is proportional to N2 (i.e., the surface of
the pore mouth).

When we now use the same scaling factor
77 lexp(—a/kT)=10% s~! as for the pore forma-
tion, the time constant associated with the linear
section of the function In({ N ) — (N, )?) is found
to be 0.55 us. This value is exactly the relaxation
time of the faster part of the experimental reseal-
ing process at 40°C [20j.

In summary, our periodic block model for pores
in lipid bilayers appears to be consistent with basic
features of observed electroporation phenomena.
The fundamental process of pore formation is the
block rotation by about 90° comprising (two)
nearest-neighbour lipids. The driving force for
block rotation in electric fields is the electric
polarization of the polar solvent molecu'es (adjac-
ent to the polar head groups of the lipids) which
are transported by lipid rotation into the region of
the larger electric field spreading irom the pore
wall into the solution of the pore interior.

Appendix
Al. Master equation for {a)

_ Substitution of the respective specific values of
W{(a) and W{(a) into eq. 44 finally yields:
(a) for a’ < (N*/2)<(a’ +0.5),
[ENT(N=/2)— 1
dda) _
dr Z

a=0

[#(a)—#'(a)]P(a.r1)
+{[w(a)—w'(a)]P(a’. 1))}

£

+ 3 [#(a)—®(a)]P(a.1)
a = [ENT(N*/2)}+1
[ENT(N=/2)]—1
= 2 {[#(a)—"(a)]
a=0

—[%(a)—®(a)]} P(a.1)

(W —wy+ {[wr(a)— 7 (a’)]

—[»T:(a')—ii'(a’)]}P(a’.t). (A1)
where a4’ = ENT (N*/2) and {(w — w)

=Y " J[w(a)—w(a)l- P(a, 1),
(b) for (a’—0.5) < (N*/2y< a’,

ENT(N*/2)
dfa) _ 3
dr

a=0

{[#(a)—w(a)]

—{®w(a)~w(a)]}P(a.1)
+{[#w(a)-w"(a)]-[w(a)—w(a’)]} P(a’.1)
+ (W —w) (A2)
where @’ = [ENT(N*/2)] + 1.
According to egs. 33-41 the terms w(a) and
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w(a) may be expressed as

wW(a)=Aa’exp(wa)

W(a) = Ba® exp(— wa) (A3)
with
w=4[B(V)+Bu)/kT (A4)

=77 lexp{ —[B(V)+By—x(V)—2xo+a]/kT } (A5)
B=(4a/7)exp{ —[B(V)+Bo— x(V)—2x0o+ a]/kT } (A6)

Because the values of 4 and B are independent of
a it is sufficient to determine the average:

(alexp(+ wa))= Y a’exp(+ «a)-P(a.r) (A7)
a=0

We now define a generating function:

>

F(stw.t)= Y exp[(s+w)a]P(a.1) (A8)

a -0
and a cumulant generating function
K(stw.t)=InF(s*w.r)
=K(0.0)+ K (0.1} (s+w)

(s+w)’

+ K"(0.1) T

+ ... (AS)

where K(s + w. t) is expanded intc a Taylor series
around s + w = 0.

Assuming that the electroporation is a Poisson
process we have:

P(a.1)={a(1)y[exp(—(a))]/a! (A10)
The cumulants are
K(0.1)=0.K'=K"=K"=...=(a(«}). (A11)
Substituting eq. A1l inio eq. A9 yields
K(stw.1)=(a) il (S—i,.‘ﬂ' ={a)(exp[s + w]-1)
(A12)
Consequently, the generating function is

F(s+w,1)=exp[(a)(exp[s + w]-1). (A13)

Finally, w and w (eq. A3) are obtained from

diF|

(41D _idu

= Y [a’exp(xwa)]P(a.1) (Al14)
a=0

s =0

Since

(w) ~ (ayexp(+ w) {exp[{a)(e*= —1)]}(1+(a)e**).
the final result is

(W —w)=B(aye “{exp[{a)(e”~ —1)]}(1+(a)e™")

— Ala)ev{exp[{a)(e“ —1)]}(1+(a)e").
(AI5)
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