Zeitschrift für anorganische und allgemeine Chemie © Johann Ambrosius Barth 1993

Übergangsmetall-substituierte Acylphosphane und Phosphaalkene. 17 [1]

Synthese und Struktur der μ -Isophosphaalkin-Komplexe [(η^5 -C₅H₅)₂(CO)₂Fe₂(μ -CO)(μ -C=PC₆H₂R₃-2,4,6)] (R = Me, iPr, tBu)

L. Weber*, I. Schumann, T. Schmidt, H.-G. Stammler und B. Neumann

Bielefeld, Fakultät für Chemie der Universität

Bei der Redaktion eingegangen am 19. Februar 1993.

Inhaltsübersicht. Die Kondensation des μ -Carbinkomplexes { $(\eta^5-C_5H_5)_2(CO)_2Fe_2(\mu-CO)(\mu-CSMe)$ } SO₃CF₃⁻ (6) mit den Phosphanen 2,4,6-R₃C₆H₂PH(SiMe₃) (7) (a: R = Me, b: R = iPr, c: R = tBu) liefert die Komplexe $(\eta^5 - C_5 H_5)_2(CO)_2 Fe_2(\mu - CO)(\eta - C = PC_6 H_2 R_3 - 2, 4, 6)$ 9a - c, die die neuartigen Isophosphaalkine C = P-Aryl als Brückenliganden tragen. Von 9a wurde eine Röntgenstrukturanalyse durchgeführt.

Transition Metal Substituted Acylphosphanes and Phosphaalkenes. 17. Synthesis and Structure of the μ -Isophosphaalkyne Complexes $[(\eta^5-C_5H_5)_2(CO)_2Fe_2(\mu-CO)(\mu-C=PC_6H_2R_3)]$ (R = Me, iPr, tBu)

Abstract. Condensation of

 $\{(\eta^5 - C_5 H_5)_2(CO)_2 Fe_2(\mu - CO)(\mu - CSMe)\}^+ SO_3 CF_3 (6) \text{ with} 2,4,6 - R_3 C_6 H_2 PH(SiMe_3) (7) (a: R = Me, b: R = iPr, c: R = tBu) affords the complexes$ $<math>(\eta^5 - C_5 H_5)_2(CO)_2 Fe_2(\mu - CO)(\eta - C = PC_6 H_3 R_3 - 2,4,6) (9a - c)$ with edge-bridging isophosphaalkyne ligands as confirmed by the x-ray structure analysis of **9a**.

Keywords: Transition metal substituted phosphaalkenes; isophosphaalkyne complex.

Einleitung

Das Konzept isoelektronischer Verbindungen und die Schrägbeziehung C/P im Periodensystem der Elemente haben sich für die Entwicklung der Chemie niederkoordinierter Phosphorverbindungen und deren Übergangsmetallkomplexe als äußerst nützlich erwiesen. So sind den Alkinen A neben dem nur in der Gasphase bekannten $P \equiv P$ (B) die Phosphaalkine C und die Isophosphaalkine D an die Seite zu stellen.

R−C≡C−R	:P≡P:	:P≡ C – R	:C≡P-R
A	8	с	D
2 2		=	Ξ

Während inzwischen die Chemie der Phosphaalkine gut untersucht und in mehreren Übersichtsartikeln dokumentiert ist [2], ist wenig über deren Isomeren vom Typ **D** bekannt. Gezielte Versuche zu ihrer Darstellung lieferten immer die Phosphaalkine C als deren Umlagerungsprodukte [3]. Theoretische Rechnungen haben die Instabilität von D relativ zu C untermauert [4].

Kürzlich wurde von *Angelici* et al. der zweikernige Platinkomplex 3 mit einem halbverbrückenden (semibridging) C=P Mcs* (Mes* = 2,4,6-tBu₃C₆H₂) Liganden vorgestellt [5].

Im Rahmen unserer Arbeiten über metallfunktionalisierte Phosphaalkene [6] berichten wir nun über eine leistungsfähige alternative Synthese von Mehrkernkomplexen mit μ -Isophosphaalkin-Liganden, die von der Verfügbarkeit geeigneter Vorstufen mit P=C-Doppelbindungen wie etwa 1 unabhängig ist.

Ergebnisse

Die C=P-Bindung der Titelverbindungen 9a-c wird bei der Kondensation des Thiomethoxycarbin-Liganden in $[(\eta^5-C_5H_5)_2(CO)_2Fe_2(\mu-CO)(\mu-CSMe)]$ SO₃CF₃⁻ (6) [7] mit äquimolaren Mengen an 2,4,6-R₃C₆H₂PH(SiMe₃) (7a-c) [8] in Gegenwart von 1,8-Diazabicyclo-[5.4.0]undec-7-en (DBU) in Acetonitril erzeugt.

Singuletts bei $\delta = 8,3$ bzw. 2,1 im ³¹P-NMR-Spektrum der Lösung zu Beginn der Reaktion sind mit Verbindungen wie **8a** und **8c** vereinbar, die bei dem Angriff der Phosphane 7 auf das verbrückende Methylidin-Zentrum und nachfolgende Deprotonierung der Phosphoniumsalze durch DBU entstehen. Alternativ ist auch der nucleophile Angriff von Anionen des Typs P(SiMe₃)(Aryl)⁻ denkbar. Die 1,2 Eliminierung von Me₃SiSMe aus **8** liefert die beobachteten Endprodukte **9**. Die Komplexe **9a – c** werden mittels Säulenchromatographie als dunkelrote, luftstabile, diamagnetische, kristalline Substanzen gewonnen. Die Verbindungen lösen sich gut in Ether, THF und Acetonitril, während die Löslichkeit in Aromaten und gesättigten Kohlenwasserstoffen in der Reihe 9a > 9b > 9c deutlich zunimmt. Das Vorliegen von P=C-Doppelbindungen in 9a - c wird durch Singuletts in den ³¹P{¹H}-NMR-Spektren bei $\delta = 249,3-258,0$ angezeigt. [9]

Die ¹³C-Resonanzen der Methylenphosphan-Gruppen werden als Dubletts bei schr tiefem Feld ($\delta = 338,8-345,8$) und damit im Erscheinungsbereich von Carbenium-Ionen beobachtet [10]. ¹J_{PC}-Kopplungen von 92–97 Hz sind für Phosphaalkene dagegen nicht ungewöhnlich. Zum Vergleich bieten sich einfach metallierte Phosphaalkene wie 10 (δ ¹³C = 251,4 d, ¹J_{PC} = 82,9 Hz) [11] oder 11 (δ ¹³C = 202,4 d, ¹J_{PC} = 19,8 Hz) [12] an, bei denen der Methylenkohlenstoff deutlich stärker abgeschirmt ist.

Die beiden terminalen CO-Liganden in 9a-c geben Anlaß zu jeweils zwei Singuletts bei $\delta^{-13}C = 209,9-211,0$, während Singuletts bei $\delta^{-13}C = 269,2-270,8$ von den verbrückenden CO-Liganden verursacht werden.

Die Dissymmetrie der Komplexe 9a - c wird unter anderem durch deren 'H-NMR-Spektren (22 °C, C₆D₆) belegt, in denen die chemisch und magnetisch verschiedenen C₅H₅-Liganden Anlaß zu zwei diskreten Resonanzen bei 4,05-4,10 und 4,40-4,49 (d, J_{PC} \approx 0,5 Hz) geben. Die Dubletts bei tieferem Feld ordnen wir dem Cyclopentadienylliganden am Eisenatom Fe(2) zu, der zum freien Elektronenpaar am Phosphoratom benachbart ist.

Die ¹H-NMR-Spektren von **9b** und **9c** weisen bei Raumtemperatur jeweils zwei Signale für die ortho-ständigen Alkylgruppen am Arylring auf, was am ehesten mit der gehinderten Drehung des Arylsubstituenten um die P--C_{ipso}-Achse zu erklären ist. Ein ähnliches Phänomen kann im ¹H-NMR-Spektrum von **9a** erst bei $-50 \,^{\circ}$ C beobachtet werden. Es fällt auf, daß im ¹H-NMR-Spektrum von **9b** bei $-50 \,^{\circ}$ C für jede der ortho-iPropylgruppen jeweils zwei Signale registriert werden. Offenbar wird unter diesen Bedingungen das Signal für die diastereotopen Methylgruppen an jeder der i-Propylgruppen aufgelöst.

Die IR-Spektren von 9a - c zeigen im Bereich der CO-Valenzschwingung zwei intensive Banden für die beiden terminalen CO Liganden (1996–1998 und 1960–1963 cm⁻¹), sowie jeweils eine starke Bande bei 1793–1796 cm⁻¹ für die Streckschwingung der Carbonylbrücke.

Röntgenstrukturanalyse von 9a

Zur vollständigen Charakterisierung der neuartigen Komplexe wurde eine Röntgenstrukturanalyse an 9adurchgeführt (Tab. 1 – 3, Abb. 1). Geeignete Einkristalle der Verbindung wurden aus einer Toluollösung bei – 30 °C gezüchtet.

Die Molekülstruktur von 9a im Kristall untermauert die aus den Spektren erhaltenen Informationen. Das Molekül besitzt eine "butterfly"-Struktur mit cis-orientierten Cyclopentadienylringen. Der Interplanarwinkel zwischen den Ebenen aus den Atomen Fe(1), Fe(2), C(12) und Fe(1), Fc(2), C(13) beträgt 160,5°. Die Fe-Fe-Bindung von 2,527(5) Å ist vergleichbar mit jener im Kation $[(\eta^{5}-C_{5}H_{5})_{2}Fe_{2}(CO)_{3}(CSEt)]^{+}$ [2,510(2) Å] [13] und liegt zwischen den Fe-Fe Abständen, die in cis $[(\eta^{5}-C_{5}H_{5})(CO)_{2}Fe]_{2}$ [2,531(2) Å] [14] und cis $[(\eta^{5}-C_{5}H_{5})Fe(CO)(CS)]_{2}$ [2,482(1) Å] [15] gemessen werden. Der interessanteste Teil des Moleküls ist der Isophosphaalkin-Ligand, der die beiden Fe-Zentren über das planare Kohlenstoffatom (Winkelsumme 359,5°) der P=C-Bindung asymmetrisch verbrückt. Zwar entsprechen sich beide Fe-C-Abstände im Rahmen der dreifachen Standardabweichung, dennoch soll darauf hingewiesen werden, daß sich der etwas längere Abstand Fe(2)—C(3) [1,927(16) Å] in der syn-Position zum Arylsubstituenten am Phosphor befindet, während die kürzere Bindung Fe(1)-C(13) [1,903(16) Å] zum freien Elektronenpaar am Phosphor orientiert ist. Eine vergleichbare Situation wird auch in Komplexen mit verbrückenden

Tabelle 1 Atomkoordinaten $(\times 10^{4})$ und äquivalente isotrope Auslenkungskoeffizienten $(A^{2} \times 10^{3})$ von **9**a

Atom	x	y	<u>х</u>	U _{eq} *
Fe(1)	2409(1)	2 2 6 9 (3)	0	22(1)
Fe(2)	1846(1)	1651(3)	1 474(2)	21(1)
P(1)	482(2)	930(6)	34(4)	31(2)
O(1)	2871(6)	-1188(14)	- 420(7)	33(3)
O(2)	3 562(6)	1 883(13)	1 392(2)	32(3)
O(3)	2027(6)	- 1 983(14)	1 574(9)	50(4)
C(1)	1947(5)	4579(14)	-473(7)	31(5)
C(2)	2 202	3 529	~1160	42(5)
C(3)	3 0 2 4	3 261	- 1 065	24(4)
C(4)	3 2 7 7	4147	-319	33(5)
C(5)	2611	4961	47	35(4)
C(6)	1910(6)	2262(14)	2 794(6)	29(5)
C(7)	2029	3755	2 306	35(5)
C(8)	1 338	4 0 5 8	1815	24(5)
C(9)	791	2751	2 000	28(5)
C(10)	1145	1641	2 606	28(5)
C(11)	2.665(9)	163(18)	- 259(9)	19(4)
C(12)	2925(9)	1 889(21)	1 109(10)	23(5)
C(13)	1405(10)	1430(21)	335(10)	23(5)
C(14)	1968(10)	- 529(21)	1 500(16)	47(5)
C(15)	177(6)	3016(12)	-1418(6)	23(4)
C(16)	199	3444	-2290	40(5)
C(17)	491	2 2 9 5	2 892	27(4)
C(18)	760	718	-2622	18(4)
C(19)	738	290	- 1750	19(4)
C(20)	447	1 4 3 9	-1149	28(5)
C(21)	- 183(10)	4 292(21)	-792(11)	49(6)
C(22)	571(10)	2813(21)	- 3 830(9)	45(6)
C(23)	969(9)	- 1 498(20)	- 1 483(10)	34(5)

* Äquivalente isotrope U, definiert als ein Drittel der Spur des orthogonalisierten U₀ Tensors.

Tabelle 2 Bindungslängen (Å) von 9a

Fe(1)Fe(2)	2,527 (5)	Fe(1) - C(1)	2,123 (11)
Fe(1) - C(2)	2,088 (11)	Fe(1) - C(3)	2,106 (11)
Fe(1) - C(4)	2,152 (11)	Fe(1) - C(5)	2,162 (12)
Fe(1) - C(11)	1,770 (14)	Fe(1) - C(12)	1,954 (16)
Fe(1)C(13)	1,903 (16)	Fe(2) - C(6)	2,108 (11)
Fe(2)C(7)	2,131 (11)	Fe(2) - C(8)	2,159 (11)
Fe(2)C(9)	2,153 (10)	Fe(2) - C(10)	2,122 (10)
Fe(2)C(12)	1,927 (15)	Fe(2) - C(13)	1,927 (16)
Fe(2)C(14)	1,740 (17)	P(1)C(13)	1,683 (17)
P(1)—C(20)	1,879 (12)	O(1) - C(11)	1,153 (18)
O(2)C(12)	1,167 (18)	O(3)C(14)	1,162 (20)
C(15)C(21)	1,530 (19)	C(17)C(22)	1,519 (18)
C(19)C(23)	1,527 (18)		

Isocyanid-Liganden beobachtet [16]. Im übrigen kann das R-P=C-Molekül auch als formales Analogon der Isocyanide R-N=C betrachtet werden, wenngleich die isomeren Phosphaalkine RC=P in ihren chemischen Eigenschaften kaum Verwandtschaften zu den Nitrilen RC=N aufweisen [2]. In 9a findet sich die gleiche Asymmetrie auch in den FeC Abständen zu dem μ -CO Ligan-

Tabelle 3 Ausgewählte Bindungswinkel (°) von 9a

Fc(2) - Fe(1) - C(13)	49,1(5)	Fe(2)—Fc(1)—C(11)	96,6(5)	
C(11)— $Fe(1)$ — $C(13)$	87,3(7)	Fe(2) - Fe(1) - C(12)	48,9(5)	
$Fe(1) \rightarrow Fe(2) \rightarrow C(14)$	99,7(8)	C(11)—Fe(1)—C(12)	86,8(7)	
C(12)-Fe(2)-C(14)	89,5(8)	C(12)—Fe(1)—C(13)	96,1(6)	
C(13)-P(1)-C(20)	104,5(7)	Fe(1) - Fe(2) - C(13)	48,3(5)	
Fe(1)—C(12)—Fe(2)	81,2(6)	C(12) - Fe(2) - C(13)	96,3(7)	
Fe(2)—C(12)—O(2)	140,4(13)	C(13)—Fe(2)—C(14)	88,7(9)	
Fe(1) - C(13) - P(1)	147,2(10)	Fe(1) - C(11) - O(1)	176,5(13)	
Fe(2)—C(14)—O(3)	175,3(20)	Fe(1) - C(12) - O(2)	138,3(13)	
		Fc(1) - C(13) - Fe(2)	82,6(6)	
		Fe(2)-C(13)-P(1)	129,7(9)	

den wieder [Fe(1)-C(12) = 1,954(16) und

Fe(2)—C(12) = 1,927(15) Å]. Im auffälligen Gegensatz hierzu differieren die beiden Pt—C Abstände zum Isophosphaalkin-Liganden in 3 um 0,22 Å. Die Länge der P=C-Bindung in 9a wird zu 1,683(17) Å bestimmt. Dieser Wert entspricht sowohl der P=C-Bindung in 3 [1,67(1) Å] sowie dem Durchschnittswert einer solchen Bindung, der aus den Strukturen einer Vielzahl von Phosphaalkenen hergeleitet wurde [17]. Im Gegensatz hierzu wird der PC-Abstand zum Arylsubstituenten P(1)—C(20) zu 1,879(12) Å bestimmt, welches mit einer Einfachbindung (Standardwert ca. 1,85 Å) [18] vereinbar ist.

Abb. 1 Struktur des Moleküls $(\eta^{5}-C_{5}H_{3})_{2}(CO)_{2}Fe_{2}(\mu-CO)(\mu-C = P-Mes)$ (9a)

Der exocyclische Winkel Fe(1)—C(13)—P(1)[147,2 $(10)^{\circ}$] ist gegenüber dem Winkel

Fe(2)—C(13)—P(1) von 129,7(9)° signifikant aufgeweitet, was sicherlich zum Teil auf sterische Wechselwirkungen zwischen der Mesitylgruppe und den dazu benachbarten Liganden an Fe(1) zurückzuführen ist. Hiervon wird der Winkel C(13)—P(1)—C(20) kaum berührt. Der Arylring ist nahezu orthogonal zu der besten Ebene durch die Atome Fe(1), Fe(2), C(13) und P(1) orientiert ($\psi = 85,3^{\circ}$). In 3 werden die entsprechenden exocyclischen Winkel zu 164,1(6)° und 112,0(5)° ermittelt. Die Differenz beider Winkel von 52° und die eben erwähnte Differenz der PtC-Bindungen um 0,22 Å waren Argumente für den halbverbrückenden ("semi-bridging") Charakter des Organophosphorliganden in 3.

Das Phosphoratom enthält zum Fe(2) keine bindenden Kontakte, wie aus dem Abstand von 3,269 Å zu erkennen ist. Gewöhnlich fallen Fe—P-Bindungen in niedervalenten Carbonyleisenkomplexen in den Bercich von 2,08 bis 2,37 Å.

Experimenteller Teil

Die Darstellung aller Komplexe sowie die Aufnahme der Spektren erfolgte unter N₂ in N₂-gesättigten absolut wasserfreien Lösungsmitteln. [$(\eta^5-C_5H_5)_2(CO)_2Fe_2(\mu-CO)(\mu-SMe)$] *SO₃CF₃ · [7] und die Phosphane MesPH(SiMe₃) [8], 2,4,6 iPr₃C₆H₂PH₂ [19], und 2,4,6-tBu₃C₆H₂PH₂ [20] wurden nach Literaturangaben hergestellt.

Diazabicycloundecen (DBU) wurde gekauft (Aldrich).

IR: Perkin Elmer 580; 'H-, ¹³C-, und ³¹P-NMR: Bruker AM 400 Massenspektren: Finnigan MAT 311 A (EI-Mode, 70 eV Ionisierungsenergie, Direkteinlaßsystem).

Analysen Fa Dornis und Kolbe, Mülheim/Ruhr

Darstellung von 2,4,6-iPr₃C₆H₂PH(SiMe₃) (7b)

Vcrb. **7b** wurde in Analogie zu Lit. [8] hergestellt und ohne weitere Reinigung eingesetzt:

¹H-NMR (C₆D₆, 22 °C): $\delta = 0,12$ (d, ³J_{PH} = 4,2 Hz, 9 H, SiCH₃), 1,22 (m, 12 H, o-CH(CH₃)₂), 1,33 (d, ³J_{HH} = 6,7 Hz, 6H, p-CH(CH₃)₂, 2,77 (m, 1 H, p-CH(CH₃)₂), 3,59 (d, ¹J_{PH} = 206,5 Hz, 1 H, PH), 3,62 (m, 2 H, o-CH(CH₃)₂), 7,11 (d, ⁴J_{PH} = 2,3 Hz, 1 H, m-Aryl-H), 7,14 (s, br, 1 H, m-Aryl-H). ³¹P-NMR (Et₂O, 22 °C): $\delta = -166,3$ (d, ¹J_{PH} = 207 Hz).

Darstellung von 2,4,6-tBu₃C₆H₂PH(SiMe₃) (7 c)

Verb. 7 c wurde analog zu Lit. [8] hergestellt und durch Kristallisieren aus n-Hexan bei -30 °C als farbloser Feststoff erhalten (Ausb. 95%).

¹H-NMR (C₆D₆, 22 °C): $\delta = -0.03$ (d, ³J_{P1} = 3,4 Hz, 9 H, SiCH₃), 1,31 (s, 9 H, p-tBu), 1,63 (s, 18 H, o-tBu), 4,38 (d, ³J_{PH} = 212,0 Hz, 1 H, PH), 7,44 (d, ⁴J_{PH} = 2,3 Hz, 2 H, m-Aryl-H). ³⁴P-NMR (C₆D₆, 22 °C): $\delta = -128.8$ (d, ³J_{P1} = 212 Hz).

Darstellung von $(\eta^{5}-C_{5}H_{5})_{2}(CO)_{2}Fe_{2}(\mu-CO)(\mu-C=P-Mes)$ (9a)

Zur Lösung von 0,77 g (1,44 mmol) 6 in 25 ml Acetonitril, gibt man bei 0°C 0,32 g (1,44 mmol) MesP(H)(SiMe₃). Es wird 1 h bei 0°C gerührt. Anschließend fügt man 0,31 g DBU hinzu. Nach dem Erwärmen auf Raumtemp, werden alle flüchtigen Bestandteile i. Vak. entfernt. Der dunkle ölige Rückstand wird in wenig CH₂Cl₂ aufgenommen und auf Florisil aufgezogen. Dann wird an Florisil chromatographiert (Säule 40×2 cm). Es wird zunächst mit Hexan, dann mit einem Hexan/Ether-Gemisch (5:1) cluiert. Hierbei bildet sich eine dunkelrote Zone aus, die schließlich mit einem Hexan/Ether-Gemisch (1:5), cluiert wird. Das Eluat wird vom Lösungsmittel befreit und der Rückstand aus Toluol bei -30 °C kristallisiert. Hierbei werden 0,20 g (29%) rot-schwarzes kristallines 9a gewonnen. 1R (KBr): v = 1.978 sst [v(CO)], 1.949 st [v(CO)], 1.792 st [v(CO)], 1.420 m,1080 m, 1050 m, 1014 m, 867 s, 849 m, 832 st, 821 m, 637 st, 607 m, 577 m, 557 m, 537 m, 501 m, 423 m cm⁻¹. IR (CH₂Cl₂-Lösung): v = 1998 sst, 1962 m, 1796 st [v(CO)] cm⁻¹. UV/VIS (CH₂Cl₂): $\lambda_{max} = 228$ (45300), 265 (21200), 326 (9300) nm. ¹H-NMR (C₆D₆, 22 °C, 100 MHz): $\delta = 2,21$ (s, 3 H, p-CH₃), 2,75 (s, 6H, o-CH₃), 4,05 (s, 5H, C₅H₅), 4,40 (d, $J_{PH} = 0.4 \text{ Hz}, 5 \text{ H}, C_5 \text{ Hz}), 6.90 \text{ (s, br, 2 H, m-Aryl-H)}. ^4\text{H-}$ NMR (CD₂Cl₂, -50 °C, 400 MHz): $\delta = 2,28$ (s, 3 H, p-CH₃), 2,39 (s, 3 H, o-CH₃), 2,68 (s, 3 H, o-CH₃), 4,46 (s, 5 H, C₅H₅), 4,97 (s, 5H, C₃H₄), 6,90 (s, 1H, m-Aryl-H), 6,95 (s, 1H, m-Aryl-H), ¹³C(¹H)-NMR (CD₂Cl₂, -50° C): $\delta = 20,9$ (s, p-CH₃), 22,7 (d, ${}^{3}J_{PC} = 6 \text{ Hz}$, o-CH₃), 23,1 (d, ${}^{3}J_{PC} = 10 \text{ Hz}$, o-CH₃) 87,8 (s, C5H5), 89,4 (s, C5H5), 127,3 (s, m-Aryl-C), 128,5 (s, m-Aryl-C), 137,1 (s, p-Aryl-C), 138,7 (d, ${}^{2}J_{PC} = 8$ Hz, o-Aryl-C), 139,2 (s, o-Aryl-C), 144,9 (d, ${}^{1}J_{PC} = 60$ Hz, i-Aryl-C), 210,7 (s, CO), 210,9 (s, CO), 269,7 (s, μ -CO), 345,8 (d, ${}^{+}J_{PC} = 93 \text{ Hz}$, P=C). ³¹P{⁴H}-NMR (C₆D₆, 22 °C): $\delta = 255,5$ s. MS (E1): m/z = 488 (M⁺), 460 (M⁺-CO), 432 (M⁺-2CO), 404 $(M^{+}-3CO)$, 338 $(M^{-}-3CO)$, $-C_{5}H_{6}$), 282 $(M^{-}-3CO)$, -C₅H₆-Fe), 218 (MesPCFe⁺), 186 (FeCp₂⁺), 121 (FeCp⁺). C₂₃H₂₁Fe₂O₃P (488,1): Ber. C 56,60 (Gef. 56,75), H 4,34 (4,30), Fc 22,88 (22,74)%.

Darstellung von

$(\eta^{5}-C_{5}H_{5})_{2}(CO)_{2}Fe_{2}(\mu-CO)(\mu-C=P-C_{6}H_{2}(iPr)_{3}-2,4,6)$ 9 b

Zur Lösung von 0,54 g (1,00 mmol) 6 in 20 ml Acetonitril werden bei Raumtemp. 0,31 g (1,00 mmol) 7b gegeben und 30 min gerührt. Sodann werden 0,21 g (1,40 mmol) DBU hinzugegeben. Laut ¹¹P-NMR-Kontrolle erfolgt dabei augenblicklich die Bildung von 9b. Es wird wie vorstehend aufgearbeitet und das schwarzrote Produkt durch Kristallisation aus n-Hexan bei -30 °C isoliert. Ausb. 0,15 g (26%). 1R (KBr): v = 2959 st, 2869 s, 1997 sst [ν (CO)], 1960 st [ν (CO)], 1801 st [ν (CO)], 1462s, 1420s, 1382s, 1360s, 1079m, 1056m, 1013s, 830m, 759 s, 637 st, 575 s, 553 s, 531 s, 499 s cm⁻¹. IR (CH₂Cl₂-Lösung): v = 1.999 st, 1.963 m, 1.795 st [v(CO)] cm⁻¹. UV/VIS (CH₂Cl₂): $\lambda_{max} = 232$ (43200), 270 (21600), 330 (9000) nm. ¹H-NMR (C₆D₆, 22 °C, 100 MHz): $\delta = 1,30$ (d, ${}^{3}J_{HH} = 6,9$ Hz, 6H, o-CH(CH₃)₂), 1,39 (s, 6H, p-CH(CH₃)₂), 1,49 (d, ${}^{3}J_{HH} = 6.8 \text{ Hz}, 6 \text{ H}, 0 \text{-CH}(\text{CH}_{3})_{2}), 2.89 \text{ (m, 1 H, p-CH}(\text{CH}_{3})_{2}),$ 4,10 (s, 5H, C_5H_5), 4,30 (m, 2H, o-CH(CH₃)₂), 4,43 (d, $J_{PH} = 0.3 \text{ Hz}, 5 \text{ H}, C_5 \text{H}_5), 7,28 \text{ (m, 2 H, m-Aryl-H)}. H-NMR$ $(CD_2Cl_2, -50 \circ C, 400 \text{ MHz})$: $\delta = 1,06 \text{ (d, } {}^3J_{100} = 5,9 \text{ Hz}, 3 \text{ H},$ o-CH(CH₃)₂), 1,18 (d, ${}^{3}J_{1111} = 5,9$ Hz 3H, o-CH(CH₃)₂), 1,26 $(d, {}^{3}J_{11H} = 6,3 \text{ Hz}, 6 \text{ H}, \text{ p-CH}(\text{CH}_{3})_{2}), 1,30 (d, {}^{3}J_{HH} = 6,1 \text{ Hz}, 3 \text{ H},$ o-CH(CH₃)₂), 1,37 (d, ${}^{3}J_{1111} = 6,2$ Hz, 3 H, o-CH(CH₃)₂), 2,90 (m, i H, p-CH(CH₃)₂), 3,76 (m, i H, o-CH(CH₃)₂), 4,17 (m, 1 H, o-CH(CH₃)₂), 4,42 (s, 5 H, C₃H₃), 5,00 (s, 5 H, C₃H₃), 7,04 (s, i H, m-Aryl-H), 7,09 (s, i H, m-Aryl-H). ¹³Cf'H}-NMR (CD₂Cl₂, -50 °C): $\delta = 21,7$ (d, ³J_{PC} - 1 Hz, o-CH(CH₃)₂), 23,9 (d, ³J_{PC} = 7 Hz, p-CH(CH₃)₂), 25,6 (d, ⁴J_{PC} = 11 Hz, o-CH(CH₃)₂), 32,3 (s, o-CH(CH₃)₂), 32,7 (d, ³J_{PC} = 9 Hz, o-CH(CH₃)₂), 34,4 (s, p-CH(CH₃)₂), 87,6 (s, C₃H₃), 89,5 (s, C₃H₄), (19,4 (s, m-Aryl-C), 120,7 (s, m-Aryl-C), 143,9 (d, ⁴J_{PC} = 6 Hz, p-Aryl-C), 149,6 (s, o-Aryl-C), 149,2 (d, ⁴J_{PC} = 6 Hz, p-Aryl-C), 149,6 (s, o-Aryl-C), 209,9 (s, CO), 211,0 (s, CO), 269,9 (s, μ -CO), 344,7 (d, ⁴J_{PC} = 92 Hz, P=C). ⁴P[⁴H]-NMR (C₆D₆): $\delta = 249,3$ s. MS (E1): m/z = 572 (M⁻¹), 544 (M⁻¹-CO), 516 (M⁴-2CO), 488 (M⁻¹-3CO), 367 [(Cp)FeC=P--C₆H₂(iPr)₃]⁺, 302 [FeCP--C₆H₂(iPr)₃]⁺, 186 (FeCp⁻¹), 121 (FeCp⁻¹).

 $C_{29}H_{33}Fe_2O_3P$ (572,3): Ber. C 60,87 (Gef. 59,65), H 5,81 (6,08) σ_0 .

Darstellung von $(C_5H_5)_2(CO)_2Fe_2(\mu-CO)(\mu-C=P-Mes^*)$ (9c)

Die Lösung von 0,86 (1,61 mmol) 6 in 30 ml Acetonitril wird bei 20 °C mit 0,57 g (1,61 mmol) 7 c versetzt und 1 h gerührt. Dann fügt man 0,50 g (3,30 mmol) DBU hinzu und rührt weitere 16 h. Zu diesem Zeitpunkt haben 80% des Phosphans 7c abreagiert. Man bricht die Umsetzung hier ab, da verlängertes Rühren zu stärkerer Zersetzung von 9c führt. Es wird analog 9a aufgearbeitet und 0,30 g (31%) 9c als einen dunkelroten mikrokristallinen Feststoff erhalten. IR (KBr): v = 2962 st, 2904 m, 1995 sst $[\nu(CO)], 1962 \text{ st} [\nu(CO)], 1797 \text{ st} [\nu(CO)], 1585 \text{ s}, 1478 \text{ s},$ 1 392 m, 1 361 m, 1 261 s, 1 059 s, 1 014 s, 830 m, 651 m, 634 st, 577 m, 529 m, 501 s, 454 s cm⁻¹. IR (CH₂Cl₂-Lösung): $v = 1.996 \text{ sst}, 1.960 \text{ m}, 1.793 \text{ st} [v(CO)] \text{ cm}^{-1}$. UV/VIS (CH₂Cl₂): $\lambda_{\rm max} = 254$ (48 800), 318 (16 200), 480 (1 600) nm. ¹H-NMR $(C_{\delta}D_{\delta}, 22^{\circ}C, 100 \text{ MHz}): \delta = 1,37 \text{ (s, 9H, p-tBu)}, 1,75 \text{ (d,}$ $J_{PH} = 0.7 Hz$, 9H, o-tBu), 1,83 (d, $J_{PH} = 1.0 Hz$, 9H, o-tBu), 4,07 (s, 5 H, C_5H_5), 4,49 (d, $J_{PH} = 0,5$ Hz, 5 H, C_5H_5), 7,50 (m, 1 H, m-Aryl-H), 7,58 (m, 1 H, m-Aryl-H). $^{+}$ H-NMR (C₆D₆, -50 °C, 400 MHz): $\delta = 1,34$ (s, 9H, p-tBu), 1,44 (s, 9H, otBu), 1,70 (s, 9H, o-tBu), 4,38 (s, 5H, C₅H₅), 4,99 (s, 5H, C₃H₄), 7,34 (s, 1H, m-Aryl-H), 7,39 (s, 1H, m-Aryl-H). ^(C)H}-NMR (CD₂Cl₂, -50 °C); $\delta = 31,1$ (s, p-C(CH₃)₃), 33,3 $(d_1^{-1}J_{PC} = 8 Hz, o-C(CH_3)_1), 33,8 (d_1^{-1}J_{PC} = 4 Hz, o-C(CH_3)_3),$ 34,7 (s, p-C(CH₃)₃), 38,1 (s, o-C(CH₃)₃), 38,3 (s, o-C(CH₃)₃), 87,0 (s, C_5H_5), 89,2 (d, ${}^3J_{PC} = 3 Hz$, C_5H_5), 119,8 (s, m-Aryl-C), 121,5 (s, m-Aryl-C), 147,3 (d, ${}^{+}J_{PC} = 84 \text{ Hz}$, i-Aryl-C), 148,3 (s, p-Aryl-C), 151,5 (s, o-Aryl-C), 152,5 (s, o-Aryl-C), 210,4 (s, CO), 210,9 (s, CO), 270,8 (s, µ-CO), 338,8 (d, $J_{PC} = 97 \text{ Hz}, P = C$). ³¹P{¹H}-NMR (C₆D₆): $\delta = 258,0 \text{ s}$. MS (EI): m/z = 614 (M⁺), 586 (M⁺-CO), 558 (M⁺-2CO), 530 $(M^{-3}CO)$, 474 $(M^{-3}CO - Me_2C = CH_2)$, 409 $(M^{-3}CO)$, $-Me_2C = CH_2$, -Cp), 186 (FeCp₂⁺), 121 (FeCp⁺), 57 (tBu⁺). $C_{32}H_{39}Fc_2O_3P$ (614,3): Ber. C 62,56 (Gcf. 62,46), H 6,40 (6,44), Fe 18,18 (18,26)%.

Röntgenstrukturanalyse von 9a

Ein Kristall der Dimensionen $0,15 \times 0,2 \times 0,25$ mm wurde auf einem Siemens-P2₁-Vierkreisdiffraktometer bei 176 K mit Graphit-monochromatisierter Mo-K α -Strahlung ($\lambda = 0,71073$ Å) vermessen. Die Zelldimensionen ergaben sich aus 24 verfeinerten Reflexpositionen (4° < 2 θ < 23°): **a** = 16,982(14), **b** = 7,923(9), **c** = 15,518(12) Å, V = 2088(3) Å³, Z = 4, d_{her} = 1,553 g cm⁻³, $\mu = 1,486$ mm⁻¹, orthorhombisch, Raum-

Wir danken der Deutschen Forschungsgemeinschaft Bonn, dem Fonds der Chemischen Industrie, Frankfurt/Main und der BASF AG, Ludwigshafen für die Unterstützung dieser Arbeit. Herrn *Dr. Henneberg*, Max-Planck-Institut für Kohlenforschung Mülheim/R. danken wir für die Aufnahmen der Massenspektren.

Literatur

- 16. Mitteilung: L. Weber, S. Buchwald, A. Rühlicke, H.-G. Stammler, B. Neumann, Z. anorg. allg. Chem. 619 (1993) 934
- [2] a) M. Regitz, Chem. Rev. 90 (1990) 191; b) M. Regitz, P. Binger, Angew. Chem. 100 (1988) 1541; Angew. Chem. Int. Ed. Engl. 27 (1988) 1484; c) M. Regitz in "Multiple Bonds and Low Coordination" in Phosphorus Chemistry (Ed.: M. Regitz, O. J. Scherer), Thieme, Stuttgart 1990, S. 58
- [3] a) S. J. Goede, F. Bickelhaupt, Chem. Ber. 124 (1991) 2677; b) M. Yoshifuji, T. Niitsu, N. Inamoto, Chem. Lett. (1988) 1733; c) L. N. Markovskii, G. N. Koidan, A. P. Marchenko, V. D. Romanenko, M. I. Povolotskii, A. M. Pinchuk, Zh. Obshch. Khim. 59 (1988) 2133
- [4] a) K. K. Lehmann, S. C. Ross, L. L. Lohr, J. Chem. Phys.
 82 (1985) 4460; b) M. T. Nguyen, T.-K. Ha, J. Mol. Struct. (Theochem) 139 (1986) 145
- [5] H. Jun, V. G. Young, Jr., R. J. Angelici, J. Am. Chem. Soc. 113 (1991) 9379
- [6] a) I. Weber, K. Reizig, R. Boese, M. Polk, Organometallics 7 (1986) 1098; b) L. Weber, K. Reizig, M. Frebel, R. Boese, M. Polk, J. Organomet. Chem. 306 (1986) 105;
 c) L. Weber, K. Reizig, M. Frebel, Chem. Bcr. 119 (1986) 1857; d) L. Weber, E. Lücke, R. Boese, Chem. Ber. 123 (1990) 23

- Z. anorg. allg. Chem. 619 (1993)
- [7] M. H. Quick, R. J. Angelici, Inorg. Chem. 20 (1981) 1123
- [8] G. Becker, O. Mundt, M. Rössler, E. Schneider, Z. anorg. allg. Chem. 443 (1978) 42
- [9] S. Lochschmidt, A. Schmidpeter, Phosphorus Sulfur 29 (1986) 73
- [10] H.-O. Kalinowski, S. Berger, S. Braun, ¹³C-NMR-Spektroskopic, Thieme, Stuttgart 1984, S. 371
- [11] L. Weber, K. Reizig, G. Meine, Z. Naturf. 40b (1985) 1698
- [12] L. Weber, E. Lücke, A. Müller, H. Bögge, Z. anorg. allg. Chem. 583 (1990) 91
- [13] R.E. Wagner, R. A. Jacobson, R. J. Angelici, M. H. Quick, J. Organomet. Chem. 148 (1978) C 35
- [14] R. F. Bryan, P. T. Greene, M. J. Newlands, D. S. Field,
 J. Chem. Soc. Λ (1970) 3068
- [15] J. W. Dunker, J. S. Finer, J. Clardy, R. J. Angelici, J. Organomet. Chem. 114 (1976) C 49
- [16] J.-M. Bassett, G. K. Barker, M. Green, J. A. K. Howard, F. G. A. Stone, W. C. Wolsey, J. Chem. Soc. Dalton Trans (1981) 219 und hierin zitierte Literatur
- [17] R. Appel in "Multiple Bonds and Low Coordination" in Phosphorus Chemistry (Ed.: M. Regitz, O. J. Scherer), Thieme, Stuttgart 1990, S. 157
- [18] D. E. C. Corbridge, The Structural Chemistry of Phosphorus, S. 393, Elsevier Scient. Publ. Comp., Amsterdam 1974
- [19] Y. van den Winkel, H. M. M. Bastians, F. Bickelhaupt, J. Organomet. Chem. 405 (1991) 183
- [20] K. Issleib, H. Schmidt, C. Wirkner, Z. anorg. allg. Chem.
 488 (1982) 75

Anschr. d. Verf.:

Prof. Dr. L. Weber Fakultät für Chemie der Universität Postfach 100131 D-33501 Biclefcld