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I. I N T R O D U C T I O N  
In order to understand the functional role of the natural electric field in bioelectric 

phenomena such as nerve excitation (Cole, 1968; Tasaki, 1982; Nachmansohn and 
Neumann, 1975; Dorogi and Neumann, 1980), electrogenic ion transport, neurostimulated 
secretion of hormones and transmitter substances or the photosynthesis of ATP (Witt et al., 
1976; Schlodder et al., 1982) basic knowledge of electric field effects on simple molecules and 
on chemical reactions is an essential prerequisite. 

External electric fields have traditionally been applied in order to probe the electric-ionic 
properties of atoms and molecules and to study the electronic and optical details of matter. In 
particular, the combination of electrical and optical techniques represents a powerful tool for 
the investigation oi overall shape and structure and of the dynamic properties of molecules 
and molecular interactions. Instructive examples for the power of electro-optic analysis are 
the membrane-bound bacteriorhodopsin (Tsuji and Neumann, 1983) or DNA (Prrschke, 
1985). In bacteriorhodopsin, electric fields cause structural transitions which involve 
orientation changes of the retinal, tyrosine and/or tryptophan residues and pK-changes of at 
least two types of H +-binding sites. The conformational changes are based on a saturable 
induced dipole mechanism associated with an extremely large anisotropic (electric) 
polarizability. On a molecular level the induced polarization appears to involve a restricted 
electric displacement of ionic groups (ion pairs) within the protein in a highly co-operative 
manner. The electric field effects observed in bacteriorhodopsin membrane fragments are of 
functional importance for this light-driven H÷-pumping system (Tsuji and Neumann, 
1981a,b). 

Electro-optic data on linear polyelectrolytes like the K÷-salt of polyriboadenylate, 
poly(rA, K ÷) demonstrate that the dissociation of counterions from the inner atmosphere 
and, coupled to it, the destacking of the adenine bases in high electric fields is highly 
anisotropic (Neumann et al., 1983, 1984). The anisotropy of the counterion movement along 
polyionic surfaces suggests that counterion exchange as well as influx and efflux of 
counterionic substrates or hormones occur preferably at the border lines of the ionic 
atmospheres which cover polyionic regions on macromolecular enzyme and receptor 
proteins and membranes. Once part of the ion cloud, such substrates and activator 
substances may reach the active sites via surface diffusion. 

In most treatments of electric field effects on chemical processes the theoretical expressions 
are based on the "homogeneous-field approximation" of the continuum relationship 
between the total polarization and the electric field strength (Maxwell field). When, however, 
conversion factors that account for the molecular (inhomogeneous) nature of real systems are 
given, they are usually only applicable for non-polar solvents and thus exclude aqueous 
solutions. Therefore, in the present account, particular emphasis is laid on expressions which 
relate experimentally observable system properties (such as optical or electrical quantities) 
with the applied (measured) electric field, and which include applications to aqueous 
solutions. 

lI. MATTER IN ELECTRIC FIELDS 

The primary molecular-mechanical effects of electric fields are (i) the orientation of 
permanent dipoles (or of dipolar parts in a more complex structure) in the direction of the 
applied field; (ii) the deformation of polarizable systems (and also, but not necessarily, the 
subsequent orientation of the induced dipoles in electrically anisotropic particles) including 
changes in the distance between the charge centres of an ion-pair in a macromolecular 
structure. In general, major structural changes in electric fields require the presence of ions, 
or ionized groups, or permanent or induced dipolar charge configurations, preferably in 
macromolecular structures. Due to electrical-chemical coupling molecular conformations 
with large electric moments increase in concentration at the expense of those configurations 
with smaller moments. Secondly, the presence of electric fields increases the dissociation of 
weak acids and bases and promotes the separation of ion-pairs into the corresponding free 
ions (dissociation field effect; second Wien effect). The free ions or ionized structures then 



Chemical electric field effects 199 

may move in the direction of the electric field (electrophoresis) and a field-dependent 
stationary state in the ion distribution may be established. 

Thus, basically two types of electric-chemical coupling may be differentiated, (a) 
permanent or induced dipolar equilibria, and (b) ionic (dissociation and association) processes 
involving (macro-)ions and low molecular weight ions (of preferably opposite charge sign). 
Whereas dipolar equilibria in electric fields are accessible to thermodynamic analysis, ionic 
processes involving free ions require a kinetic approach (Eigen and DeMaeyer, 1963). 

1. Biological and Experimental Electric Fields 

In living organisms electric fields of sufficiently high intensity and of variations large 
enough to affect chemical processes are encountered not only within membrane phases, but 
also near the surfaces of membranes and protein organizations, for instance at the active sites 
of enzymes and receptors. The observed membrane potential differences, A~b m, of up to 
100 mV may correspond to average values of the electric field strength,/~= A~m/d, of about 
100 kV cm- 1 if the thickness of the dielectric membrane part d~  10 nm. 

(a) eolyionic field effects 
The electric potential ~,(r) in the environment of polyionic macromolecules and 

membranes decays with increasing distance r from the surface of fixed ionized groups (or 
adsorbed ions). The corresponding electric field E = - grad ~k(r), however, is largely screened 
by counterion atmospheres at physiological ionic strengths (0.1 to 0.15 mol dm-3). An 
effective direct interaction of these inhomogeneous fields with chemical reactions is limited to 
a short range of about 1 nm at 0.1 mol dm- 3 ionic strength. The electric fields of polyionic 
surfaces may, however, indirectly affect chemical reactions by accumulating small ionic 
species in their immediate environment. In these regions of higher ionic strengths, rate and 
extent of chemical reactions between ionic reaction partners will be different from the 
behaviour in the bulk solution. This catalytic effect will be very pronounced for 
polyelectrolyte structures. Theoretical approaches aimed at understanding polyionic electric 
field effects are being advanced; for instance, partial dehydration of ionic reaction partners in 
the high local electric field close to a polyionic surface appears to be one of the important 
factors (see, e.g. Enokida et al., 1980). Practically, the ionic strength dependence of rate and 
equilibrium constants may be used in order to establish the mechanism of polyionic field 
effects (Neumann et al., 1980; Neumann and Nolte, 1981). 

(b) Experimental limitations 

The field intensities which are experimentally accessible are limited by dielectric 
breakdown. In aqueous solutions, fields up to 150 kV cm- 1 may be controlled over distances 
in the mm and cm range. It is an additional limitation that in ionic solutions electric fields 
cannot be maintained for a long time. Due to ionic currents the field will decrease and Joule 
heating may cause appreciable temperature increases. These problems can be minimized by 
applying field pulses of limited duration to ionic solutions and suspensions. 

2. Biopolymers 

Among the early examples of the successful use of electric fields to probe ionic structures 
and electrical and optical anisotropies are the linear polyelectrolytes. Basic information 
about macromolecular dimensions, size and shape have been derived from the relaxation of 
field-induced changes in optical properties and in electrical parameters of the electrically and 
optically anisotropic systems (see, e.g. O'Konski and Haltner, 1957; Tricot and Houssier, 
1976; Fredericq and Houssier, 1973). The analysis of electric conductivity measurements has 
demonstrated that linear polyelectrolytes are electrically anisotropic (Eigen and Schwarz, 
1955, 1957, 1962). It was established that the extremely large dipole moments, which the 
electric field produces by displacement of the counterion atmosphere parallel to the long axis 
of the polyions, are responsible for their orientations in the direction of the external field. 
Electric fields are also capable of producing structural-conformational changes in 
biopolymers and membranes. Initial hints of presumably chemical contributions to field- 
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induced changes in birefringence were reported for DNA solutions of low ionic strength 
(O'Konski and Stellwagen, 1965). Dielectric measurements have shown that polypeptides in 
viscous organic solvents may undergo intramolecular helix-coil transitions in the presence of 
electric fields (Schwarz and Seelig, 1968). In the meantime there are many reports on field- 
induced conformational chanoes in multi-stranded as well as in single-stranded poly- 
electrolytes (Neumann and Katchalsky, 1972; Neumann, 1973; Kikuchi and Yoshioka, 
1973, 1976; Yasunaga et al., 1973; Revzin and Neumann, 1974; Prrschke, 1974, 1976, 1985). 

Of particular interest in the discussion of electric field effects in biological structures is the 
observation of threshold phenomena. It has been found that electric impulses above a certain 
threshold intensity are capable of triggering conformational transitions in metastable 
polynucleotide structures. A similar threshold effect is associated with electric field-induced 
permeability changes in vesicle membranes (Neumann and Rosenheck, 1972) as well as in 
cellular systems (Zimmermann et al., 1981; Teissie and Tsong, 1981; Neumann et al., 1982). 

III. THERMODYNAMIC FOUNDAT IONS 

The dependence of biopolymer and membrane reactions on the electric field intensity are 
frequently very similar to that of small molecules. Therefore, it appears pertinent to 
introduce the analysis of field-induced macromolecular changes with relationships which are 
derived to describe field effects in reactions of small molecules. Chemical processes between 
reaction partners J 

O=Ev.# r (1) 

are dependent on the intensive physical variables (z), e.g. temperature (T), pressure (P) or 
external electric field (E) and may be generally described by the z-dependence of the 
thermodynamic and apparent equilibrium constants,/~(z) and K(z), respectively, and by 
Dedonder's advancement of reaction ~(mol) or by a degree of transition, O. The differential 
change dns in the amount of substance ns of the species J in  a chemical process may be related 
to the stoichiometric coefficients vs (counting negative for reactants and positive for products) 
by: 

de = 1 dnj = 1_ V dcj (2) 
vj vj 

where V is the volume and c~ = n/V.  In integral form: 

1 
ns = n~(ref) + vs¢, c s = cs(ref) + v~ ~ ~ (3) 

where nj(ref) and cj(ref) are the reference values (for instance, at given values of P, Tand E). As 
K(z) = l-l(g/c°)~J, where c" = 1 mol dm-  3, is a function of z, ~ is also dependent on z. Not only 
are the equilibrium values gj and thus ~ a function of z, but additionally the extent of a 
z-induced change, Ac~ or A¢, in c s and thus in ~ depends on the actual "position" of the 
equilibrium. Indeed, there are optimum conditions of (j (or ~ and 0) for major z-induced 
chemical transformations (see, e.g. Neumann, 1981a). 

The dependence of the apparent equilibrium constant K(z.3 on the intensive variable z~ 
(P, T, E) may be expressed by a generalized van't Hoff relationship according to (Eigen and 
DeMaeyer, 1963): 

Ozll: ~ :, - ~ (4)  

where R is the gas constant, T is the Kelvin temperature and 

A Z , = R T . ( ~  In K~ (5) 
\ 

is the extensive reaction quantity complementary to z~. The subscript z # z~ means all z 
constant except zi. 
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It is recalled that when zi = T, AZ i = A H / T  where AH is the reaction enthalpy representing 
the enthalpy difference of one stoichiometric transition. When z~ = P, AZ~ = - A I7, where A I7 
is the molar partial volume change for one stoichiometric transformation. Finally, when 
z~ = E, the measured electric field, then AZi = AM, where AM is the molar reaction dipole 
moment; AM refers to the components parallel to E, of the dipole moments of the interacting 
dipolar molecules or macromolecular substructures. 

With A = 0/0~ we have: 

where 

Zi  = Z~n~Zi,~ (6) 

z, o \Onj.],,.,,, (7) 

is the average value of the partial molar quantity Z i of species j. From eqns (6) and (2) we 
obtain: 

AZ~ \ O~ J: = ~svsZ~'s" (8) 

The reaction quantity AZ~ may, in general, be dependent on the actual value of z~ and on ~ 
~cause of the de~ndenee of the activity coefficient ratio Y on z~ and ~. 

The the~odynamic  equilibrium constant K is ~ven by 

(0  In ~ ~ 
Oz i ] : . : , -  ~ (9) 

where at ~ven values ofz ¢ zi the reaction parameter ~ i s  a constant, inde~ndent of ~ and 
of Y; ~ = ~ = K" g, where the activity is defined by as = (cs/c~ys, ~ is the the~odynamic 
activity eoe~cient and ~ =  ~ .  

Transit ion curves. The z-dependence of the extent of reaction ~(z), of the degree of transition 
or the degree of dissociation O(z) can be formulated in terms of thermodynamic quantities. By 
applying the chain rule of differentiation and using eqn (4) the z~-induced change in ~(zi) is 
given by 

~ = • ( 1 0 )  
. r  

~ i ~  d~s: p -  ~s d~, t ~  ~ - ~ d ~ c e  of t ~  rea~tio~ ~a~ ~ ~ r e ~ d  i~ t ~  o£ tk~ 
~o~mmtio~ ~ t ~  o£ o ~  of t ~  rea~tio~ 7 ~ t ~  7 ~ 

AZ~ 
dc s = vsF ~ dz~ (11) 

where (Eigcn and DcMacyer, 1963): 

= 1 
- k O l n  K)= (12) 

In tegrated van't  Hof fre lat ions .  When AZiis independent ofz i and ~, it is a constant describing 
the respective transition at constant z # z~. IfAZ~ is only a function ofz~, integration ofeqn (4) 
in the limits z i and z o yields 

lnK(z3=lnK(zo)+~ f AZ, dz~. (13) 

For further analysis it is useful to apply eqn (13) in the form of 

K(zi) = K(zo) " e :~ (14) 
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where the x-quantity is defined as 
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x = ~ f A Z ~ d z  i. (15) 

1. Chemical Affinity 

Before starting the thermodynamic analysis of electric-chemical field effects it is necessary 
to recall some relations from processes in the absence of external electric fields. The most 
general equilibrium condition for processes where the temperature and the pressure are 
under experimental control is that the Gibbs free energy G is at its minimum. Because of the 
definition 

G = U + P V -  TS (16) 

where V is the volume, S is the entropy and U is the inner energy of the system, the general 
Gibbs equation covering "volume work" and chemical work is 

dU-- T d S - P  dV+E#~ dn~ (17) 

where the chemical term refers to the changes in the nj at given chemical potentials/~ of the 
molecules. Insertion of eqn (17) in d G = d U + P  d V +  V d P -  T d S - S  dT  [from eqn (16)] 
leads to the classical Gibbs equation: 

d G =  - S  d T +  V dP+Ej#~ dn~. (18) 

At constant P and T, the work function characterizing chemical systems (in the absence of 
electric fields) is given by 

( d G ) v , r  = ~jl~ d n j  <= O. (19) 

Generally, for equilibrium processes d G = 0 ,  for non-equilibrium states and irreversible 
processes we have dG < 0. From eqn (18) the chemical potential of species J is defined by 

where all n except n~ are held constant. Introducing a standard chemical potential g~ we 
obtain 

g ~ = ~ + R r l n  aj (21) 

where a~ ~ (c~/cO)y~; at unit activity, a~ = 1 and ~ = g~. 
In a closed chemical system the amounts of substance vary during a chemical 

transformation. We rewrite now ~ dn~ = ~ j v ~  dn~/v~ and use the definition of the chemical 
a~ni ty  

A = - N~vj~. (22) 

Recalling eqn (2) the substitution of eqn (22) yields: 

E ~  dn~ = - A d~. (23) 

Finally, we obtain the familiar expression 

A = -- > 0 (24) 
P'T ~ " 

In line with eqn (19), the equilibrium condition is A ~ 0  and a non-equilibNum state is 
associated with A > 0. 

Using eqns (21) and (22) we obtain 

A = - ~ -  RT.  ~ v j  In a~. (25) 

At equilibrium, A = 0  and all activities assume their equilib~um values ~j. Since 

~ = h a ?  = n(e~/c~I~, n ~ ?  = ~ .  ~ ( ~  
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where K =  II(~ffc~)~ and F =  II)7~, we derive from eqn (25) that (at A = 0): 

Z~v~#~ = - R T  In K ~. (27) 

Substitution of this expression into eqn (25) yields 

A =RT(ln K ~ - l n  Qo) (28) 

where the notation of a non-equilibrium distribution is introduced according to 

Q~ = Ha~, = l'I(c ffc ~) ~" Hy]~ = Q" Y. (29) 

From eqn (28) it may be seen that the chemical affinity represents the "thermodynamic 
distance" of a non-equilibrium distribution from its equilibrium distribution. On the other 
hand eqn (28) may be used to specify the conditions of applying the van't Hoff relations and 
their integrated forms to the analysis of experimental data; for instance, to relaxation kinetic 
amplitudes. 

Step perturbations. Suppose that an external parameter z~ (P, T or E) can be "suddenly" 
changed in a practically rectangular fashion from an initial value z o to z v Immediately after 
this change, the previous activity ratio K~(zo) at z o becomes a non-equilibrium ratio Q~(z~) at 
z v Thus, in systems with inertia, initially we have Q~(z~)= K~(zo); then the non-equilibrium 
will relax until the new equilibrium characterized by K*(z~) is obtained. Hence the sequence 

I~(zo)~aO(z , )~  K~(z,) (30) 

is a general thermodynamic representation of a chemical relaxation initiated by a stepwise 
variation of an intensive variable z e 

2. Application Limits 

There are some limitations for a straightforward application of eqn (4) and all other 
equations based on it. Explicitly, the reaction quantity AZi may be dependent on zi and on ~. 
We recall that the Gibbs equation (18) for the zA = T, P)-dependence of a closed chemically 
interacting system, to which eqn (23) applies at constant z # z  i may be expressed as: 

dC-(zi, ~)z*z, = Zi d z i -  Ad~, (31) 

where Z~ = - S, Vand z~ = T, P, respectively. For Z~ = M and z~ = E; see Section IV. Because 
dG is a total differential the second cross differentials are equal. Hence 

(o ,3 
0¢ )= ~OZi]~,=;~,i" 

With AZi -- (OZffO0=, eqn (32) is rewritten as 

(O(A/Rn_] 
Oz~ /~,~.~,- ~-~" 

(32) 

(33) 

As seen in eqns (4) and (5), AZ~ refers to the zrdependence of K =  K°/F. Therefore (Schwarz, 
1967): 

(_~__/~ __ (g  In(/C/Y-)'] 
c~z,]¢. , ,  ~, \ Oz-~ ,]~, ~,. (34) 

Since Fis  the value of Yat  equilibrium, i.e. at A =0,  we may use eqn (28) in the form of 

A / R T =  l n ( /~ /Y) -  In Q (35) 

and specify eqn (34) as 

O z ~ / , ,  ~, - ~z~ / z ,  ~,..~ = o" 
(36) 
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Equation (36) is the starting point of a derivation that finally leads to (Neumann, 1986) 

O In ~ AZi [1 - __.[O In Y~ -] 
(37) 

where i'* is the equilibrium value of F*. With eqn (12) F* is given by 

1 1 [  VF(0 In Y'~ 1 
r*  - r 1 + \ 0  In eJ..J" (38) 

Equation (37) provides the basis to evaluate the zi-dependence of the equilibrium 
concentrations 6j(zi) or related quantities. Equation (37) reduces to the commonly applied 
eqn (4) provided that the de~ndence of the activity coe$cient ratio Yon ¢ is neNigibly small. 
This condition is usually fulfilled if (i) the change ~z~ only produ~s a small shift in K and thus 
in Y, or (ii) the value of Y is determined by an excess of components other than the reaction 
partners J; such a condition is met when ionic reactions occur in the presence of an ex~ss of 
inert electrolyte. 

When z~ = T or P the de~ndence of AZ~ = AH/T or - A  ~, respectively, on T or P may be 
solely expressed in terms of Y. 

Since (~ In ~/~¢)~ = 0 we have (~ In ~/Oz~ = (~ In ~/dzi)¢. At A = 0, where Y= ~, eqn (9) 
yields 

A Z i : ( O  In ~ _ (O l n ~  (39) 
RT k Ozi ]¢,~*z, k Ozi]¢#*~, 

and thus 

A Z , = A ~ -  ( ~  (40) 
k dz~]~.~,~, 

holds (Eigen and DeMaeyer, 1963). It is instructive to recall eqns (6) and (8) and compare with 
eqn (~). Obviously, ~Z~ = ~viZ,, i refers to the general non-ideal ~haviour. Ideal additivity 
refers to Y= 1; for this limiting ease eqn (8) reads: 

Thus, as usually, non-idealities are covered by the introduction of activity coefficients. It will 
~ shown ~ low that a similar approach holds for the field-dipole interactions. 

3. Electrochemical Potential 
It is recalled that the electrochemical potential (Guggenheim, 1967) of a single isolated ion 

of type k is given by: 

fi, = ~, + F ~ , ~  (42) 

where #~ is the ordinary chemical potential, F the Faraday constant, ~ the charge number 
(with sign) and ~ the ideal (Coulomb) electrostatic potential of the isolated ion. 

In the presence of other ions it is necessary to account for the ionic screening effect of the 
ionic atmospheres; for instance by a Debye charging integral 

~ = #~ + r~  ~ df~, (43) 

where ff is the mean electric potential. 
In a solution of several ionic species the total electric work of charging from ~ = 0 to ~ is 

the sum over the charging integrals of all species: F. E~(~ff d~)dn~. Substitution into 
eqn (43) yields the chemical work 

= + F [  j ff 

The fundamental Gibbs equation (17) for ionic species thus is 

dU= T d S - P  d V+ E ~  dn~. (45) 
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The Gibbs function dG for ionic systems is 

dG = - S d T +  V d P +  Zk~ k dn k (46) 

where the electrochemical potential is defined as 

dG 

(a) Elec t rochemica l  af f ini ty  

In line with eqn (22), the electrochemical attinity of chemically interacting ions is 

~ = - X~v~#~. (48) 

Because of total charge conservation E v ~  k = 0; thus 2 = A. 
It is useful to in t rodu~ a standard value of the electrochemical potential according to 

~ = p~ + F~ ff~ d~k, (49) 

where ~ is the ordinary standard value for the case that the species were neutral. Analogous 
to eqn (21) we have 

~ = ~ + R T In a k . (50) 

(b) Elec t rochemica l  ac t iv i ty  coeff icient  

The f o ~ a l i s m  of the eqns (43), (49) and (50) explicitly shows that the (electric) activity 
coefficient of ionic s~cies accounts for deviations from the ideal (unscreened) Coulomb 
behaviour. It will be demonstrated ~ l o w  that an analogous f o ~ a l i s m  describes non- 
idealities in the interactions be tw~n dipolar s~cies. 

If the ionic species can be neutralized (uncharged), the chemical potential of the uncharged 
form is 

~k = ~ + R TIn a~ °) (51) 

where the superscript to) is used to indicate the neutral f o ~ .  Due to the ionic character, the 
ac t iv i ty ,  (ak) , of the ionic s~cies  is different from the activity, a~ °~, in the neutral form. 

By this f o ~ a l i s m  the quantity ~k i$ once expressed in terms ofa~ °) and ff and, alternatively, 
as a function of ~ and ak: 

fi~ = ~ +  RTln  a~°) + F • ~ ~ d~ k 

= / ~ +  FS ~b~ ~ d~k + RTIn  a~. (52) 

Rearrangement leads to: 

F. ( i f-  = R T  ln(ak/a k ). (53) 

Since we refer to the same amount of species (in the uncharged form and in the ionic form), the 
concentrations are equal, i.e. c k = C~k °~. Hence 

~ o )  _ ~ o )  
( a k / a k ) - - Y k / Y k  • (54) 

It is reminded that solely electrostatic interactions are covered by the terms ~b and ~k~. Note 
that 

~ ~_~e_o_ (55) 
~b R (r) - 4nCoe " r 

where e o is the (positive) elementary charge, e o the vacuum permittivity and e the dielectric 
permittivity of the medium. Therefore yk ~°~ = 1 and thus yR/ytk °~ = YR. From eqns (53) and (54) 
we obtain 

F .  S (~  - ~k~) dZ'k = R T  In Yk. (56) 
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The (electrostatic) activity coefficient of ions indeed covers the difference between the actual 
and the ideal Coulomb potential of the formal charge 5keo. 

Introducing eqn (50) into (48), we obtain 

. ~  = - -  Zkl)kff~ k ~- - -  ZkVkff~ ~ -  R T E k v  k ln(Ck/C~)Yk . (57) 

At equilibrium, ~ = 0 and CkY k -= ~kf?k; by analogy to eqn (27): 

EVkfi ~ = -- R T  In K ~. (58) 

S i n c e / ~ = K .  F, eqn (56) leads to: 

g T ln ~ =  f " Ek Vk ~ ( ~ -- d/ ~) d5 k. (59) 

The relationship (59) may be used to estimate charge numbers of ionic binding sites on 
macromolecules in the framework of the Debye-Hiickel approximations (Nolte et al., 1980; 
Neumann and Nolte, 1981). 

(c) Polyionic macromolecules  

In macromolecular biological structures ion-pairs are frequently encountered. For 
instance, the inner counterions surrounding the polynucleotide macroanions appear to form 
"diffuse ion-pairs" with the fixed polyionic matrix. Externally applied electric fields can 
compete with the inner fields and shift these counterions relative to the polyion thus 
producing large dipole moments. It is known that proteins may contain inner salt bridges, i.e. 
contact ion-pairs between fixed ionized side chains of the amino acid residues of the 
polypeptide chains and/or other ionic groups. In particular membrane proteins like the 
bacteriorhodopsin of the purple membranes of halobacteria appear to contain an unusually 
large number of charged groups within the protein structure. In such a case we may group 
together oppositely charged groups into ion-pairs. The total electric moment M of the 
macromolecule is then the vector sum over all individual contributions (mr) of the ion-pairs. 

IV. THERMODYNAMICS IN ELECTRIC FIELDS 

1. The Characterist ic Gibbs Function 

In order to describe ion-pair associations it is useful to extend Guggenheim's concept of an 
electrochemical potential of a single ion and to formulate a dielectrochemical potential  ftr of a 
(dipolar) ion-pair (Neumann, 1981, 1986). The concept of a dielectrochemical potential is 
already implicit in Guggenheim's treatment of dielectrics in the presence of external electric 
fields. In order to apply the familiar criteria for reversible (equilibrium) processes and 
irreversible (non-equilibrium) processes in terms of an appropriate Gibbs function, 
Guggenheim introduced the characteristic Gibbs function in the presence of electric fields by 
a transformation. Here, we may express the transformed Gibbs free energy as 

~ = G - E M  (60) 

where G is the ordinary Gibbs free energy at E and M the absolute value of the total moment 
M. 

For plate condensor geometry the measurable polarization M is the parallel component, 
(M)l I, of the total macroscopic dipole component M = P - V  where P is the familiar 
polarization per unit volume and V is the volume. Thus (Neumann et al., 1984): 

M = (M)II = NAZrnr<mr cos ~gj) 

~- X a ' Y . r n j m  j = Xjn jMj  (61) 

where N A is the Avogadro-Loschmidt constant, n I is the amount of substance J having the 
dipole moment m i. M is the statistical average over all orientations of the individual dipoles. 
M r is the average partial molar dipole moment given by 

M r = (tgM/On~)...j = N a ( m  ~ cos Or) (62) 
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and ~j is the angle between the dipole vector mj and the electric field E. 
With U and S denoting the inner energy and the total entropy in the field, eqn (60) is 

rewritten as 

¢~= U -  TS + P V -  EM. (63) 

The general Gibbs equation for chemical changes in electric fields is: 

d U = T d S -  P d V+ Eflij dnj + E dM (64) 

where/i~ denotes the chemical potential of species J in the field. Equations (63) and (64) then 
yield 

d(~ = d G -  d(EM) = - S d T+ V dP + X/~j d n j -  M dE. (65) 

At constant P, T eqn (65) reduces to 

d6  = Z/~i d n j -  M dE. (66) 

Consistent with ordinary thermodynamics we obtain from eqn (66): 

:~ = (3~/OnPe, r.z,. , . ,  (67) 

where all n except for n~ are constant. By cross differentiation eqn (66) yields 

(~ : , , I~E~, ,T  = - ( a M / a . ) ~ . , ~ . , ~ , . . . ,  = - M ~  (68) 

where eqn (61) was applied to obtain M~. Integration of eqn (68) between E and E =  0 yields 
(Kirkwood and Oppenbeim, 1961): 

#~ = ~ -- ~ ~ dE (69) 

where~(0) =g~ is the ordinary chemical potential at E =  0. By similarity to Gu~enheim's 
electrochemical potential we may call ~ the dielectrochemical potential of the dipola r s~oes .  
Analogous to eqn (50) we introduce a standard dielectrochemical potential ~ and write 

~ = ~ + R T In d~ (70) 

where d~= (c/c~)~ is the activity and ~ the activity coefficient in the field. Obviously, the 
standard t e ~ s  are connected by 

f i~=V~- ; ~  dE. (71) 

By ins~ction ofeqns (61) and (69) it is evident that in a random distribution of dipoles or at 
E = 0, the relation ~ = # ~  holds. In these cases the dielectrochemical potential equals the 
chemical potential. 

2. Dielectrochemical Affinity 

In line with eqn (48), we may now define a "dielectrochemical affinity" for chemically 
interacting dipolar s ~ d e s  in the presence of electric fields: 

~ = - X~v~#~. (72) 

Substitution of eqn (69) into eqn (72) yields: 

~ = - E~v~ = - X~v~ + Z~v~ ~ ~ dE. (73) 

Introducing eqn (72) and dn~ = v~ d~ into eqn (66) we obtain the Gibbs function of chemically 
reacting systems in external electric fields: 

(d~),,r = - ~ d~ - M dE. (74) 

The dielectroehemical affinity is consistently defined in t e ~ s  of ~ and ~ by 

~ ( ~  (75) = - ~ ¢ j , , ~ . ~ .  

JPB 47:3-D 
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It is remarked that reversible and irreversible processes in external electric fields are 
characterized by 

d(~<=0 and 4>=0. (76) 

Thus the definitions of (~ and ~ permit the thermodynamic treatment of electric field effects in 
the framework of concepts which are familiar from ordinary chemical thermodynamics in the 
absence of electric fields. 

3. Activity Coefficients 

The standard value, ~i~, of the dieleetrochemical potential for the dipolar species is defined 
as;  

IJj = ~" + R T  In d~ (77) 

where ~i~ is the activity in the presence of E. In line with eqn (69), we have 

~ = +,~- ~ M~ dE (78) 

where #~ is the ordinary standard potential used in 

#~ = #~. + R T  In a~. (79) 

Note that a~ is the activity of J at E = 0; Mf~ is the standard value of Mj associated with 
isolated ideal dipoles. Comparing eqns (78) and (49) the dieleetrochemical potential may also 
be expressed in two ways. 

From eqns (69), (77)-(79) we obtain 

g~=#~. + R T l n  a j - ~  M j d E  

=~)'+Rrln ~ - ~ M ~  dE. (80) 

Hence, analogous to eqn (53) the relation 

- ~ (M~- ~ )  dE = R T  ln(d~/a~) (81) 

holds. Since 6~ = c~, the activity ratio is 

a~/a~=~/y~. (82) 

If only dipolar interactions are considered, y = 1 and 

- i ~ - ~ )  a ~ = ~ r i n  ~, ~83) 

showing that for dipolar species, too, the activity coefficient covers deviations from simple 
ideal additivities. 

In the ideal ease of pure additive su~rposition of the f o c a l  eharge-distan~ products 
I~] eor ~ = mr, where ~ is the integer charge number, the total (standard) polarization is ~ven 
by 

~ =  ~ . ~ =  U.~.~mf ~84) 

where 

and 

m~ = (m~ cos 0~) = rn~ (cos ~ )  

M~=NA'm~.. 
In all real eases of finite concentrations the eqns (61) and (62) have to be applied. 

4. Van't Hoff  Relationship for K(E) 

From eqns (72) and (77) we obtain 

~ = - Y~jv~. - RTEjv~ In d~. 

(85) 

(86) 
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At equilibrium, k = 0 and all &I are equilibrium values. In this case J?(E) = lIGp and eqn (86) 
yields 

RT In R?(E) = - Xjvj$. (87) 

Substitution of eqn (78) results in: 

~jVj~~=~jVj~~-CjVjS~ dE. (88) 

When we now differentiate eqn (84) with respect to t and use dnj/dl = vj, we have 

ati k-1 at =Evj@= A@. 
E,T,P 

(89) 

Introduction of the eqns (88) and (27) in the form of RT In P(O)= -Zvj$, at E=O, into 
eqn (87) finally leads to 

In R?(E) = In K@(O) + kTj A@ dE (90) 

as the integrated van’t Hoff relationship for a dipolar equilibrium in an external electric field. 
From eqn (74) we obtain by cross differentiation 

Note that the relationship between the affinity and the Mj values refers to constant c and thus 
to given values of cj. For chemi~~ly interacting species eqn (83) is rewritten as 

-~jvj~(Mj-~) dE= RTZvj In jj (92) 

Substitution of eqns (89) and (90) and of the definition f= lJj ‘j yields: 

AM=AMf)-R 

Since K@=K. f, the comparison of 

--- 
5.P.T 

with eqn (83) shows that the activity coefficient product is given by 

<= -j(AM-AmdE. 

(93) 

(94 

(95) 

(96) 

If pis independent of E, then AM= A&’ is independent of 5 (or of the concentrations of the 
reaction partners). The relationship (95) provides the basis for the analysis of electric field 
induced concentration shifts in dipolar equilibria. 

V. RATE CONSTANTS IN ELECTRIC FIELDS 

1. Dipolar Equilibria 

Since the equilibrium constant, K, of an elementary chemical reaction is a function of 
zX= P, T, E), the rate constants must depend differently on the zi-values. Consider a 
chemical reaction 0 = Cvj J, rewritten as 

k, 
I&J, - Cv,J, 

k, 
(97) 
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where the subscripts r and p refer to reactants and products, respectively. In this notation the 
stoichiometric coefficients vj = v~ and ]DI = vp are definite positive. Obviously, 

K= rI(G/c '~) Wn(er/c '~) ",--Ikel/lkrl (98) 

where kf and k r are the rate constants of the forward and reverse direction, respectively; the 
number value Ikl is equal to k divided by the respective dimension. K ~ and the rate constants 
k? and kff are related by: 

At equilibrium we have: 

and 

We now recall eqn (13): 

~ = na; , /na: ,= Ik ?l/Ik ~l. (99) 

kfIIe~ = krlqe;o (100) 

kf~I'Iy[ ," l-I~, = k ~ t I y ~ , p  . IIe;,. (101) 

kr(z~) = kr(z0) exp[ ~ AZi, r dzi /R T]. (107) 

The relations between k'~(z~) and AZ~ are analogous to the eqns (107). 
The general formalism developed here, is particularly useful for the description of electric 

field effects on the rate constants of dipolar equilibria. We may choose z o = E = 0 as a suitable 
reference and specify the eqns (107) as 

k,(E) = kf(O)exp[ ~ AMp dE/RT]  

kr(E) = kr(0)exp[ S AM, dE/R  T] (108) 

Thus the rate constants of the product formation are dependent on the dipole moment 
contributions of the products and the rate constants of the reactant formation are a function 
of the dipole moment contributions of the reactants. Whereas the field dependence of  the 
equilibrium constant only yields the difference AM of  the reaction partners, the rate constants 
provide a means to determine the dipole moments of  the reactants and, separately, those of  the 
products. 

Equations (108) were used to discuss the rate aspects of electric field-induced permeability 
changes in membranes (Neumann and Rosenheck, 1972) in the context of electric membrane 

AZi, r = ZrvrZ~, r (105) 

the contributions of the products and those of the reactants are explicitly separated. With 
these expressions and with eqn (98) we may express eqn (102) in terms of the rate coefficients 
as  

kf(zi) • kf(z0) + I (AZi,p- AZi.r) dzi (106) 
In k ~ )  = In k , ~  R T  

After term separation we obtain 

kf(zi) = kf(go) exp[ S AZi,p dzi /RT],  

1 
In K(zi) = In K(zo) + ~-~ ~. AZi dzi (102) 

where z o is a reference value. In line with eqn (98) the relation (8) is rewritten as 

A Z  i = Zjv jZ~,~ = ~,pvpZi, p - ErvrZ~, r. (103) 

By the definitions: 

AZi,p = Z~v~Zi, p (1~) 
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fusion (Neumann et al., 1980) and electric gene transfer (Neumann et al., 1982) by 
electroporation (Sugar and Neumann, 1984). 

2. Ionic Equilibria 

According to Onsager it is the dissociation rate constant, k,, of the separation of an 
ion-pair that is mainly affected by the electric field; the association rate constant, k,, 
remaining practically unchanged (Onsager, 1934). Consider the ion-pairing equilibrium: 

(L+.B-) L, L+ +B-. (109) 
k. 

The Onsager treatment provides an expression for the electric field dependence of k:. Note 
that kr = k,y(, Hj. The electric field induced increase in the conductivity of electrolytes 
usually starts non-linear, followed by a range where the relative conductivity change, 
AK/K(O), is linearly dependent on the electric field strength and finally approaches a field- 
independent saturation value. For the linear range Onsager’s theory of diluted weak 
electrolytes yields 

where u is the ionic mobility of the free ions and where lkfl= k,“/s - ‘. 
For symmetric electrolytes Yi_ = - &, = 14, eqn (110) is reduced to 

lf31e03 _ 
p,T = 8ns,.z(kT) * - Ye 

(110) 

(111) 

Note the strong dependence on the charge number. The equilibrium constant of a 1: 1 weak 
electrolyte like acetic acid is increased by an electric field of 100 kV cm- ’ to about 14%, that 
for a 2:2 electrolyte like MgSO, to about 110% (Neumann, 1981a, 1986). Compared to 
simple dipolar equilibria of small molecules where electric field induced changes in Kare very 
small, we see that the dissociation step of simple ion-pairs is associated with a relatively large 
electric field effect. If yLB z 1, then k*= k and eqns (110) and (111) apply to k. 

Following the analysis in the previous section the association step in eqn (109) must also be 
field dependent. According to eqns (108) we have now [with IEl = E and lkfl= 
kz/(dm3 mol- ’ s- ‘)I: 

(112) 

where AM: is given by 

AM: = MF. B = NAm,_TB. (113) m 
Note that in line with eqn (84) we have 

mr.B =mr., (cos S,.,). (114) 

Therefore the field dissociation effect (or second Wien effect) as a whole is also determined by 
the dipole moment of the ion-pair which can dissociate into the free ions. 

At finite electrolyte concentration the activity coefficients have to be considered. For 
eqn (109), kz = k, * y, * y,; thus 

(115) 

and from eqn (93): 

A&tz=AM,+RT(’ ‘n&yB’)<,p,T (116) 

Usually the effect of an electric field on the activity coefficient of free ions is apparent from the 
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first Wien effect, i.e. from the perturbation (and finally the destruction) of the ionic 
atmosphere by an external electric field. For example, in the case of the conductivity data on 
MgSO,~, the contribution of the first Wien effect can be quantitatively covered in terms of the 
Wilson theory (Schallreuter, 1982). 

Since K= Ik l/Ik,I, ionic equilibria of the type (109) are characterized by 

( 0 ! n / ~  AM~ ° f`91n _~ 
`9E ,le,r = ~ RT  \ ~ - J ~ , e , r  (117) 

where ~ is given by ~ =  YL" JTa/~L. B at a field strength E. At very high field strengths the ionic 
atmosphere screening may be reduced to a large extent such that ~ =  1; at very diluted 
solutions we may set ~=  1. In both cases the approximation (̀ 9 In ~/`9E)e,~,,r = 0 may be used. 

3. Polyelectrolytes 

The second Wien effect is particularly large in linear polyelectrolytes (e.g. Sch6del et al., 
1958). Compared to simple electrolytes the linear range of the conductivity increase with 
increasing electric fields starts already at relatively low field strengths (5-10 kV cm-1). 
Because of the rather extended linear region Onsager's equation for the dissociation field 
effect is frequently used as the basis for a semi-quantitative discussion of the second Wien 
effect in polyelectrolytes. 

Denoting by B n the polyion and by L the counterions, the large mass difference justifies the 
approximation u s <~ u L for small observation times, n being the degree of polymerization. The 
counterions which interact in multiple ion pair equilibria with the fixed charges of the 
polyion experience a larger attraction potential than that arising from a single charged 
residue. On the other hand, the accumulation of the counterions lowers the overall attraction 
potential because repulsive contributions are superimposed. It should also be mentioned 
that counterion accumulation creates a lower (local) dielectric constant as compared to that 
of the bulk aqueous solution. 

If now the diffuse counterion binding is viewed in terms of an effective charge ~l~ffeo we may 
apply eqn (117) in the suggestive form 

,9 lnlkffl' ~ :_(~Leo)~l~gffle o (118) 
`gE ]e,r 8nSog(k T) 2 

The analysis of electric conductivity relaxations of the linear polyelectrolyte poly- 
(riboadenylate, K +) according to eqn (118) at 293 K yields an effective charge of about - 6 ,  
suggesting an end effect for the dissociation of K+-ions from the inner counterion 
atmosphere (Schallreuter, 1982). The dissociation field effect in polyelectrolytes is generally 
larger by a factor of about l0 to 100 as compared to simple electrolytes. Thus the values for 
the relative displacements of the distribution constant, 6K/K(O)=`9 In K/SE, in poly- 
electrolytes for the same conditions that have been used for simple 1:1 electrolytes (see 
abovdI, are in the range of 1.4 for E=  l04 V cm- 1 and 14 for E =  10 s V cm- 1. We conclude 
from these estimates, that already for moderately large changes in the field intensity the 
degree of counterion binding may change to a large extent. Since usually the conformation 
and the degree of stretching of flexible polyelectrolytes depends on counterion binding, 
external electric field changes may readily affect structural changes. Due to the efficiency of 
dissociation field effects in polyelectrolytes, major structural changes are induced by already 
moderately high electric fields. As an additional remark, the decrease in the number of 
counterions near the polyion in the presence of high electric fields, will also decrease the 
counterion polarization and thus the magnitude of the induced dipole moment. This, in turn, 
will change the reaction moment of chemical transformations involving induced dipoles. In 
any case, macromolecular complexes in which polyelectrolytic subunits are associated 
decrease in stability with increasing electric fields. 

VI. REACTION MOMENT AND ELECTRIC-CHEMICAL MECHANISM 

The reaction dipole moment AM of a dipolar equilibrium may be obtained from the 
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measurement of continuum properties such as the dielectric permittivity as well as from 
direct monitoring of concentration shifts produced by an externally applied electric field. In 
both approaches it is primarily the chemical part of the total polarization that is aimed at. 
However, the chemical processes are intimately connected with the physical processes of 
polarization and dipole rotation. In the case of small molecules the orientational relaxations 
are usually rapid compared to the diffusion limited chemical reactions. When, however, 
macromolecular structures are involved, the rotational processes of the macromolecular 
dipoles may control a major part of the chemical relaxations (Schallreutcr, 1982; Neumann et 
al., 1983, 1984). 

It is known that in a random distribution of permanent dipolar or induced dipolar reaction 
partners the (local) extent of the electric field effect depends on the orientation of the 
individual dipoles relative to the field direction (Schwarz, 1967; DeMaeyer, 1969; DeMaeyer 
and Persoons, 1974). Therefore the measured bulk effects always represent orientational 
averages. In this Context it is stressed that the total macroscopic polarization, M, caused by 
an electric field in a random distribution of particles, is a statistical average which results 
from the polarizing and orienting action of the field vector against the randomizing thermal 
agitations (B6ttcher, 1973). 

It is recalled from eqn (61) that 

M =  ( M )  = NA Y~jnj(m.i cos ~ j~ = NA~jnjm j. (119) 

Whereas cqn (119) expresses M in t c ~ s  of the average contributions of the individual 
molecular moments m j, the continuum approach to M represents the total moment in t c ~ s  
of an overall macroscopic dielectric ~ i t t i v i t y  e. The fundamental relationship between the 
absolute amounts M and E is: 

M = ~o(~ - 1) VE. (120) 

(The vector M is in the same direction as the field vector E.) When cqn (120) is applied as a 
general expression for homogeneous dielectrics in electric fields, the ~ i t t i v i t y  tensor is an 
overall quantity that de~nds  on the intensive variables z (= T, P, E). If, in addition, 
chemicfl transfo~ations are caused by changes in z, then ~ also dc~nds on the extent of 
reaction ~. In this manner "non-lineafities" are hidden in ~ (T, P, E, ~). 

1. Reaction Moments  from Dielectric Data 

The chemical reaction moment AM refers to that part of the total moment M which 
changes in the course of a chemical-co~ormational transition. Thus from eqn (120) we have 

AM ~ ~ 

which is the continuum expression for AM at constant total volume ~twccn the capacitor 
plates; a condition usually realized at low field intensities and in dilute solutions. When 
volume changes occur, clcctrostfiction t c ~ s  must be cxpli~tly considered (Eigcn and 
DeMacycr, 1963). 

Under isothc~al-isobafic-isochoric conditions, M is solely a function of ~ and E. The 
dependence on E at constant ~ defines a (noda l )  physical part whereas the dc~ndence of M 
on ~ at constant E may ~ referred to as the chemical contribution to a change in M. The field 
dependence of the total moment may then be expressed as (Bergmann et al., 1963): 

~ ~ + ~ 

At equilib~u~ in the presence of E, the characte~stic (dielectro-) chemical a~nity ~ of 
dipolar systems is ~ r o  and d~ = 0. Hence the t e ~  ( 0 ~ / 0 ~ , ~  can be calculated. We finally 
obtain 

~ , ~  - R T  (123) 
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At equilibrium there is no further change of M in the field E. Therefore (dM/~E)v,~= o is a 
constant at a given field strength. 

From eqn (120) we obtain the physical term: 

= I~(OM'~ = ( 0 e ~  (124) 

The chemical contribution is defined by 

~8,eh> = (08 ~ i ( 0 ~  ( 0 ~  

Substitutio~ of eq~s (121) aaa (123) iato (125) lea~s to (~er~ann et al,, 1963): 

As(=h) = p i ( A ~  2. (126) 
eoRT 

Thus the chemi~l  part of a change in M by E may be derived from the electric field 
d e ~ n d e n ~  of dielectric relaxation curves. 

2. Permanent and Induced Dipole Moments 
Two types of polarization processes contribute to the total macroscopic polarization. 

M = M¢~)(Ein t) + M(p)(Eair). (127) 

According to Onsager the induced moment term M¢,) is determined by the internal or local 
field Ein t whereas the permanent dipole term M(p~ is related to the directing field Edi r, 
orienting the permanent dipoles p. The combination of eqns (127) and (120) requires that the 
two different field vectors must be expressed in terms of the measured (Maxwell) field. The 
calculations of the terms Mt~ and M(p) as functions of Ein t and Edi r usually are 
approximations. The final expressions may be written in terms of conversion factors, e.g. 
g-factors (Petedin and Stuart, 1939). The factors are a function of particle anisotropies as well 
as of the properties of the medium in which the particles are embedded (polar, non-polar, gas 
phase or fluid phase). 

(a) Individual dipole moments 
In line with eqn (127) the molecular dipole moments m may generally be expressed as 

m = m(~) + p (128) 

where m(~) represents the induced moment and p is the permanent dipole moment. 
In anisotropic molecules m is the vector sum of all dipolar contributions. The calculations 

are readily performed for ellipsoidal molecules and for simple geometries like a sphere, long 
cylinders or flat discs (Brttcher, 1973). The total moment of an ellipsoid where the main 
polarization axes are the (half-)axes q = a, b, c, is given by the vector sum: m = mo + m~ + m c. 

The dipole moment component along the axis q is expressed analogous to eqn (128) as 

mq = m ~  + p~. (129) 

The induced dipole moment is given by 

m¢~ = ~,/(Eiat),~ (130) 
where a~ is the component of the polarizability tensor ~ in the direction of the q-axis and 
(Eint) ~ is the internal field in q-direction. When ~ is independent of E, then m(~) is obviously 
linearly dependent on E. The polarizability tensor reflecting charge displaceability, may 
depend on E. Thus a more general definition of the polarizability is given by: 

~=(~m,~,~ (131) 
\dElhi/E--, 0" 
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As outlined previously only that component (m)l I of m which is parallel to the field 
contributes to the total polarization. Thus for the q-axis we have 

(mo)ll = m~ cos ,t~ (I 32) 

where ~ is the angle between the q-axis and the electric field. 
The actual field-parallel contribution of m can be calculated from Onsager's concepts of 

the cavity field and of the reaction field (Onsager. 1936; B6ttcher, 1973). At first, eqn (I 32) is 
specified as 

(mq) I[ = ~t COS ~q(Eint) q + pq COS 6tq (133) 

where zq = :t cos ,gq. The internal field is given by 

(Eint)q = Oq~tqE c o s  Oq. (134)  

For isotropic particles where the polarizability is equal in all directions the internal field is 
simply 

E~,, = 0~/E. (135) 

The factor ~ represents the reaction field contribution of permanent dipoles according to 

0,~ = [ 1 +f~(l -- ~f~) -~ (p,~)] (1 36) 

wheref~ is the reaction field factor and (pq) is the average contribution of the permanent 
dipoles. For non-polar particles (where pq = 0), 0~ = 1 and (Eint) ~ = ~/aE cos ~ .  Obviously, the 
total value of the field-parallel components is (m)II = ~(mq)ll" In a system of statistically 
distributed, mobile dipolar species, the total field-parallel contribution to the polarization is 
the statistical average over. the cos 8-projections on the field vector. 

For the sake of transparentness we shall confine the further analysis to uniaxial anisotropic 
particles J, i.e. to uniaxial dipole moments m~. For this case eqns (129) and (133) read, 
respectively, 

and 

mj = ~J(Ein,) j d- pj (137) 

(m~) II = otfi~jgjE c o s  2 ~j  --~ p j  c o s  ~j.  

The effective average contribution to M is finally given by 

mj = ((m~)It ) = ~J0fl~ E(c°s2 9~) + pj(cos ~qj). 

(b) Total polarization 

In a mixture of Nj molecules of type J, the total moment is: 

(138) 

(139) 

M = Y,~N~mj = NAZjn~m ~ 

= ~jN~(~t~(Ei,t)j) + EjN~(pj). (140) 

In order to reduce the complexity the two contributions to M, the induced moment M ~  and 
the permanent moment M~p~ will be treated separately. Applying eqn (139) to (140) we obtain 

and 

M~ = ~:~N~jg~E(cos 2 ~ )  (141) 

M(p) = *)~jNjpj(cos ~j) (142) 

where the summation is over all particle types. The average values (cos 2 ~gj) and (cos ~j) are 
thermal averages under the polarizing and orienting action of the electric field; they are 
therefore dependent on E, on the molecular shape and size and on temperature. 
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(i) Induced moment. In the absence of permanent dipoles (i.e. ~ = 1) the absolute value Mt~ ) 
of the total induced moment Mt~) is derived from eqn (141): 

M(ot) = ~jNj~j,~j(COS 2 ~j) E. (143) 

In isotropic particles the total induced moment is given by: 

~ )  = ~j~ ,~jE.  ( I~ )  

In the case of uniaxial anisotropic molecules the t h e ~ a l  average (cos 2 ~j) may ~ expressed 
as a function of the orientation factor 

~j = ~[3(cos 2 $j) - 1]. (145) 

This factor can be directly obtained from electro-optic data, for instance from linear 
dichroism (Kuhn et al., 1939) and bireffingence (Peterlin and Stuart, 1939; see also O'Konski 
et al., 1959). The orientation can also be expressed in t e ~ s  of the dipole moments involved. 
Since from eqn (145), (cos 2 ~ j )=  ~1 + 2~), substitution into eqn (143) yields: 

~ )  = }Ej~afl~(1 + 2Oj)E. (146) 

Two limiting cases are of practical importance. The low-field condition m~E~ kT means 
negligible orientation in the field direction, i.e. ~ ~ 1. Hence eqn (146) reduces to 

M(~) = } Z j ~  ~# ~E. (147) 

At high fields when ~ 1, corresponding to total alignment of the induced moments in the 
field direction, we obtain: 

~ = ~ j ~ g j E .  (148) 

Should the induced moment ~ saturated at high fields, i.e. m{~)=m~, then for ~ 1, 

~,),~ = Z~(m~)g. (149) 

In this case the indued  moment is inde~ndent of the field strength: dielectric saturation. 

(ii) Permanent moment. For freely mobile permanent dipoles pj the thermal average of 
cos #~ in 

M(p) = ~~,jNjpj(cos ~j) (150) 

is given by the Langevin function L[rj] of the directing field (Edit)j, where 

(Edit) j : ~/jE. ( 151 ) 

Since rj = pfljE/(k T) we have 

rn~.Eq 
(cos # j ) = L [ ~ k - ~  [. (152) 

~ 

Note that L[rj] =coth rj-rj-1. Introducing eqn (152) into (142) leads to 

Mtv ) = Z jNjp jL[p fl jE/k T] . (153) 

At low field strengths (r~ ~ 1), Lira] = #~p~E/(3k~ and 

1 z 
~ P )  -- 3 ~  ~J~PJ ~jE. (154) 

At high fields ( r ~  1), Lira] = 1 and eqn (153) reduces to 

~p ,  = zj~jp~. (~55) 

From eqns (147) and (154) it is seen that at low field strengths both the contributions of the 
induced moment ~ )  and the ~ a n e n t  dipole moment ~ )  are linear in E; compare the 
continuum expression for M in eqn (120). 
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(C) Form factors and q-factors 

The conversion factors 0 and ~ contain the so-called form factors which account for shape- 
anisotropies. In an ellipsoidal molecule the form factors (sometimes called depolarizing 
factors which are the components of the depolarizing tensor) of the main polarization axes 
are A~ = Aa, An, A c. In line with the vectorial character of the internal and directing fields the 
0-factors of anisotropic molecules are tensors (Brttcher, 1973). If the environment of the 
molecules (which are characterized by the polarizability tensor ~ and the permanent dipole 
moment p), can be considered as non-polar and the overall dielectric permittivity is 5, the 
q-factor of the q-axis and the polarizability, respectively, are: 

5{I + C(~)~- I]~} 
° '=  5+ [(5~),-5]A, (156) 

(5~o)q-- 1 
~ = 5° V~ 1 + [ ( ~ ) ~ -  l IAr '  (157) 

where V~=(4/3)n. abc is the molecular volume of the ellipsoidal molecules J with the 
half-axes q = a, b, c. It is stressed that the value of 5 in the eqns (156) and (157) is the effective 
dielectric permittivity of the total system. The quantity 5~ may be considered as the 
"molecular permittivity" at frequencies of the polarizing field, where the permanent dipoles 
do not contribute any more to the total polarization; (5oo)~ is the q-component of the 
permittivity tensor 5~. To facilitate comparison with familiar representations of dielectrics 
note that the reaction field factor of the q-axis is given by 

1 Aq(1-Aq)(e-1)  
L-5oV ~ 5+(1-5).~q (158) 

For particular geometries the form factors are analytically expressed in a simple form. For 
very long cylinders the depolarizing factor along the long axis is zero; thus O = 1. Therefore 
the local field which affects counterion polarization in linear polyelectrolytes is equal to the 
externally applied electric field. Another type of shape which is relevant for biological 
systems is the flat disc; flat patches of biological membranes may be described in terms of the 
disc geometry. The depolarizing factor for the polarization direction along the disc-normal, 
i.e. perpendicular to the disc plane is A± = 1; therefore 0 = 1/e. 

The form factor of spherical isotropic systems is Aq = 1/3. Thus for polarizable dipolar 
spheres (with (e~)j and l~j) in a non-polar medium of the effective bulk permittivity e, we 
obtain from eqns (156) and (157): 

e[(5~°b+2] (159) 
0J = 2~ +(5oo) j 

Substituting Aq = 1/3 into eqn (157), we obtain the familiar Clausius-Mosotti  equation: 

generally valid at high frequencies of the polarizing electric field where permanent dipoles do 
not contribute to the polarization; V~ is the "volume of the particle J". 

For spherical molecules at the same conditions 

1 2(5-1) 
f~-- 35oV.~ 2~+ 1 (161) 

In a pure condensed medium of non-polar molecules we have 5® = 5. Isotropic spheres are 
characterized by 0 = (5 + 2)/3, and 

~ = 350 V ~ -  1)/(e + 2). (162) 
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In the case of a pure liquid of  non-polar izable  dipoles (p) we have ~:,,, = 1; hence for spherical 
pe rmanen t  point  dipoles: 

,q = 3~:/(2~: + 1 ). (163) 

For  spherical molecules in the gas phase: 

.q = 0: + 2)/3. (164) 

The ,q-factors for the various specific cases are compiled in Table  1. 

TAIq.E 1. CONVERSION FACTORS {y, ~)) FOR SPHERI( AL MOLE(;I~LI~S, RI~LATING [NTI~RNAL FII~I.D feint) , DIRECTING 
F~;LD (Ed~J AYe) FR6~L~(:H F'~L~ (E~ ~ E,~,) TO TH~ (~ASt ;R~)  MAXW~t.L F~Lt~ (E) 

I. Pure liquids (~:) q Eio~ E~i , 

;;(;:, + 2) 
(a) polarizable polar spheres [Onsager] (p, ~:.,, ;:) 2~: + ~. 

~;+2 
(b} polarizable non-polar spheres (p = O, ~;,,, = ~:} 3 

3~: 
(c) polar non-polarizable spheres (p, ~:,. = 1, ~;) 2~: + 1 

3~: 
(d) polarizable permanent dipoles (Fr6hlich, p = p~(~;... + 2)/3; ~;) 2e + ~ ~ 

~E~ 

¢/E!~ 

¢/E 

~E 

9E 

II. Molecules [pj, (e..~)~] diluted g~ (Ei.t) j (Eai,) ~ 

(1) in non-polar fluid medium (~:) 
(a) polarizable polar spheres [p~, (~r,.)~] "~ 

; (b) polarizable non-polar spheres [p~=0, (e.,).~, e] 

(c) polar non-polarizable spheres [p~, (e~)~ = 1 ; e] 

(2) in polar fluid medium (e) (Fr6hlich, Kirkwood, o~-factor), 
pj = (pj)a[(g ~)j + 2]/3 

(3) in gas phase (e), polar polarizable spheres [(pi)~, (e~)~, e] 

e[(er~)~ + 2] 
2~ + (e ~.)j 

3e 
2e+ 1 

3e 
2e+(e~)~ 

(~) j  + 2 
3 

,~ f l j E  i~ 

~q jE ~ 

~E 

o~E 

.q ~E 

OjE II 9jE 

In the case of isotropic polarization, E II = E; for uniaxial anisotropic polarizability E, = E cos 0j where La~ is the 
angle between the dipole axis and E. e, total dielectric permittivity; e~, dielectric permittivity of the induced (high 
frequency) polarization. The factor ~ refers to the permanent dipoles' contribution of E~,~; Oj = 1 +f~(l -~ f~ )  - 1(p~) 
where f~ is the reaction field factor and ~ the polarizability tensor of the molecule j [if p~ = 0 or (p j ) =  0, .~ = 1]. 

3. Reaction Moment and Equilibrium Constant 

When changes in the concentration of the reaction partners can be measured directly, say 
by an optical method, the analysis of equilibrium properties is based on the eqns (14) and 
(93). The electric field dependence of the apparent equilibrium constant (concentration ratio) 
is given by 

K ( E )  = K(O)e ~' (165) 

where 

x = AM dE. (166) 

It is frequently observed that the reaction moment AM is dominated either by the induced 
dipole term M~) or by the permanent dipole term M~p). It is therefore useful to follow 
eqn (127) and to write AM also in two terms: 

AM = AM~,) + AM~p), (167) 
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corresponding to 

where 

x = x~,) + xtp~ (168) 

1 
xt~' = ~ T  5 AM~ dE (169) 

1 
X(p) = ~ ~ am(p) dE. (170) 

The investigation of chemical processes in solutions is preferably performed under the 
condition of higher dilution such that the individual reaction partners can be considered 
independent and the thermodynamic activity coefficients are either constant or equal to one. 
For chemical and physical processes in the presence of an applied electric field the solvent 
may then be treated as an infinite fluid dielectric in which the molecules or particles are 
immersed. On a microscopic scale, however, the solvent molecules are more or less densely 
packed, probably forming dynamic fluctuating dusters. The space in between the molecules 
and dusters certainly is vacuum. Even if the internal and directing fields which actually work 
on the molecules are homogeneous, the local Maxwell field in the vicinity of the molecules is 
inhomogeneous. Therefore, the classical relations between E~, t and Ed~ ~ and the macroscopic 
average field (Maxwell field) of real molecular dielectrics are only approximations, covering 
the homogeneous part of the Maxwell field, E. The approximations involve the assumption 
that the bulk of the dielectric can be represented by an effective average permittivity (e), being 
a constant over the dielectric. 

(a) Non-polar polarizable spheres 
In the case of pure induced polarization the solute molecules may be approximated as 

polarizable spheres associated with a "molecular" permittivity (e~o)j and l~j =0. For diluted 
solutions the total permittivity of the solution e is practically that of the non-polar solvent. 

For particles of uniaxial anisotropic polarizability 0t~, eqns (120) and (141) for M = Mt~ ) are 
combined with eqn (146). Since N~ = Na.n ~, the resulting expression reads: 

eo(e - 1) V = ½NA ~,j~IjO~j( 1 + 2(~ j)g j. (171) 
The appropriate expressions ofg~ and 0t~ are obtained from eqns (161) and (162), respectively. 
Assuming now that all (e oo)j are equal such that for all J we have (e~)~ = e®, eqn (l 71) may be 
formulated for the low-field limiting case q ~ 0  as: 

Co(e- 1) ~2e+e~° ~Ejnfltj(e~ o N A  +2). (172) 

In this way the quantities which change upon a chemical transformation, the total 
permittivity e and the molar quantities n~, are separated. Hence the differentiation with 
respect to the reaction variable ~ is readily performed separately at both sides of the equation. 
Using dn/d~ = v~ we finally obtain: 

( Oe~ E~v fltj(e~o +2). (173) NA /3 2 

~]E,v - 3 ~ee o 2e 2 + e~ 

Substitution of eqn (173) into (121) leads to: 

AMt~) _ N A 3e 2 g~ + 2 
3 2g 2 +e~o Ejllj~j - - ~  E. (174) 

Insertion into (169) and integration yields 

3e2 E'vJ°ti(e~2)E2. (175) 
x ~ ) -  2e2+e~ ° 6kT 
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For isotropic polarizable spheres eqn (144) applies and: 

x~,~- 2 e ~ + ~  2kT  E~" (176) 

In the limiting case of saturated induced dipole moments, eqn (149) is used to obtain the 
reaction moment: 

AM~ = N~Z~v j(m,)~ (177) 

and 

1 
x~ = - ~  F.~v ~(m~)iE. (178) 

Inspecting the eqns (175) to (178) we realize that an induced dipole mechanism is associated 
with a quadratic dependence of the x-quantity on the field strength. The temperature 
dependence is linear in lIT. At high field strengths saturation may occur and a transition to a 
linear dependence on E /T  will be observed. 

(b) Polar non-polarizable spheres 

The special case of uniaxial non-polarizable point dipoles refers to (e~)j= 1 and l ~  1 in 
the general expressions. The solvent is non-polar; the total permittivity is e. 

The combination of eqns (149) and (121) only leads to general analytical forms of (Oe/O~)v,e 
and of the xtv~-factor if the 0~factors were independent of ~. Simple analytical expressions can 
only be derived for the limiting cases of small and large field strengths, respectively. 

At low field strengths where eqn (154) applies we derive from the general eqn (120) that: 

NA 2 
eo(e- 1)V = 3 ~  Z~njp~ 0i. 

From eqn (163) we have: 

0i = 0 = 3e/(2e + 1). 

Term separation in eqn (179) then leads to: 

eo(e -1)2e+l  N A 1 E 2 
3~ - ~ 3kT  ~n~p~. 

Differentiation with respect to ¢ results in 

{~e~ N A 3e 2 Xjvlpf 
~, ] ~  v ,e-eoV2e 2+1 3kT " 

Substitution into (6.3) yields 

(179) 

(18o) 

(181) 

3e 2 Ejvjpf E. (182) 
AMtv)=NA 2e2 + I 3kT 

Substitution into eqn (170) and integration leads to 

3e 2 ~,jvjp~ E2" (183) 
xW) -- 2e 2 + 1 6(kT) 2 

For the high field strength range where eqn (155) applies we obtain for the orientational 
saturation: 

AM~ = NA~jv~p ~ (184) 

1 
X s = ~ EjvjpjE.  (185) 

Thus, also a ~rmanent  dipole mechanism may ~ characterized by a transition of the 
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x-quantity from a quadratic field strength dependence to a linear one; concomitant with the 
6 . • 

E-dependence the temperature variation changes from T -e to T -x. Therefore the 
temperature dependence of equilibrium and rate constants may be used to differentiate 
between permanent and induced moments. The assumption of constant e is inherent in all 
integrations according to eqns (169) and (170). The e-values refer to e in the presence of E. 

(c) Polar polarizable spheres (Onsager) 
Real molecules are always polarizable. When these particles have a permanent dipole 

moment (p~) they are characterized by the set (pj, ~j); ~ may be expressed in terms of the 
dielectric permittivity (e~)j of the induced high frequency polarization (by the Clausius- 
Mosotti equation). 

In the case of isotropic polarizabilities and uniaxial permanent dipoles, the fields which 
actually work on the molecules are given by eqns (135) and (151); thus 

(Ein~j = ~fljE 

= [1 +f~(1 -- ~jfj) - x (ps)]gjE. (186) 

For spherical particle geometry the factors 0~, ~j andf~ are obtained from eqns (159)-(161), 
respectively. The low-field approximation of (p j) is given by 

(p~) =p~(cos 0~)=pfojE/(3kT). (187) 

Equation (140) may now be written as: 

n = NA { ~nj~(Eint) ~ + E~n~(~) }. (188) 

For the low-field range we substitute eqns (186) and (187) into (188). Using now eqns (159) 
to (161) for #~, ~ andS, respectively, together with the approximation that all (e~)~ are equal, 
i.e. (e~b = e~, we obtain the familiar Onsager (1936) equation for pure dipole liquids in the 
suggestive f o ~  

~0(e-e~)(2e+~)  NA E~n,p~ (e~ f 2) ~ 
3e - ~ 3kT ~ " (189) 

Differentiation with res~ct  to ~ yields 

~ v,E=e0V282+e~ 3kT ~ (190) 

and applying eqn (121) results in 

~M~N~ 2~ +e~ 3kT 

With eqn (166) the equilibNum shift by small fields is descNbed by 

3"~ E ' v f l ( ~ ) ' E ~ .  (192, x - Z~ + ~  ~ k ~  

In a similar manner we may derive the expressions of AM and x for anisotropic polarizable 
~ a n e n t  dipoles, interacting in non-polar media. Here again, general expressions in t e ~ s  
of the Langevin function cannot ~ derived in closed analytical form. 

The Onsager approach is adequate for non-polar media. For polar liquids like water which 
is of particular interest for biochemical processes, a modified model develo~d by Fr6hlich 
(1958) appears to be more adequate (Grant et al., 1978). 

4. Reactions in Polar Media 
According to FrShlich, a pure condensed dielectric consisting of polarizable molecules 

with a permanent dipole moment (p) may be formally represented by a continuum 
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permittivity 80o (accounting for the "molecular" polarizability, "embedded" in the bulk 
continuum with the effective permittivity 8). Thus: 

M = 8o(80o - 1) VE + NA~,jnj(pj ) (193) 

where the induced part is formally separated from the permanent dipole moment 
contribution. In Frrhlieh's version of the Onsager model the spherical dipoles have the 
effective dipole moment 

(8~)j + 2 (194) 
PJ ---- (PJ)~; 3 

where (p~)~ is the dipole moment of species J in the gas phase. The actual field working as the 
directing field is the Fr6hlich field EF which is given by 

(EF)j = gjE (195 ) 

where 

g~ = 38/(28 + (8~)~). (196) 

In a medium of polar molecules, specific intermolecular interactions such as, for instance, 
H-bridges in water may occur; they are accounted for by the Kirkwood correlation factor gK. 

The average contribution of the "Frrhlich-dipoles" is analogous to eqn (187): 

(p  j )  = p j(gK)~L[p f l  ~E/k T]. (197) 

The low-field approximation reads 

(p  ~) = p f(~lK)~ ~E/( 3k T) (198) 

and the limiting case of orientational saturation has an average moment contribution of 

(P)s =P~(g~)j. (199) 

(a) Kirkwood-Fri~hlich equation 

For pure liquids where all (8~)~=8~, the combination of the eqns (120), (193), (196) and 
(198) leads to the familiar Kirkwood-Frrhlich equation, written here in the suggestive form 
of the separated variables 8 and n~ 

8o(8--80o) (28 + 8~)NALr,~nI(g~)j(P~)~(8~;2) 2 
38 - ~ 3 k T  - -  . (200) 

Since for a pure liquid 2 2 ~,jnj(gt)a(pj)a = n~ltpa, eqn (200) is useful for the determination of 
dipole moments of polar liquids by dielectric measurements. The gr-factor must be 
calculated. 

(b) Ion-pair equilibria in aqueous solution 

Chemical equilibria such as ion-pair formation of electrolytes in aqueous solution where 
the hydrated ion-pairs behave as polarizable dipoles, may be treated in terms of the Frfhlich 
formalism. 

If the (8®)j-values of the individual ions and ion-pairs are basically determined by the 
hydration shells we may use the approximation (8~)j=8oo. In water 8~=5(+ 1) at 20°C 
(Grant et al., 1978). 

Since the H-bond coordination number of a hydrated ion or ion-pair is not known, 
plausibility arguments of a symmetric interaction pattern with the bulk water may justify the 
approximation (gK)~ = 1. 

The low-field limiting case for ion-pair equilibria in water may be derived from eqn (200): 

80(8 - 8°0) (28 + 8~) _ N A Ejnjpf  (201) 
38 V 3kT  
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where the effective dipole moment p~ is given by eqn (194). Substitution of the expression 

( d e )  N A 382 ~,jvjpf (202) 
~ v , r=eoV2e2+e~ 3kT 

into (121) yields the reaction moment 

3e2 EvjP2 E. (203) 
A M = N A  2e2+e2~ 3kT 

The use of eqn (166) and integration result in the x-factor of ion-pair equilibrium 
displacements at low field strengths: 

3e 2 E~v~pf E2" (204) 
x - 2e2 +e~ 6(k7)2 

At high field strengths that lead to orientational saturation, (p~> = p~; the combination of the 
eqns (120) and (193) yield: 

eo(e - ~ ~) VE = NA YTn ~p j (205) 

A M  eoVE - -  = NAE~v~p~ loll (206) 

x = Ejv~p~/(kT). (207) 

Due to eqn (194), eqns (200) and (201) are identical to (189) and eqns (202) and (203) are 
identical to eqns (190) to (192), respectively. On the basis ofeqn (204) the dipole moments of 
ion-pairs formed by Mg 2 ÷ and SO~- in aqueous solution have been estimated (Schallreuter, 
1982; Neumann et al., 1983, 1984). 

5. Induced Dipole Moments in Polyionic Macromolecules 

Large induced dipole moments may result from atomic polarization. When the 
polarization is caused by displacements of ionic groups within macromolecules the 
conformational folding of the polymer structure may restrict the local mobility of the charged 
groups and dipolar ion-pairs. Restricted conformational displaceability may then lead to a 
saturatable induced dipole moment (Tsuji and Neumann, 1983). Consider a dipolar ion-pair 
between a positively charged (lysine) group and a negatively charged (glutamic acid) group in 
a protein. An external electric field may induce an increase, fr, of the distance vector r 
between the charge centres of the ion-pair. When this protein is part of a membrane structure, 
then the field-induced distance change fr may not only lead to an increase in the scalar 
amount of the dipole moment, but may also be accompanied by a rotation of the dipole 
vector: 

According to this model an electric field E increases the dipole moment of an ion-pair from 
a value m(0)--I 1 eoro at E = 0  to a value m(E)=lz ~ eor, with Irl > Irol, The distance increase 
corresponds to an induced dipole moment 

mt~) = m(r) - m(ro) = I~l e o fir = c t E i n  t. (208) 

Due to conformational restrictions of (membrane) proteins, it is likely that a major 
unidirectional charge displacement may only occur along the membrane normal and the 
induced dipole moment mt~) will reach a saturation value m,. 

VII. MEASUREMENTS OF ELECTRIC FIELD EFFECTS 

The majority of biological processes involves ionic species in aqueous environments. 
Furthermore, the structural stability of many biopolymer systems requires a finite ionic 
strength. Thus, electric field effects in these systems have to be studied in conducting 
solutions and suspension. Traditionally, dielectric measurements, conductivity relaxations 
and electro-optic techniques were used to study electric field effects on chemical reactions 

JPB 47:3-E 
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(Eigen and DeMaeyer, 1963; Bergmann et al., 1963). The analysis of field induced changes is 
particularly straightforward for rectangular pulses. However, if the system is simple and only 
one process occurs or if the field-induced changes are long-lived and relax with time 
constants large compared to the field duration, Joule heating temperature jump 
spectrometers may be used (Neumann and Katchalsky, 1972). 

In detail, the relaxation kinetic methods provide the most powerful approach to chemical 
field effects. The quantitative analysis of relaxation kinetic data is appreciably simplified 
when the z-induced changes are small, such that 

A ,~ R T. (209) 

In terms of eqn (97) the reaction rate v is 

v = v e - v r (21 O) 

where the rates of product and reactant formation, respectively, are given by 

vf = Ik{~[ Har ~', /)r = [k~[ IIa~p. (211) 

(At equilibrium, 6=0, thus Op = f, and a~= ~.) Equation (210) is now rewritten as: 

v = vf[1 - Vr/Vf] = V~[(Vf/Vr) -- 1]. (212) 

With Q°=l- la~, / I Ia~,  K'~= H~,,/H~i~, and [from eqn (28)] A = R T I n ( K ~ / Q  ~) we obtain: 

v = vf(1 - e-  ~a/~ T)) = v,(eam r _ 1). (213) 

Near equilibrium where A ¢ R T ,  we may set vf=~3f and v~=~,. Series expansion of the 
exponentials in eqn (213) and neglect of higher order terms result in an expression for the 
near-equilibrium chemical rate: 

A A 
Oeq =~r ~ T  ==/~f RT" (214) 

1. Chemical Relaxations 

As seen in eqn (214) the chemical reaction rate is linearly dependent on the affinity. Close 
to equilibrium the z-induced changes in the extent of the reaction, ~, also depend linearly on 
z. Thus, for small perturbations: 

f \ ~ 
6 ~ = t  ~z , ) : ,  : ' 6z,= ~(z ,)-  ~,e, <~ ~,o,. (215) 

With eqn (11) the chemical relaxation condition in electric fields in terms of the concentration 
of the reaction partner J is: 

6cj= vjF AM E (216) 
R T  

where Ocj ~ c~O) must hold. The definition (12) for the equilibrium at E is rewritten as 

1 
. F = E~v~/?j (217) 

If the thermodynamic activity coefficients depend on the extent of reaction, then the quantity 
F must be replaced by the term F*; see eqn (38). Therefore the amplitude of the E-induced 
concentration shift is: 

AM 
(6cj)~ = vj~* ~ E. (218) 

The response to a step perturbation is a relaxation spectrum containing exponentials of time, 
t: 

6¢(t) = E~(g~)~.,e-'/', (219) 
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where (6~)®.~ is the amplitude and z~ is the relaxation time, respectively, of the relaxation 
mode q. 

An elementary step is always described by: 

6cs(t)=(6c~)®e-'n. (220) 

This expression is generally applicable for intramolecuIar elementary steps; for bimolecular 
steps provided that the perturbation is small [6~ 4 ~,,f or 6c~ ~ (c~),,f]. For practical details 
consult references (Eigen and DeMaeyer, 1963; Yapel and Lumry, 1971; Jovin, 1976). 

Recent theoretical developments offer a simple formalism to evaluate time constants and 
amplitudes in terms of total concentrations, c~ °, rather than equilibrium concentrations, ~ 
(Winkler-Oswatitsch and Eigen, 1979; Neumann and Chang, 1976; Nolte and Neumann, 
1979). In a kinetic titration according to L + B= LB where for instance cn ° is kept constant 
and cz ° is varied, the amplitude factor ~ is zero at c~ = 0, passes then through a maximum at 
(cz°)l~,,~ = cn ° + K and finally approaches zero again. Provided the conditions can be chosen 
such that K<  cn °, also the relaxation time passes through a maximum; at (cz°)zm,~ = ca ° - K .  
We may therefore use two maxima and determine the value of K as well as that of the total 
number of binding sites participating in the relaxation process by: 

K=  [(c~°)r..,- (c~ °) .... ]/2 (221) 

cg = [(cz°)r,., + (cz °) .... ]/2. 

In Table 2 the key relations for the elementary chemical reactions are summarized. 

T ~ L ~  2. R~LAXA~ON PA~At~E~S O~ E/ .~/a~cr~v C~t~/~nc~e RF~Acr]o~s ( K ~ C  T]XRA~Ot~) 

(222) 

Reaction Relaxation time Amplitude factor 

k, 1 
L + B  . ". L B  "c= 

k-, k ,  x/(c°~ + con + K) ~ - 4c~con 
1 } 4c°~con _] 1/2 

r = ~  ~ (c~+con+hO~J 

1 
con = const., c~°=0 *o - ~t~'-t "c° +K) F ° = 0  

],,2 
con = const., (cz°),. z= - 2 k l x ~ a ,  con > K F~, - 2 k K 1 

at (c~°)z= = c~ - K at (c~)F= = c~ + K 

,, 1 K ~ K + 4 c ~  } 
2b . , _~  - na ~=k,tX(~+8c~)],/~ r = ~  ~ ~  ~ 

con = 0  ~o =(k l  K2) - 1 =(k_  1K) - ~ F o =0  

1 1 con 'g  
"r= - -  F = - -  

k l + k -  a kl(1 +K) ( I + K )  2 

kl 
B .  "~B 

k-I 

Superscript o refers to total (analytical) concentration; the amplitude factor F is defined by eqn (68) of the text. 

2. Indication of Concentration Changes 

For the measurement of concentration changes and for the recording of orientational 
changes in solutions of optically anisotropic molecules, optical techniques have proven to be 
widely applicable. If ionic species are involved, conductivity measurements are suitable to 
monitor concentration as well as orientation changes in electrically anisotropic molecules. 
The Wien effects are directly accessible from the conductivity change 6r/~0), relative to the 
r-value at E =  0. For a 1: 1 ionic equilibrium like that in eqn (109) the degree of dissociation is 
0 = cL/c ~. Thus 

6cL/c dO) = 6fix(O) = 60/0 °. (223) 
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From eqns (223) and (216) the conductivity relaxation amplitude is (see, e.g. Neumann, 1986): 

1 - 0  ° (~3!nK~ E 
( rx)~=x(O)  2_0o \ OE ,l~,,r " (224) 

In the linear range of the E-dependence the substitution of eqn (117) into (224) leads to 

(6x)~ 1 - 0  ° { A M ~  (d in  ~ ~E 
x ( 0 ) - 2 - 0 0  y -  - (225) " 

The relaxation time of an ionic process derived from the conductivity relaxation 

6x(t) = (6x)~e-'/~. (226) 

It is, however, remarked that in electrically anisotropic systems like the linear poly- 
electrolytes the measured conductivity relaxation may not be determined by the rate of the 
chemical reaction (r = ~ ) ,  but may rather be rate-controlled by ofientational processes, i.e. 
~ = ~ot) (e.g. Schallreuter, 1982). 

When optical changes are induced by the electric fields, light transmission and 
fluorescence emission appear to cover, in general, both concentration changes and rotational 
contributions in anisotropic systems. The linear dichroism seems to yield maximum 
information on molecular shape or chromophor position relative to rotation axis (e.g. 
Fredericq and Houssier, 1973). 

The absorbance A of polarized light is correlated to concentration and to absorption 
anisotropy of the molecules through Lamber%Beer's law: 

A x = ECA a)~ = IE~e~q (227) 

where ei is the (decadic) absorption coefficient of component J in a composite system, I is the 
optical pathway, and 2 is the wavelength of the light. When the absorbance is measured with 
normal, unpolarized light, then from eqn (227) the absorbance change per cm: 

6A ~ = Zje~ 6c~ (228) 

is a function of the concentration changes 6c~. On the same line, absorbance relaxations 
directly reflect concentration relaxations. 

Experimentally, recent progress in instrumentation has opened the way for measuring 
field-induced, rotational and chemical relaxations in parallel, both optically and electrically 
(Schallreuter, 1982). 

3. Component Contributions to Absorbance 

In solutions and suspensions of anisotropic molecules directing external forces such as a 
hydrodynamic flow or electric field forces may cause large signal changes originating from 
molecule rotations, leading to large values of the electric dichroism and electric birefringence. 

There are numerous reviews on dichroism and birefringence as well as on the use of optical 
signals (light transmission, fluorescence emission, light scattering, optical rotation, circular 
dichroism) to indicate concentration changes. Less frequent, however, are accounts where it 
is emphasized that both chemical and orientational changes may contribute to the measured 
optical signals (Revzin and Neumann, 1974; Dourlent et al., 1974). We now recall that the 
absorbance for a multi-component system per cm light path is: 

A) = Y~jejc~. (229) 

It is of great practical relevance to use linearly polarized light and to choose the direction of 
the electric field (of a parallel-plate measuring cell) as a reference of the light polarization 
plane. 

If an electric field is applied to a chemical system which exhibits both electrical and optical 
anisotropy, both the ej and the c j-terms in eqn (22a) may be field dependent. Note that the 
usual extinction coefficient of optically anisotropic molecules reflect random average values 
g~ of all chromophor orientations of the system when measured with polarized light. 
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In order to cover field effects on e~ and c~ the field induced absorbance change is analysed in 
terms of the two types of components: 

~ _[ [ "~ [ "~ ) ~ .  ~c~ 

_ _ _  _ _ _  

one at constant cj (ofientational) and one at constant e~ (chemical concentration shifts). 
Therefore the field induced absorbance change 

~ o = ~ o ( ~ - a t 0 )  ~3~) 

measured with light polarized at the angle ~ relative to the field vector, where Ao(~ is the 
absorbance in the presence of the field and A(0) that at E= O, covers both ofientational 
changes 6(e~)o and concentration changes ~ci. 

Whereas in the absence of E the absorbance is independent of a, 

A ~(0) = Z ,g~0)  (232) 

the absorbanee in the field, 

A 2 ~  = ~ , ~ O , c , ~  ~233) 

is de~nden t  on a ~cause  of (O- (Tsuji and Neumann, 1981). 
Denoting the field induced changes in e~ and c~ relative to the zero-field values by 

a~O. =~O.-e~ ~34) 

and 

ac~=c,~-c,~O) ~ )  

res~ctively, eqn (231) is rewritten in terms of eqns (232) and (233): 

aA2 = ~ { ~ ) . c , ~ -  e,~0)} 

= E~{6(O,[c~(0 ) + 6c~] + g~ 6c~} (236) 

where the separation of the terms depending on a from those inde~ndent  of a is evident. 
Introducing the definitions 

6A~ '°t~ = E~ 6(e~)~[c~(0) + 6c~] (237) 

6 A ~ )  = ~ ~ 6c ~ (238) 

eqn (236) may be generally written in t e ~ s  of a rotational and a chemical contribution 
(Revzin and Neumann, 1974): 

6A2 = 6A~ '°t~ + 6A ~). (239) 

For axially symmetric measuring-geometry like that of a parallel-plate capacitor cell, 
6A ~ )  can ~ experimentally obtained in two i~ependent ways, using the three light 
polarization modes a = 0, a = n/2 and a = a*. Provided that 6A ~ A(O) we have a * =  0.955 
(54.7°). Axial symmetry provides the relationship 

6A ~(ot) + 2 6A~ '°t) = 0 (240) 

where the subscript refers to a = 0 (parallel mode) and ~ denotes a = n/2 (per~ndicular II 
mode). At ~ - ~ *  ~ ' * t ) - n  I fa*=0.955,  then ~ ~ v ~ ,  ~ v .  

~A ¢~h~ = ~A~.~ss. (241) 

On the other hand eqns (239) and (2~) can be combined to (Revzin and Neumann, 1974): 

~ , ~ )  = ~ a  ~ + ~ ~a ~). ~4~) 

In the framework of this formalism the nature of the absorbance change, either chemical or 
purely rotational, may ~ derived from the amplitudes. More detailed i n fo~a t i on  can, of 



228 E. NEUMANN 

course, be only obtained from the analysis of the time course of the relaxations. Due to 
coupling between chemical-conformational transitions to the orientations of the molecules 
relative to the electric field vector, orientational and chemical relaxations can be coupled, 
and the rate-limiting process may determine both chemical and rotational contributions. 
The analysis is straightforward when the time scales of chemical and rotational processes are 
different. In any case, from a practical point of view, the analysis of the time course of the 
measured signal is indispensible to determine the various components and their amplitudes. 

4. L inear  Dichroism 

The time course of orientational changes induced by electric fields contains information on 
the orientation mechanism, and on the electrical and geometrical properties (main dipole 
axis, length) of the aligning and deorienting molecules. For instance, permanent dipole 
orientation of a given particle type in the presence of a constant electric field builds up with 
zero slope and has two modes, whereas the build-up of induced dipole orientation starts with 
maximum slope and is characterized by only one time constant. The deorientational 
relaxation of a system of identical particles, after termination of the step pulse is monophasic, 
independently of the presence of permanent or induced dipoles. For details see references 
(O'Konski and Haltner, 1957; Tinoco and Yamaoka, 1959; Tricot and Houssier, 1976; 
Neumann, 1986). 

The analysis of orientational changes faces problems when non-rigid molecules or 
molecules of non-homogeneous length distribution are present. The quantitative treatment 
of field-induced changes in molecule shape is still very difficult. Chain bending or stretching, 
structural changes, dimer formation, or multimeric aggregation will change the anisotropy 
components arising from long-range optical interactions as well as short-range interactions 
with the solvent having, in general, a refractive index different from that of the absorbing 
molecules considered (form anisotropy). Such contributions, however, are small for solutions 
of low turbidity, i.e. if the size of the aggregates remains small compared to the wavelength of 
the monochromatic light used (Tricot and Houssier, 1976). 

The linear dichroism AA has been originally defined for absorbance changes of purely 
rotational origin. In the notation used here, we have 

A A  = z*]l ~ (rot) - -  z*±zl (rot) ~. (~A Ii r ° t ) -  ~ A I  (r°t). (243) 

It can, however, be shown that a more general definition of AA (as the difference between the 
absorbances at tr = 0 and at tr = re/2), holds, independently of whether there are chemical 
contributions present or not. Because 6A t°h) is independent of tr, i.e. 6Alleh)--fiA~ oh), the 
application of eqn (239) leads to the general form 

A A  = A 14 - A ± = 6A II - -  6 A  ±.  (244) 

Note that the linear dichroism is given by the measured absorbance changes in the electric 
field. 

At high field strengths orientational changes may reach saturation (E~ oo, AA = AAs). The 
degree of orientation is given by the orientation factor (eqn 145). Thus (Stoylov, 1971): 

(a = A A / A A  s = (6 A l r° t ) / fAstr° t)) , r .  (245) 

The dependence of q~ on the electric field strength contains information on the electrical 
properties of the molecules: permanent dipole moment p and/or polarizability tensor ~. 
General equations for the field dependence of ~b are given by O'Konski et al. (1959). 

Equation (245) provides the basis for the rigorous analysis of chemical contributions of the 
induced or permanent dipole moments of the reaction partners, according to eqns (147) and 
(181). Note that the Langevin function can also be expressed in terms of ~b: L[r]  = (r/3) (1 - q~), 
valid for ~b ~ 1. 

5. Chemical  Transit ion Factor  

We recall eqn (166): K(E)=K(O)e  x, where x = S A M d E / R T .  If the field induced 



Chemical electric field effects 229 

concentration shifts can be measured by absorbance changes, then eqn (238) can be used. 
• /~pplied to the intramolecular transition BI,~-B 2 we have: 

gA(¢h) = g2 gC2 "+ gl gCl (246) 

where g2 and g~ are the (random) average values of the extinction coefficients of the 
conformations B2 and B~, respectively. Mass conservation dictates that gc 2 + gc x =0.  By 
definition, 0 = c2/(c~ + cz) = c2/c o. With 6c2 = c o gO eqn (246) is rewritten as 

where 

8 ° being the 8-value at E = 0. 

gA¢ch) = (gz -- ga) c o gO (247) 

60 = 0 (E) -  0 ° (248) 

Because in a two-state transition K =  0/(1 - 8 )  holds we have K(E)= 0(E)/[1 -0 (E) ]  and at 
E = 0, K(0) = 8°/(1 - 80). Hence, 

0(E) = K(0)eX/[1 + K(0)eX]. (249) 

Substitution of eqns (248) and (249) into (247) yields 

gA (¢h) = (g2 -- gl)C 0 ( ex -- 1) (1 -- 0 °) (250) 
e x + (1 -- 00)/80. 

Analogous to the orientation factor ~b of the linear dichroism and the birefringence, we 
may define a chemical transition factor according to 

~(¢h) = g A (eh)/g A ~seh) (251) 

where gA~ ch~ is the saturation value of the chemical absorbance amplitude at high field 
strengths. Equations (247) and (248) yield: 

~)(ch) = O(Eo) - O° 
1 -- 0 o (252) 

It is evident that in the limiting case 0 ° =  0 at E = 0, ~b t~h) = 0 holds. 
Finally, the combination of eqns (249) and (252) leads to 

e x -  1 
~(ch)  : e x + (1 - 0°)/0 °" (253) 

Equation (253) is very useful for the description of chemical transitions as a function of the 
externally applied electric field (Tsuji and Neumann, 1983). 

6. Differentiation Be tween  Componen t  Contributions 

Among the extreme cases, the analysis of chemical electric field effects is simplest when the 
rotational equilibria are established faster than the diffusion-limited chemical processes. The 
other extreme is the complete control of the chemical process by the rate of the orientational 
relaxations. As seen in Table 2, bimolecular chemical reactions exhibit a characteristic 
dependence of time constant and amplitude on concentration. 

Independent of the time course of the absorbance changes there are a number of ways to 
differentiate between chemical and orientational contributions of anisotropic molecules. If 
chemical transformations are associated with isobestic or isochromic wavelengths, then at 
these wavelengths chemical contributions are zero, i.e. 3A t~h) = 0. When plane-polarized light 
is used at the light polarization angle a*, the rotational contributions cancel, i.e.: gA,,, = O. A 
chemical concentration shift of randomly distributed reaction partners is associated with an 
absorbance change which is independent of a. The pure rotational contributions always obey 
eqn (240). It is obvious that the time constants of the chemical and rotational parts of the 
relaxations must also be independent of a. 

It should be remarked that chemical contributions of interacting anisotropic molecules are 
usually negligibly small if simple dipolar equilibria are concerned. Appreciable field effects 
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are encountered  only in macromolecu la r  d ipolar  systems. The second Wien  effect and  
s tructural  changes coupled to ionic dissociat ion-associat ion processes may  occur at already 

low field intensities. 
In  any  case, large react ion dipole momen t s  (AM) are required to produce major  

displacements of d ipolar  equil ibr ia;  high ionic valences are necessary for larger dissociat ion 
field effects in ionic associa t ion-dissocia t ion  reactions. 

These condi t ions  generally require that  the react ion par tners  themselves have either large 
dipole momen t s  or large polarizabil i t ies or a high density of fixed ionic groups. The 
structures which fulfill these condi t ions  are macromolecules  and  macromolecular  organiza-  
t ions such as polyionic  biopolymers,  b iopolymer  complexes, or the proteins of b iomem- 
branes. 
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