Transition-Metal-Substituted Diphosphenes. 34.¹ Studies on
the Reactivity of Metallodiphosphenes
$$(\eta^5-C_5R_5)(CO)_2M-P=P-Mes^*$$
 of Iron and Ruthenium
toward Hexafluoroacetone. X-ray Structure Analyses of
 $(\eta^5-C_5Me_5)(CO)M-P(=PMes^*)OC(CF_3)_2C(O)$ (M = Fe, Ru),
 $(\eta^5-1,2,4-iPr_3C_5H_2)(CO)Ru-P(=PMes^*)OC(CF_3)_2C(O)$, and
 $(\eta^5-C_5Me_5)(CO)_2Fe-P-P(Mes^*)OC(CF_3)_2^{\dagger}$

Lothar Weber,* Hanns Misiak, Susanne Buchwald, Hans-Georg Stammler, and Beate Neumann

> Fakultät für Chemie der Universität Bielefeld, Universitätsstrasse 25. 33615 Bielefeld, Germany

> > Received January 25, 1994*

 $Metallodiphosphenes (\eta^5-C_5R_5)(CO)_2M - P = P - Mes^* (C_5R_5 = C_5Me_5, C_5Me_4Et, 1, 2, 4-iPr_3C_5H_2, 1, 2, 4-iPr_3C_5H_3, 1, 4-iPr_3C$ $1,3-tBu_2C_5H_3, 1,3-(Me_3Si)_2C_5H_3; M = Fe, Ru$) undergo reaction with anhydrous hexafluoroacetone to afford either the five-membered metallaheterocycles $(\eta^5-C_5R_5)(CO)\dot{M} - P(=PMes^*)OC$ $(CF_3)_2C(O)$ or metalated 1-oxa-2,3-diphosphetanes $(\eta^5-C_5R_5)(CO)_2M - P - P(Mes^*)OC(CF_3)_2$. It is demonstrated that the 1-oxa-2,3-diphosphetanes result from an intramolecular rearrangement of the metallaheterocycles. The course of the reaction and the nature of the products is largely influenced by the basicity of the cyclopentadienylmetal fragment. The molecular structures of $(\eta^5 - C_5 Me_5)(CO)Fe - P(=PMes^*)OC(CF_3)_2C(O)$ (9a) $(P2_1/c, a = 21.809(4) \text{ Å}, b = 10.066(2) \text{ Å}, b$ c = 16.250(3) Å, $\beta = 95.87(1)^{\circ}$, $(\eta^{5}-C_{5}Me_{5})(CO)Ru-P=P(Mes^{*})OC(CF_{3})_{2}C(O)$ (10a) $(P2_{1}/c, a)$ = 22.308(8) Å, b = 10.174(4) Å, c = 16.014(10) Å, $\beta = 96.62(4)^{\circ}$), $(\eta^{5}-1,2,4-iPr_{3}C_{5}H_{2})(CO)Ru-P (=PMes^*)OC(CF_3)_2C(O)$ (10c) ($P\tilde{1}, a = 9.416(5)$ Å, b = 9.784(6) Å, c = 24.40(2) Å, $\alpha = 92.74(5)^\circ$, $\beta = 98.42(5)^{\circ}$, $\gamma = 117.37(4)^{\circ}$), and $(\eta^{5}-C_{5}Me_{5})(CO)_{2}Fe-P-P(Mes^{*})OC(CF_{3})_{2}$ (11a) (C2/c, a = 46.79(3) Å, b = 9.316(5) Å, c = 16.611(5) Å, $\beta = 101.52(3)^{\circ}$) were determined by single-crystal X-ray analyses.

Introduction

Metallodiphosphenes are polyfunctional molecules which allow a series of novel chemical transformations.² The pronounced nucleophilicity of the metalated phosphorus atom and the presence of electrophilic sites in these molecules are prerequisites for cycloadditions with electrondeficient alkenes,³ alkynes,⁴ and azo compounds.⁵

The extension of our studies to electron-poor heteroalkenes such as hexafluoroacetone (HFA) is obvious. Lowcoordinated phosphorus systems such as iminophosphanes are converted by HFA to λ^5 -oxaphosphiranes I (for R = $Me_3Si)^6$ or to λ^3 -1-oxa-3-aza-2-phosphetanes II (for R = alkyl).⁷ In this report we present our results on the

investigation of the chemical reactivity of a number of ferrio- and rutheniodiphosphenes toward HFA. Parts of this study were published in a preliminary communication.⁸

Experimental Section

General Information. Standard inert-atmosphere techniques were used for the manipulation of all reagents and reaction products. Infrared spectra were recorded on a Mattson-Polaris (FT-IR/Atari 1040 STF). The ¹³C, ¹H, ¹⁹F, ²⁹Si, and ³¹P NMR spectra were taken in C₆D₆ solution at 22 °C on Bruker AC 100 (¹H, 100.131; ¹³C, 25.180; ³¹P, 40.539 MHz) and Bruker AM 300 (1H, 300.1; 13C, 75.5; 19F, 282.2; 29Si, 59.595; 31P, 121.7 MHz) spectrometers. Spectral standards were SiMe₄ (¹H, ¹³C, ²⁹Si), CFCl₃ (¹⁹F), and 85 % H₃PO₄ (³¹P). Mass spectra were recorded on a Varian MAT CH5-DF spectrometer (70 eV, T = 250 °C).

[†] Dedicated to Professor Reinhard Schmutzler, Universität Braunschweig, on the occasion of his 60th birthday.

^{*} Abstract published in Advance ACS Abstracts, April 15, 1994

⁽¹⁾ Part 33: Weber, L.; Kirchhoff, R. Organometallics 1994, 13, 1030. (2) Weber, L. Chem. Rev. 1992, 92, 1839.

⁽³⁾ Weber, L.; Frebel, M.; Boese, R. Organometallics 1989, 8, 1718; Chem. Ber. 1990, 123, 733

Weber, L.; Frebel, M.; Boese, R. Chem. Ber. 1989, 122, 2091.
 Weber, L.; Bastian, H.; Müller, A.; Bögge, H. Z. Naturforsch. 1992,

⁴⁷B, 231.

⁽⁶⁾ Röschenthaler, G. V.; Sauerbrey, K.; Schmutzler, R. Chem. Ber. 1978, 111, 3105.

Elemental analyses were obtained from the Microanalytical Laboratory of the University of Bielefeld and from the Microanalytical Laboratory Kolbe, Mülheim, Germany.

Materials. The compounds $(\eta^5-C_5Me_5)(CO)_2Fe-P=P-Mes^*$ (7a),⁹ $(\eta^5 - C_5Me_4Et)(CO)_2Fe - P = P - Mes^* (7b)$,¹⁰ $(\eta^5 - 1, 3)$

⁽⁷⁾ Niecke, E.; Gudat, D.; Schoeller, W. W.; Rademacher, P. J. Chem.

Soc., Chem. Commun. 1985, 15, 1050. (8) Weber, L.; Buchwald, S.; Lentz, D.; Preugschat, D.; Stammler, H.-G.; Neumann, B. Organometallics 1992, 11, 2351.

= iPr

R² $R^2 = Me_{\tau}Si$ tBu₂C₅H₃)(CO)₂Fe-P=P-Mes* (7d),¹⁰ (η⁵-C₅H₅)(CO)(PPh₃)- $Fe - P = P - Mes^* (7g), {}^{9} (\eta^{5} - C_{5}Me_{5})(CO)_{2}Fe - P = P - C(SiMe_{3})_{3}$ (7h),¹¹ $(\eta^{5}-C_{5}Me_{5})(CO)_{2}Ru-P=P-Mes^{*}$ (8a),⁹ $[\eta^{5}-1,3-(Me_{3}-1)]$ $Si_{2}C_{5}H_{3}$ (CO)₂FeI (4e),¹² Ru₃(CO)₁₂,¹³ 2,3,5-iPr₃C₅H₃,¹⁴ 1,3-

tBu₂C₅H₄,¹⁵ 1,1-(Me₃Si)₂C₅H₄,¹⁶ 2,4,6-tBu₃C₆H₂PCl₂,¹⁷ and LiP-(SiMe₃)₂·DME¹⁸ were prepared as described in the literature. Hexafluoroacetone (HFA) and iron pentacarbonyl were commercial products. All solvents were rigorously dried with an

appropriate drying agent and distilled before use. Preparation of Compounds. $[(\eta^{5}-1,2,4-iPr_{3}C_{5}H_{2})(CO)_{2}-$ Fe)]2 (1c). A mixture of 4.28 g (5.1 mL, 22.3 mmol) of 2,3,5 $i Pr_3 C_5 H_3$ and 29.8 g (20.0 mL, 152.1 mmol) of Fe(CO)_5 in 10 mL of n-decane was heated under reflux for 10 h. Then 50 mL of benzene was added to the still boiling reaction mixture. The hot burgundy suspension was filtered through a mixture of silica/ alumina to remove pyrophoric iron. Removal of all volatiles in vacuo left 4.70 g (69.5%) of 1c as a dark red powder (mp 110-120 °C dec). IR (KBr): v 2969 (s), 2932 (m), 2872 (m), 1930 (vs) [v(CO)], 1754 (vs) [v(CO)], 1460 (m), 1383 (m), 1274 (m), 873 (m), 633 (s), 610 (m), 597 (m), 532 (m) cm⁻¹. ¹H NMR: δ 1.16 $(d, {}^{3}J_{HH} = 6.3 \text{ Hz}, 24 \text{ H}, \text{CH}_{3}), 1.22 (d, {}^{3}J_{HH} = 5.8 \text{ Hz}, 12 \text{ H}, \text{CH}_{3}),$ 2.38 (sept, ${}^{3}J_{HH} = 5.8$ Hz, 2H, CHMe₂), 2.55 (sept, ${}^{3}J_{HH} = 6.3$ Hz, 4H, CHMe₂), 4.89 (s, 4H, C₅H₂). ¹³C{¹H} NMR: δ 22.4 (s, CH₃), 22.9 (s, CH₃), 23.1 (s, CH₃), 24.5 (s, CHMe₂), 25.2 (s, CHMe₂), 84.2 (s, CH ring), 86.1 (s, CH ring), 109.8 (s, C-iPr ring), 110.1 (s, C-iPr ring), 213.7 (s, CO). MS/EI: m/z 606 (M⁺), 303 (1,2,4 $iPr_{3}C_{5}H_{2}Fe(CO)_{2}^{+}), 247 (1,2,4-iPr_{3}C_{5}H_{2}Fe^{+}), 56 (Fe^{+}), 43 (iPr^{+}).$ Anal. Calcd for C₃₂H₄₆Fe₂O₄ (606.4): C, 63.38; H, 7.65. Found: C, 63.12; H, 7.68.

 $[(\eta^{5}-1,2,4-iPr_{3}C_{5}H_{2})Ru(CO)_{2}]_{2}$ (2c). A mixture of 3.55 g of $Ru_3(CO)_{12}$ (5.55 mmol) and 4.3 mL of 2,3,5-i $Pr_3C_5H_3$ (ca. 10% excess) in 50 mL of n-decane was heated under reflux for 16 h. Filtration of the hot solution through a 1:1:1 mixture of sodium

(9) Weber, L.; Reizig, K.; Bungardt, D.; Boese, R. Organometallics 1987, 6, 110.

(10) Weber, L.; Schumann, I.; Stammler, H.-G.; Neumann, B. Z. Naturforsch. 1992, 47B, 1134.

(11) Weber, L.; Kirchhoff, R.; Boese, R.; Stammler, H.-G.; Neumann, B. Organometallics 1993, 12, 731.

(12) Coville, N. J.; White, D.; Carlton, L. J. Organomet. Chem. 1992, 440, 15.

(13) Mantovani, A.; Cenini, S. Inorg. Synth. 1976, 16, 47.

(14) Dehmlow, E. V.; Bollmann, C. Z. Naturforsch. 1993, 48B, 457.
(15) Dehmlow, E. V.; Bollmann, C. Tetrahedron Lett. 1991, 32, 5773.

(16) Jutzi, P.; Sauer, R. J. Organomet. Chem. 1973, 50, C29.
 (17) Yoshifuji, M.; Shima, I.; Inamoto, N.; Hirotsu, K.; Higuchi, T. J.

Am. Chem. Soc. 1981, 103, 4587.
 (18) Fritz, G.; Hölderlich, W. Z. Anorg. Allg. Chem. 1976, 422, 104.

sulfate, alumina, and silica resulted in a clear yellow solution, which was stored at -30 °C for 1 day to give 3.20 g (55%) of yellow crystalline 2c, mp 148-150 °C. IR (KBr): v 2962 (s), 2872 (m), 1938 (vs) $[\nu(CO)]$, 1765 (vs) $[\nu(CO)]$, 1470 (m), 1459 (s), 1446 (m), 1384 (m), 1294 (m), 1042 (m), 859 (m), 640 (s, br), 544 (m), 522 (s) cm⁻¹. ¹H NMR: δ 1.06 (d, ³J_{HH} = 6.9 Hz, 12H, Me), $1.10 (d, {}^{3}J_{HH} = 6.8 Hz, 12H, Me), 1.3 (d, {}^{3}J_{HH} = 6.8 Hz, 12H, Me),$ 2.81 (sept, ${}^{3}J_{HH} = 6.8$ Hz, 4H, CHMe₂), 3.22 (sept, ${}^{3}J_{HH} = 6.9$ Hz, 2H, CHMe₂), 4.84 (s, 4H, CH ring). ¹³C{¹H} NMR: δ 23.3 (s, CH₃), 24.4 (s, CH₃), 24.5 (s, CH₃), 25.5 (s, CHMe₂), 25.8 (s, CHMe₂), 84.6 (s, CH ring), 115.9 (s, C-iPr ring), 116.6 (s, C-iPr ring), 226.8 (s, CO). MS/EI: m/z 697 (M⁺), 669 (M⁺ – CO), 641 (M⁺ – 2CO), 348 (1,2,4-iPr₃C₅H₂Ru(CO)₂⁺), 43 (CHMe₂⁺). Anal. Calcd for C₃₂H₄₆O₄Ru₂ (696.8): C, 55.16; H, 6.65. Found: C, 55.12; H, 6.62.

 $[(\eta^{5}-1,3-tBu_{2}C_{5}H_{3})Ru(CO)_{2}]_{2}(2d)$. Analogously, 2.20g (84%) of yellow 2d (mp 149 °C) was obtained from 1.67 g (2.6 mmol) of Ru₃(CO)₁₂ and 1.55 g (8.7 mmol) of 1,3-tBu₂C₅H₄. IR (KBr): ν 1974 (vs) [ν (CO)], 1937 (vs) [ν (CO)], 1766 (vs), [ν (CO)], 1744 (vs) [v(CO)], 1452 (m), 1360 (m), 1248 (m), 1156 (m), 912 (m), 857 (m), 823 (m), 803 (m), 669 (m), 638 (s) cm⁻¹. ¹H NMR: δ 1.25 $(s, 36H, tBu), 4.48 (d, {}^{4}J_{HH} = 2.0 Hz, 4H, H-4,5 ring), 5.37 (t, {}^{4}J_{HH})$ = 2.0 Hz, 2H, H-2 ring). ${}^{13}C{}^{1}H$ NMR: δ 31.5 (s, C(CH_8)_3), 32.0 $(s, C(CH_3)_3), 80.6 (s, C-2 ring), 86.8 (s, C-4,5 ring), 122.2 (s, C-1,3)$ ring), 222.2 (s, CO). MS/EI: m/z 669 (M⁺), 641 (M⁺ – CO), 611 (M^+-2CO) , 335 (1,3-tBu₂C₅H₃Ru(CO)₂⁺), 57 (tBu⁺). Anal. Calcd for C₃₀H₄₂O₄Ru₂ (668.8): C, 53.88; H. 6.33. Found: C, 53.53; H, 6.31

 $[(\eta^5-1,3-(Me_3Si)_2C_5H_3)Ru(CO)_2]_2$ (2e). As described before, 3.39 g (76%) of yellow 2e (mp 170 °C) was prepared from 2.61 g (4.1 mmol) of Ru₃(CO)₁₂ and 2.70 g (3.0 mL, 12.8 mmol) of 1,1-(Me₃Si)₂C₅H₄ in 15 mL of *n*-octane. IR (*n*-decane): ν 2010 (s) [ν (CO)], 1953 (s) [ν (CO)], 1778 (vs) [ν (CO)] cm⁻¹. ¹H NMR: δ 0.34 (s, 36H, SiMe₃), 4.75 (d, ⁴J_{HH} = 1.5 Hz, 4H, H-4,5), 5.60 (t, ⁴J_{HH} = 1.5 Hz, 2H, H-2). ¹³C{¹H} NMR: δ –0.13 (s, Si(CH₃)₃), 97.1 (s, C-2), 100.5 (s, C-4,5), 101.3 (s, C-1,3), 222.1 (s, CO). 29Si-{¹H} NMR: $\delta -5.6$ (s, SiMe₃). MS/CI: m/z 733 (M⁺), 705 (M⁺) -CO, 367 (1,3-(Me₃Si)₂C₅H₃Ru(CO)₂+), 339 (η^{5} -1,3-(Me₃Si)₂C₅H₃- $RuCO^+$), 311 (η^5 -1,3-(Me₃Si)₂C₅H₃Ru⁺), 73 (SiMe₃⁺). Anal. Calcd for $C_{26}H_{42}O_4Ru_2Si_4$ (733.1): C, 42.60; H, 5.77. Found: C, 42.45; H, 5.72.

 $(\eta^{5}-1,2,4-iPr_{3}C_{5}H_{2})Fe(CO)_{2}I$ (3c). A 3.85-g (6.35-mmol) quantity of 1c was allowed to react with 1.61 g (6.35 mmol) of iodine in 100 mL of CH₂Cl₂ at 0 °C. Stirring was continued for 12 h at 20 °C. Removal of all volatiles in vacuo left a dark red residue. Extraction into pentane, filtration, and storage at -30 °C resulted in violet-brown crystalline 3c (3.90 g, 71%, mp 81 °C). IR (KBr): v 1990 (vs) [v(CO)], 1955 (vs) [v(CO)], 1450 (m), 1357 (m), 1263 (m), 1046 (m), 896 (m), 881 (m), 600 (m) cm⁻¹. ¹H NMR: $\delta 0.81$ (d, ${}^{3}J_{HH} = 6.8$ Hz, 6H, CH₃), 0.98 (d, ${}^{3}J_{HH} = 6.9$ Hz, 6H, CH₃), 1.07 (d, ${}^{3}J_{HH} = 6.8$ Hz, 6H, CH₃), 2.37 (sept, ${}^{3}J_{HH} =$ 6.8 Hz, 2H, CHMe₂), 2.48 (sept, ³J_{HH} = 6.9 Hz, 1H, CHMe₂), 4.6 (s, 2H, C₅H₂). MS/EI: m/z 430 (M⁺), 402 (M⁺ - CO), 374 (M⁺ -2CO), 275 (M⁺ -CO -I), 247 (M⁺ -2CO -I), 191 (1,2,4-iPr₃C₅H₂+), 43 (iPr+). Anal. Calcd for C₁₆H₂₃FeIO₂ (430.1): C, 44.68; H, 5.39. Found: C, 44.85; H, 5.33.

 $(\eta^{5}-1,2,4-iPr_{3}C_{5}H_{2})Ru(CO)_{2}Br(4c)$. A yield of 4.40 g (78%) of 4c (mp 118-119 °C dec) was analogously obtained from 4.59 g (0.66 mmol) of 2c and 1.05 g (0.66 mmol) of Br₂ in 100 mL of CH₂Cl₂ at -30 °C. IR (KBr): $\bar{\nu}$ 2969 (s), 2921 (m), 2875 (m), 2035 (vs) $[\nu(CO)]$, 1980 (vs) $[\nu(CO)]$, 1485 (m), 1468 (m), 1460 (m, sh), 1386 (m), 1365 (m), 1296 (m), 580 (m), 552 (s), 502 (m) cm⁻¹. ¹H NMR: $\delta 0.76$ (d, ${}^{3}J_{HH} = 6.8$ Hz, 6H, CH₃), 0.86 (d, ${}^{3}J_{HH} = 6.8$ Hz, 6H, CH₃), 1.02 (d, ${}^{3}J_{HH} = 6.8$ Hz, 6H, CH₃), 2.05 (sept, ${}^{3}J_{HH} =$ 6.8 Hz, 1H, CHMe₂), 2.44 (sept, ${}^{3}J_{HH} = 6.8$ Hz, 2H, CHMe₂), 4.84 (s, 2H, C₅H₂). ¹³C{¹H} NMR: δ 23.3 (s, CH₃), 23.7 (s, CH₃), 24.5 (s, CH₃), 24.6 (s, CHMe₂), 26.1 (s, CHMe₂), 84.8 (s, CH ring), 106.5 (s, C-iPr ring), 115.0 (s, C-iPr ring), 197.6 (s, CO). MS/EI: m/z 430 (M⁺(⁸¹Br/¹⁰²Ru)), 428 (M⁺(⁷⁹Br/¹⁰²Ru)), 402 (M⁺ - $CO(^{81}Br/^{102}Ru)), 400 (M^+ - CO(^{79}Br/^{102}Ru)), 374 (M^+ - 2CO(^{81}Br/^{102}Ru)))$ ¹⁰²Ru)), 372 (M⁺ - 2CO(⁷⁹Br/¹⁰²Ru)), 43 (iPr⁺). Anal. Calcd for C₁₆H₂₃BrO₂Ru (428.3): C, 44.77; H, 5.51. Found: C, 44.87; H, 5.41

(η⁵-1,3-tBu₂C₅H₃)Ru(CO)₂Br (4d). Analogously, 1.70 g (68%) of yellow crystalline 4d (mp 118 °C) was obtained from 2.00 g (3.0 mmol) of 2d and 0.48 g (0.15 mL; 3.0 mmol) of bromine in 70 mL of CH₂Cl₂ (mp 118 °C). IR (KBr): ν 2010 (vs) [ν (CO)], 1970 (vs) [ν (CO)], 1453 (m), 1247 (s), 1159 (m), 880 (m), 860 (m) cm⁻¹. ¹H NMR: δ 0.95 (s, 18H, tBu), 4.6 (d, ⁴J_{HH} = 1.0 Hz, 2H, H-4,5 ring) 4.9 (t, ⁴J_{HH} = 1.0 Hz, 1H, H-2 ring). ¹³C{¹H} NMR: δ 30.9 (s, C(CH₃)₃), 31.4 (s, C(CH₃)₃), 85.1 (s, C-4,5 ring), 85.4 (s, C-2 ring), 118.1 (s, C-1,3 ring), 198.2 (s, CO). MS/EI: m/z 416 (M⁺ (⁸¹Br)), 414 (M⁺(⁷⁹Br)), 388 (M⁺(⁸¹Br) - CO), 386 (M⁺(⁷⁹Br) - 2CO), 358 (M⁺(⁷⁹Br) - 2CO), 57 (tBu⁺). Anal. Calcd for C₁₅H₂₁BrO₂Ru (414.3): C, 43.49; H, 5.11. Found: C, 43.48; H, 5.01.

[η⁵-1,3-(Me₃Si)₂C₅H₃]Ru(CO)₂Br (4e). Analogously, 4.10 g (77%) of 4e (mp 108 °C) was synthesized from 0.96 g (0.31 mL, 6.0 mmol) of bromine and 4.40 g (6.0 mmol) of 2e. IR (KBr): ν 2017 (vs) [ν (CO)], 1975 (s) [ν (CO)], 1404 (m), 1245 (s), 1197 (m), 1080 (m), 945 (w), 904 (m), 837 (vs), 758 (m), 696 (m), 630 (m) cm⁻¹. ¹H NMR: δ 0.14 (s, 18H, SiMe₃), 4.71 (d, ⁴J_{HH} = 1.4 Hz, 2H, H-4,5 ring), 5.38 (t, ⁴J_{HH} = 1.4 Hz, 1H, H-2 ring). ¹³C{¹H} NMR: δ -0.2 (s, SiMe₃), 93.7 (s, C-2 ring), 94.7 (s, C-4,5 ring), 108.6 (s, C-1,3 ring), 197.6 (s, CO). ²⁹Si{¹H} NMR: δ -4.1 (s). MS/EI: m/z 448 (M⁺(⁸¹Br)), 446 (M⁺(⁷⁹Br)), 420 (M⁺(⁸¹Br) - CO), 418 (M⁺(⁷⁹Br) - 2CO), 392 (M⁺(⁸¹Br) - 2CO), 390 (M⁺(⁷⁹Br) - 2CO), 73 (SiMe₃⁺). Anal. Calcd for C₁₃H₂₁BrO₂RuSi₂ (446.5): C, 34.97; H, 4.74. Found: C, 35.22; H, 4.74.

 $(\eta^{5}-1,2,4-iPr_{3}C_{5}H_{2})(CO)_{2}FeP(SiMe_{3})_{2}$ (5c). A 0.52-g (1.2mmol) quantity of 3c was added to a stirred and -110 °C cold solution of 0.33 g (1.2 mmol) of LiP(SiMe_{3})_{2}·DME in 30 mL of *n*-hexane. The reaction mixture was allowed to warm to 20 °C over a period of 6 h. Due to the instability of 5c the dark red solution was directly employed for the synthesis of metallodiphosphene 7c. ³¹P{¹H} NMR (hexane): δ -231 (s).

[η⁵-1,3-(Me₃Si)₂C₅H₃](CO)₂FeP(SiMe₃)₂ (5e). A 1.55-g (3.46mmol) sample of 3e was added to a stirred and -90 °C cold solution of 0.95 g (3.46 mmol) of LiP(SiMe₃)₂·DME in a mixture of 15 mL of ether and 50 mL of cyclopentane. The reaction mixture was allowed to warm to 20 °C over a period of 16 h. Removal of all volatiles in vacuo left a dark red brown residue. Extraction into *n*-pentane, filtration, and evaporation to dryness resulted in 1.65 g (96%) of crude red-black glassy 5e. No attempts were made to purify this material prior to its conversion into 7e. IR (C_6H_6) : ν 2002 (s) [ν (CO)], 1957 (s) [ν (CO)], 1249 (m), 985 (m), 839 (s), 727 (s) cm⁻¹. ¹H NMR: δ 0.23 (s, 18H, C–SiMe₃), 0.43 (d, ³J_{PH} = 3.9 Hz, 18H, PSiMe₃), 4.79 (t, ${}^{4}J_{HH}$ = 1.4 Hz, 1H, H-2 ring), 4.90 (dd, ${}^{3}J_{PH} = 4.1$, ${}^{4}J_{PH} = 1.4$ Hz, 2H, H-4.5 ring). ${}^{13}C{}^{1}H$ NMR: $\delta -0.09$ (d, ${}^{4}J_{PC} = 2.1$ Hz, $CSi(CH_{3})_{3}$), 4.8 (d, ${}^{2}J_{PC} = 9.2$ Hz, PSi(CH₃)₃), 91.1 (s, C-1,3 ring), 97.1 (s, C-4,5 ring), 98.8 (d, ${}^{2}J_{PC} = 4.0 \text{ Hz}, \text{C-2 ring}$, 217.0 (s, CO). ${}^{29}\text{Si}\{{}^{1}\text{H}\} \text{ NMR: } \delta - 7.8 \text{ (d,}$ ${}^{1}J_{PSi} = 52.5 \text{ Hz}, PSi), -4.42 \text{ (s, C-Si), }{}^{31}P{}^{1}H} \text{ NMR} (cyclopen$ tane): -264.8 (s).

 $(\eta^{5}-1,2,4-iPr_{3}C_{5}H_{2})(CO)_{2}RuP(SiMe_{3})_{2}$ (6c). A 1.69-g (3.94mmol) quantity of 4c was added to a solution of 1.08 g (3.94 mmol) of LiP(SiMe₃)₂.DME in a mixture of 30 mL of n-pentane and 30 mL of ether at -40 °C. The orange solution was warmed to 20 °C within 5 h and then freed from volatiles in vacuo. The residue was dissolved in 40 mL of n-pentane, filtered, and concentrated to ca. 10 mL. Storage at -30 °C afforded yellow crystals. Yield: 1.83 (88%) of 6c (mp 73 °C). IR (n-decane): ν 2009 (s) [ν (CO)], 1957 (s) [ν (CO)] cm⁻¹. ¹H NMR: δ 0.49 (d, ${}^{3}J_{\rm PH} = 4.1$ Hz, 18H, SiMe₃), 0.94 (d, ${}^{3}J_{\rm HH} = 6.8$ Hz, 6H, CH₃), 0.97 (d, ${}^{3}J_{HH} = 6.9$ Hz, 6H, CH₃), 1.10 (d, ${}^{3}J_{HH} = 6.8$ Hz, 6H, CH₃), 2.43 (sept, ${}^{3}J_{HH} = 6.8 \text{ Hz}$, 2H, CHMe₂), 2.82 (sept, ${}^{3}J_{HH} = 6.9 \text{ Hz}$, 1H, CHMe₂), 4.67 (s, 2H, C₅H₂). ¹³C{¹H} NMR: δ 5.4 (d, ³J_{PC} = 11.7 Hz, Si(CH₃)₃), 22.5 (s, CH(CH₃)₂), 24.5 (s, CH(CH₃)₂), 25.0 (s, CH(CH₃)₂), 25.3 (s, CHMe₂), 25.5 (s, CHMe₂), 25.9 (s, CH-(CH₃)₂), 79.9 (s, C-3,5 ring), 115.9 (s, C-1,2 ring), 120.3 (s, C-4 ring), 203.1 (s, CO). ²⁹Si{¹H} NMR: δ 6.55 (d, ¹J_{PSi} = 45.6 Hz). ³¹P{¹H} NMR: δ -231.3 (s). Anal. Calcd for C₂₂H₄₁O₂PRuSi₂ (525.8): C, 50.26; H, 7.86. Found: C, 49.44; H, 7.81.

 $(\eta^{5-1},3-tBu_2C_5H_3)(CO)_2RuP(SiMe_3)_2$ (6d). A 0.66-g (2.40mmol) amount of LiP(SiMe_3)_2-DME was dissolved in a mixture of 10 mL of ether and 20 mL of cyclopentane. Then 1.00 g (2.4 mmol) of 4d was added to the cold (-20 °C) solution with stirring. The latter was then slowly warmed to 20 °C. After 1 h of stirring at 20 °C the color of the mixture became light yellow. Volatiles were removed in vacuo, the residue was dissolved in 40 mL of *n*-pentane, and the solution was filtered. The filtrate was freed from the solvent to give a yellow oil which resisted crystallization. Yield: 1.2 g (98%) of crude 6d. This material was used for the preparation of metallodiphosphene 8d without further purification. IR (hexane): ν 2012 (vs) [ν (CO)], 1961 (vs) [ν (CO)], 1136 (m), 908 (m), 725 (s), 624 (m), 564 (m), 517 (m) cm⁻¹. ³¹P{¹H} NMR: δ -275.6 (s).

 $[\eta^{5}-1,3-(Me_{3}Si)_{2}C_{5}H_{3}](CO)_{2}RuP(SiMe_{3})_{2}(6e)$. A 0.33-g (1.2mmol) amount of LiP(SiMe_{3})_{2}-DME was added to a solution of 0.53 g (1.19 mmol) of 4e in 25 mL of a cyclopentane/ether mixture (1:1) (-100 °C). With stirring the mixture was warmed to 20 °C over a period of 6 h and then freed from volatiles in vacuo. The residue was dissolved in 50 mL of *n*-pentane and filtered. The filtrate was concentrated to ca. 10 mL and stored at -30 °C. After 1 day poorly soluble 2e had been precipitated. The mother liquor was decanted. Drying the residue in vacuo for several hours gave a yellow, instable glass, which could not be crystallized: Yield: 0.42 g (65%). ³¹P{¹H} NMR: δ -270.9 (s). This material was immediately converted into the corresponding metallodiphosphene 8e.

 $(\eta^{5}-1,2,4-iPr_{3}C_{5}H_{2})(CO)_{2}Fe-P=P-Mes^{*}(7c)$. A solution of freshly prepared 5c (1.2 mmol) in *n*-hexane was treated at 0 °C with 0.42 g (1.2 mmol) of Mes*PCl₂. After 20 min two dublets with the characteristics of a diphosphene at δ 560 (d, ${}^{1}J_{PP}$ = 596 Hz, PC) and δ 688 (PFe) were registered in the ³¹P NMR spectrum. This diphosphene decomposed over a period of 5 h in solution. Attempts to isolate 7c failed.

 $[\eta^{5}-1,3-(Me_{3}Si)_{2}C_{5}H_{3}](CO)_{2}Fe-P=P-Mes^{*}$ (7e). A mixture of 2.25 g (4.52 mmol) of **5e** and 1.57 g (4.51 mmol) of Mes*PCl₂ in 60 mL of THF was stirred for 3 h at 20 °C. Removal of all volatiles, extraction of the residue into 50 mL of pentane, and filtration gave a red brown solution. Reduction in volume and storage at -75 °C (1 week) afforded brown crystalline 7e. Recrystallization from n-pentane at -30 °C yielded 2.24 g (79%) of orange crystalline 7e (mp 110 °C dec). IR (KBr): v 1975 (s) $[\nu(CO)]$, 1938 (vs) $[\nu(CO)]$, 1582 (w), 1380 (m), 1240 (s), 1068 (s), 830 (vs, br), 747 (s) cm⁻¹. ¹H NMR: δ 0.09 (s, 18H, SiMe₃), 1.3 (s, 9H, p-tBu), 1.71 (s, 18H, o-tBu), 4.59 (s, 2H, H-4,5 ring), 4.93 (s, 1H, H-2 ring), 7.64 (s, 2H, m-H aryl). ¹³C{¹H} NMR: δ -0.3 (s, Si(CH₃)₃), 31.5 (s, p-C(CH₃)₃), 34.7 (s, o-C(CH₃)₃), 34.9 (s, p-C(CH₃)₃), 38.9 (s, o-C(CH₃)₃), 93.2 (s, C-2 ring), 95.4 (s, C-4,5 ring), 104.0 (s, C-1,3 ring), 122.3 (s, m- and p-C aryl), 149.1 (s, o-C aryl), 152.6 (d, ${}^{1}J_{PC}$ = 7.5 Hz, *i*-C aryl), 215.2 (d, ${}^{3}J_{PC}$ = 10.4 Hz, CO). ²⁹Si{¹H} NMR: δ -4.2 (d, ³J_{PSi} = 67.7 Hz). ³¹P{¹H} NMR: δ 569.1 (d, ${}^{1}J_{PP}$ = 599.8 Hz, P—C), 673.4 (d, ${}^{1}J_{PP}$ = 599.8 Hz, P—Fe). MS/EI: m/z 629 (M⁺), 516 (M⁺ – 2CO – C₄H₁₀), 293 ((Me₃Si)₂C₅H₃Fe(CO)⁺), 73 (SiMe₃⁺), 57 (tBu⁺). Anal. Calcd for C₃₁H₅₀FeO₂P₂Si₂ (628.7): C, 59.22; H, 8.02. Found: C, 59.17; H, 7.68.

 η^{5} -1,2,4-iPr₃C₅H₂)(CO)₂Ru-P=P-Mes* (8c). A 0.76-g (1.45-mmol) quantity of 6c was reacted with 0.50 g (1.45 mmol) of Mes*PCl₂ in 15 mL of THF at 0 °C. The stirred mixture was allowed to warm to 20 °C within 4 h during which its color changed from yellow to orange. An analgous workup afforded 0.50 g (53%)of yellow crystalline 8c (mp 127 °C). IR (KBr): v 2009 (vs) [v-(CO)], 1958 (vs) [v-(CO)], 1452 (m, br), 1358 (m), 1261 (s), 876 (m), 802 (s), 752 (m) cm⁻¹. ¹H NMR: δ 0.84 (d, ³J_{HH} = 6.8 Hz, $6H, CH_3$, 0.88 (d, ${}^{3}J_{HH} = 6.8 Hz$, 12H, CH₃), 1.32 (s, 9H, *p*-tBu), 1.74 (s, 18H, o-tBu), 2.23 (sept, ${}^{3}J_{HH} = 6.8$ Hz, 3H, CHMe₂), 4.91 (s, 2H, C₅H₂), 7.65 (s, 2H, m-H aryl). ¹³C{¹H} NMR: δ 24.2 (s, CH(CH₃)₂), 24.7 (s, CH(CH₃)₂), 26.4 (s, CHMe₂), 31.6 (s, p- $C(CH_3)_3)$, 34.85 (s, $o-C(CH_3)_3$), 34.9 (s, $p-C(CH_3)_3$), 38.9 (s, o-C(CH₃)₃), 85.5 (s, C-3,5 ring), 112.8 (s, C-4 ring), 115.3 (s, C-1,2 ring), 122.2 (s, m- and p-C aryl), 148.8 (s, o-C aryl), 152.5 (d, ¹J_{PC} = 6.9 Hz, *i*-C aryl), 201.6 (d, ${}^{2}J_{PC}$ = 13.0 Hz, CO). ${}^{31}P{}^{1}H{}NMR$: δ 551.9 (d, ¹J_{PP} = 593.5, P-C), 652.9 (d, ¹J_{PP} = 593.5 Hz, P-Ru). MS/Cl: m/z 656 (M⁺), 599 (M⁺ – tBu), 571 (M⁺ – tBu – CO), 543

 $(M^+ - tBu - 2CO), 293 \ (Mes^{*+}), 57 \ (tBu^+).$ Anal. Calcd for $C_{34}H_{52}O_2P_2Ru \ (655.8):$ C, 62.27; H, 7.99. Found: C, 62.31; H, 8.23.

 $(\eta^{5}-1, 3-tBu_{2}C_{5}H_{3})(CO)_{2}Ru - P = P - Mes^{*}(8d)$. A 1.0-g (1.95mmol) sample of 6d was dissolved in 4 mL of n-pentane in a narrow Schlenk tube. After the addition of 0.62 g (1.79 mmol) of solid Mes*PCl₂, the mixture was shaken vigorously until the complete dissolution of the chlorophosphane. The tube was set aside for 3 h, during which crystalline 8d separated. A period of 12 h at -30 °C led to completion of the crystallizing process. The supernatant solution was removed with a syringe. Yield: 0.93 g (81%; mp 138 °C, dec). IR (KBr): v 2962 (s), 2007 (vs) $[\nu(CO)], 1959 (vs) [\nu(CO)], 1360 (m), 1252 (m), 873 (m), 823 (m),$ 548 (s), 511 (m) cm⁻¹. ¹H NMR: δ 0.96 (s, 18H, tBu-1,3 ring), 1.33 (s, 9H, p-tBu), 1.74 (s, 18H, o-tBu), 4.75 (d, ${}^{4}J_{HH} = 2$ Hz, 2H, H-4,5 ring), 5.12 (t, ${}^{4}J_{HH} = 2$ Hz, 1H, H-2 ring), 7.65 (s, 2H, m-H aryl). ¹³C{¹H} NMR: δ 31.7 (s, C₅-C(CH₃)₃), 31.9 (s, C₅-C- $(CH_3)_3$, 32.4 (s, p-C(CH₃)₃), 34.9 (s, o-C(CH₃)₃), 35.2 (s, p-C(CH₃)₃), 35.2 (s, C(CH₃)₃), 39.1 (s, o-C(CH₃)₃), 87.7 (s, C-4,5 ring), 89.8 (s, C-2 ring), 122.2 (s, C-1,3 ring), 122.5 (s, m- and p-C aryl), 149.0 (s, o-C aryl), 152.8 (s, i-C aryl), 202.0 (s, CO). ³¹P{¹H} NMR: δ 553.4 (d, ${}^{1}J_{PP} = 596$ Hz, PC), 640.6 (d, ${}^{1}J_{PP} = 596$ Hz, PRu). Anal. Calcd for C33H50O2P2Ru (641.8): C, 61.76; H, 7.85. Found: C, 60.76; H, 7.77.

 $[\eta^{5}-1,3-(Me_{3}Si)_{2}C_{5}H_{3}](CO)_{2}Ru-P=P-Mes^{*}(8e). A 0.29-g$ (0.83-mmol) sample of Mes*PCl₂ was added to a -130 °C cold solution of 0.45 (0.83 mmol) of 6e in 20 mL of hexane. A change of color from yellow or orange-red was observed during warm up to 20 °C over a period of 12 h. An analogous workup afforded orange crystalline 8e. Yield: 0.39 g (70%; mp 100 °C). IR (KBr): v 2020 (s) [v(CO)], 1970 (s) [v(CO)], 1396 (m), 1268 (s), 1082 (s), 913 (m), 845 (vs), 763 (m) cm⁻¹. ¹H NMR: δ 0.07 (s, 18H, SiMe₃), 1.30 (s, 9H, p-tBu), 1.71 (s, 18H, o-tBu), 5.05 (d, ${}^{4}J_{\rm HH}$ = 1.4 Hz, 2H, H-4,5 ring), 5.36 (t, ${}^{4}J_{\rm HH}$ = 1.4 Hz, 1H, H-2 ring), 7.63 (s, 2H, *m*-H aryl). ${}^{13}C{}^{1}H$ NMR: δ 0.12 (s, SiMe₃), 31.6 (s, p-C(CH₃)₃), 32.7 (s, p-C(CH₃)₃), 34.8 (s, o-C(CH₃)₃), 38.9 (s, o-C(CH₃)₃, 97.1 (s, C-2 ring), 98.4 (s, C-4,5 ring), 107.4 (s, C-1,3 ring), 122.3 (s, m-p-C aryl), 149.0 (s, o-C aryl), 152.2 (d, i-C aryl), 200.6 (d, ${}^{2}J_{PC} = 13.6 \text{ Hz}, \text{CO}$). ${}^{29}\text{Si}{}^{1}\text{H} \text{NMR}: \delta - 5.13 \text{ (s)}. {}^{31}\text{P}{}^{1}\text{H}$ NMR: δ 562.0 (d, ${}^{1}J_{PP}$ = 596 Hz, PC), 628.9 (d, ${}^{1}J_{PP}$ = 596 Hz, PRu). Despite several attempts of purification no satisfactory elemental analysis of 8e could be obtained. The conversion of 8e into analytical pure 12e, however, proceeded without difficulties.

 $(\eta^{5}-C_{5}Me_{5})(CO)FeP(=PMes^{*})OC(CF_{3})_{2}C(O)$ (9a) and $(\eta^{5}-C_{5}Me_{5})C(CF_{3})_{2}C(O)$

 C_5Me_5 (CO)₂Fe—P–P(Mes*)OC(CF₃)₂ (11a). A 144.6 mL (6.0-mmol) aliquot of gaseous HFA was condensed on a solution of 1.32 g (2.4 mmol) of 7a in 40 mL of *n*-pentane at -196 °C. The mixture was stirred under an atmosphere of HFA for 7 days at 20 °C. Volatiles were removed in vacuo and the orange residue was dissolved in 10 mL of *n*-pentane. Storing for 24 h at -40 °C yielded 1.39 g (81%) of orange, crystalline 9a. If a pentane solution of 9a was kept under an N₂ atmosphere for 4 weeks at -40 °C red crystals of 11a were formed. The transformation 9a-11a stopped at a ratio of ca. 3:1. The complete separation of both components of the mixture failed.

9a: IR (KBr) ν 1960 (vs) [ν(CO) terminal], 1650 (s) [ν(CO) acyl], 1590 (m), 1360 (s), 1270 (vs), 1210 (vs), 1200 (vs), 1140 (m), 1102 (vs), 1030 (m), 965 (s), 875 (m), 825 (vs), 772 (m), 748 (m), 725 (m), 710 (s), 655 (s), 638 (s), 620 (sh), 595 (sh), 570 (sh), 545 (m), 512 (sh), 490 (sh), 458 (sh) cm⁻¹; ¹H NMR δ 1.33 (s, 9H, p-tBu), 1.49 (s, 15H, C₅Me₅), 1.65 (s, 9H, o-tBu), 1.68 (s, 9H, o-tBu), 7.56 (s, 2H, m-H aryl); ¹³C{¹H} NMR δ 9.28 (d, ³J_{PC} = 6.8 Hz, C₅(CH₃)₃), 33.9 (d, ⁴J_{PC} = 5.1 Hz, o-C(CH₃)₃), 35.0 (s, p-C(CH₃)₃), 39.4 (s, o-C(CH₃)₃), 35.0 (s, p-C(CH₃)₃), 39.3 (s, o-C(CH₃)₃), 39.4 (s, o-C(CH₃)₃), 35.0 (s, for C(CH₃)₅), 122.2 (s, m-C aryl), 215.3 (m, FeCO) (the signals for the carbon atoms at the OC(CF₃)₂ building block and that of the acyl carbonyl group could not be detected); ¹⁹F{¹H} NMR δ -70.55 (q, ⁴J_{FF} = 7.3 Hz, CF₃), -71.35 (q, ⁴J_{FF} = 7.3 Hz, CF₃); ³¹P{¹H} NMR δ 180.7 (d, ¹J_{PP} = 633.1 Hz, PC), 438.5 (d, ¹J_{PP} = 633.1 Hz, PFe); MS/El

m/z 720 (M⁺), 554 (M⁺ – HFA), 442 ((CF₃)₂COPMes^{*+}), 278 ((C₅-Me₅)(CO)₂FeP⁺), 166 (HFA⁺), 135 (C₅Me₅⁺), 57 (tBu⁺). Anal. Calcd for C₃₃H₄₄F₆FeO₃P₂ (720.5): C, 55.01; H, 6.16; Fe, 7.75. Found: C, 55.18; H, 6.09; Fe, 7.64.

11a: ${}^{31}P{}^{1}H{}$ NMR δ 136.0 (dq, ${}^{1}J_{PP} = 94.0$ Hz, ${}^{3}J_{PF} = 7.3$ Hz, PFe), 194.7 (d, ${}^{1}J_{PP} = 94.0$ Hz, PO).

 $(\eta^5-C_5Me_4Et)(CO)\dot{F}eP(=PMes^*)OC(CF_3)_2\dot{C}(O)(9b)$. Analogously, 0.55 g (0.97 mmol) of 7b was reacted with 53 mL (2.20 mmol) of HFA in 15 mL of toluene at 20 °C to give 0.50 g (70%) of orange crystalline 9b (mp 172 °C dec). IR (KBr): 2964 (w), 1958 (vs) [v(CO) terminal], 1656 (s) [v(CO) acyl], 1261 (s), 1217 (vs), 1096 (s), 1026 (m, br), 960 (m), 823 (s), 800 (s) cm⁻¹. ¹H NMR: $\delta 0.75$ (t, ${}^{3}J_{HH} = 7.5$ Hz, 3H, CH₂CH₃), 1.34 (s, 9H, p-tBu), 1.51 (s, 3H, CH₃ ring), 1.53 (s, 3H, CH₃ ring), 1.58 (s, 3H, CH₃ ring), 1.59 (s, 3H, CH₃ ring), 1.66 (s, 9H, o-tBu), 1.69 (s, 9H, o-tBu), 3.25 (q, ${}^{3}J_{HH}$ = 7.5 Hz, 2H, CH₂CH₃), 7.57 (m, 2H, m-H aryl). ¹³C{¹H} NMR: δ 9.5 (m, CH₃ ring), 14.2 (d, ⁴J_{PC} = 0.6 Hz, CH_2CH_3), 18.6 (d, ${}^{3}J_{PC} = 2.0 Hz$, CH_2CH_3), 31.6 (s, p-C(CH_3)₃), 33.2 (s, o-C(CH₃)₃), 33.4 (s, o-C(CH₃)₃), 35.0 (s, p-C(CH₃)₃), 38.3 $(s, o-C(CH_3)_3), 97.5 (s) \text{ and } 97.6 (s, CH3,4), 98.5 (d, {}^2J_{PC} = 1.7 \text{ Hz})$ and 98.7 (d, ${}^{2}J_{PC} = 1.7$ Hz, C-2,5), 102.3 (d, ${}^{2}J_{PC} = 1.4$ Hz, C-1), 122.2 (s, p-C aryl), 122.7 (s, m-C aryl), 151.6 (s, o-C aryl), 151.7 (s, o-C aryl), 154.0 (dd, ${}^{2}J_{PC} = 31.5$, ${}^{3}J_{PC} = 10.7$ Hz, *i*-C aryl), 213.5 (dd, ${}^{2}J_{PC} = 22.0$, ${}^{3}J_{PC} = 5.0$ Hz, CO terminal), 236.4 (d, ${}^{2}J_{PC} =$ 14.0 Hz, CO acyl). ³¹P{¹H} NMR: δ 181.8 (d, 1P, ¹J_{PP} = 634.0 Hz, P—C), 483.6 (d, 1P, ${}^{1}J_{PP} = 634.0$ Hz, PFe). ${}^{19}Fe{}^{1}H}$ NMR: δ -71.0 (q, ${}^{4}J_{PF}$ = 7.2 Hz, 3F, CF₃), -71.8 (q, ${}^{4}J_{PF}$ = 7.2 Hz, 3F, CF₃). MS/Cl: m/z 735 (M⁺), 569 (M⁺ – HFA), 456 (M⁺ – HFA $-2CO - C_4H_{10}$, 166 (HFA⁺), 69 (CF₃⁺), 57 (tBu⁺). Anal. Calcd for C₃₄H₄₆F₆FeO₃P₂ (734.5): C, 55.60; H, 6.31. Found: C, 55.66; H, 6.47.

 $(\eta^{5}-C_{5}Me_{5})(CO)RuP(=PMes^{*})OC(CF_{3})_{2}C(O)$ (10a). An analogous treatment of 0.50 g (0.83 mmol) of 8a with 20 mL (0.83 mmol) of HFA in 10 mL of toluene at 20 °C during 2 h afforded 0.30 g (47%) of yellow crystalline 10a (mp 117-119 °C dec). IR (KBr): ν 2964 (s), 1983 (vs) [ν (CO) terminal], 1666 (s) [ν (CO) acyl], 1274 (s), 1215 (s), 1200 (m), 1097 (m), 964 (m), 834 (m) cm⁻¹. ¹H NMR: δ 1.34 (s, 9H, p-tBu), 1.42 (s, 15H, C₅Me₅), 1.66 (s, 9H, o-tBu), 1.67 (s, 9H, o-tBu), 7.58 (m, 2H, m-H aryl). ¹³C-{¹H} NMR: δ 9.9 (s, C₅(CH₃)₅), 31.3 (s, p-C(CH₃)₃), 33.3 (s, o-C(CH₃)₃), 35.1 (s, p-C(CH₃)₃), 38.3 (s, o-C(CH₃)₃), 101.3 (s, C₅-(CH₃)₅), 122.6 (s, m-C aryl), 122.8 (s, p-C aryl), 151.7 (s, o-C aryl), 154.2 (dd, ${}^{1}J_{PC} = 109.2$, ${}^{2}J_{PC} = 11.1$ Hz, *i*-C aryl), 200.7 (d, ${}^{2}J_{PC}$ = 21.3 Hz, CO terminal), 242.3 (d, ${}^{2}J_{PC}$ = 10.2 Hz, CO aryl). ¹⁹F{¹H} NMR: δ -71 (q, ${}^{4}J_{FF}$ = 7.0 Hz, 3F, CF₃), -71.4 (q, ${}^{4}J_{FF}$ = 7.0 Hz, 3F, CF₃). ³¹P{¹H} NMR: δ 167.0 (d, ¹J_{PP} = 638.6 Hz, PC), 451.7 (d, ${}^{1}J_{PP} = 638.6$ Hz, P-Ru). MS/Cl: m/z 600 (M+ - HFA), 544 (M⁺ - HFA - 2CO), 487 (M⁺ - HFA - 2CO - C₄H₁₀), 237 (C₅Me₅Ru⁺), 57 (tBu⁺). Anal. Calcd for C₃₃H₄₄F₆O₃P₂Ru (765.7): C, 51.76; H, 5.79. Found: C, 51.19; H, 5.57.

 $(\eta^{5}-1,2,4-iPr_{3}C_{5}H_{2})(CO)RuP(=PMes^{*})OC(CF_{3})_{2}C(O)$ (10c). Analogously, the reaction of 0.30 g (0.46 mmol) of 8c with 50 mL (2.1 mmol) of HFA in 20 mL of methylcyclohexane (12 h, 20 °C) gave 0.33 g (88%) of yellow 10c (mp 110 °C dec). IR (KBr): v 1991 (vs) [v(CO) terminal], 1665 (s) [v(CO) acyl], 1362 (m), 1268 (s, br), 1217 (s), 1201 (s), 1096 (s), 963 (m), 835 (s), 710 (m), 649 (m), 499 (m), 484 (m) cm⁻¹. ¹H NMR: δ 1.00 (m, 18H, CH₃), 1.34 (s, 9H, p-tBu), 1.66 (s, 9H, o-tBu), 1.68 (s, 9H, o-tBu), 2.5 (sept, ${}^{3}J_{\rm HH} = 6$ Hz, 3H, CHMe₂), 4.96 (d, ${}^{4}J_{\rm HH} = 1.9$ Hz, 1H, H ring), 4.99 (d, ${}^{4}J_{\rm HH} = 1.9$ Hz, 1H, H ring), 7.58 (s, 2H, *m*-H aryl). ${}^{13}C^{-1}$ {¹H} NMR: δ 24.3 (s, CH(CH₃)₂), 24.7 (s, CH(CH₃)₂), 25.4 (s, $CHMe_2$, 26.7 (s, $CHMe_2$), 31.3 (s, p-C(CH_3)₃), 33.5 (s, o-C(CH_3)₃), 35.1 (s, p-C(CH₃)₃), 38.3 (s, o-C(CH₃)₃), 86.5 (s, CH ring), 87.7 (s, CH ring), 110.8 (s, C-iPr ring), 114.5 (s, C-iPr ring), 116.6 (s, C-iPr ring), 122.5 (s, p-C aryl), 122.8 (s, m-C aryl), 151.9 (s, o-C aryl), 153.5 (dd, ${}^{1}J_{PC} = 85.4$, ${}^{2}J_{PC} = 12.2$ Hz, *i*-C aryl), 201.6 (d, ${}^{2}J_{PC}$ = 13.2 Hz, CO terminal), 238.3 (d, ${}^{2}J_{PC}$ = 9.2 Hz, CO acyl). ¹⁹F{¹H} NMR: δ -70.4 (q, ⁴J_{FF} = 7.2 Hz, 3F, CF₃), -70.6 (q, ⁴J_{FF} = 7.2 Hz, 3F, CF₃). ³¹P{¹H} NMR (methylcyclohexane): δ 178.0 $(d, {}^{1}J_{PP} = 642.2 \text{ Hz}, \text{PC}), 446.6 (d, {}^{1}J_{PP} = 642.2 \text{ Hz}, \text{PRu}).$ MS/El:

m/z 656 (M⁺ – HFA), 599 (M⁺ – HFA – tBu), 571 (M⁺ – HFA -tBu-CO), 543 (M+-HFA-tBu-2CO), 57 (tBu+). Anal. Calcd for C₃₇H₅₂F₆O₃P₂Ru (821.8): C, 54.08; H, 6.38. Found: C, 54.19; H, 6.61.

 $(\eta^{5}-1, 3-tBuC_{5}H_{3})(CO)RuP(=PMes^{*})OC(CF_{3})_{2}C(O)$ (10d). As described before, 0.41 g (100%) of thermolabile yellow microcrystalline 10d, which already contained small amounts of 12d, was obtained from 0.33 g (0.51 mmol) of 8d and 50 mL (2.10 mmol) of HFA in 20 mL of *n*-hexane (30 min, 20 °C). Due to its lability 10d was only identified by ${}^{31}P{}^{1}H$ NMR data: δ 192 (d, ${}^{1}J_{PP} = 643$ Hz, PC), 444 (d, ${}^{1}J_{PP} = 643$ Hz, PRu).

 $(\eta^{5}-1,3-tBu_{2}C_{5}H_{3})(CO)_{2}Fe-P-P(Mes^{*})OC(CF_{3})_{2}$ (11d). A solution of 0.80 g (1.34 mmol) of 7d in 25 mL of methylcyclohexane was reacted with 160 mL (6.64 mmol) of HFA at 20 °C for 2 h. Removal of all volatiles, extraction into 75 mL of n-pentane, and filtration gave a clear red solution. Reduction in volume to 15 mL and storage at 0 °C furnished 0.55 g (54%) of red microcrystalline 11d (mp 125-127 °C). IR (KBr): v 2964 (s), 2008 (vs) $[\nu(CO)]$, 1964 (vs) $[\nu(CO)]$, 1954 (sh), 1362 (m), 1272 (m), 1258 (m), 1222 (s), 1176 (s), 1078 (s), 756 (m), 617 (m, br), 583 (m) cm⁻¹. ¹H NMR: δ 0.96 (s, 9H, tBu ring), 1.05 (s, 9H, tBu ring), 1.30 (s, 9H, p-tBu), 1.51 (s, br, 18H, o-tBu), 4.41 (m, 1H, H-4 or -5 ring), 4.50 (m, 1H, H-5 or -4 ring), 4.67 (t, ${}^{4}J_{HH} = 1.8$ Hz, 1H, H-2 ring), 7.41 (d, ${}^{4}J_{HH} = 1.7$ Hz, 2H, m-H aryl). ${}^{13}C{}^{1}H$ NMR: δ 30.5 (s, C₅C(CH₃)₃), 31.2 (s, C₅C(CH₃)₃), 31.3 (s, C₅C(CH₃)₃), 31.6 (s, $p-C(CH_3)_3$, 33.5 (s, $o-C(CH_3)_3$), 33.6 (s, $o-C(CH_3)_3$), 34.7 (s, p-C(CH₃)₃), 39.4 (s, o-C(CH₃)₃), 79.1 (s, C-4 or -5 ring), 83.0 (s, C-5 or -4 ring), 89.0 (s, C-2 ring), 117.1 (s, C-1,3 ring), 122.3 (s, p-C aryl), 122.9 (s, m-C aryl), 149.3 (s, o-C aryl), 154.7 (s, i-C aryl), 214.9 (s, CO), 215.3 (s, CO). ¹⁹F{¹H} NMR: δ-75.1 (m, 3F, CF_{3} , -70.6 (s, br, 3F, CF_{3}). ³¹P{¹H} NMR: δ 112.5 (qqd, ¹J_{PP} = 94.1, ${}^{3}J_{PF} = 26.9$, 5.9 Hz, PFe), 180.4 (d, ${}^{1}J_{PP} = 94.1$ Hz, PO). MS/El: m/z 763 (M⁺), 289 (M⁺ – (P=PMes^{*})), 57 (tBu⁺). Anal. Calcd for C₃₆H₅₀F₆FeO₃P₂ (762.6): C, 56.71; H, 6.61. Found: C, 56.56; H, 6.68.

[η⁵-1,3-(Me₃Si)₂C₅H₃](CO)₂Fe-P-P(Mes*)OC(CF₃)₂(11e). Analogously, red crystalline 11e (0.30 g, 39%, mp 120-121 °C) was isolated from the reaction of 0.62 g (0.99 mmol) of 7e and 60 mL (2.5 mmol) of HFA in 15 mL of methylcyclohexane (20 °C, 24 h), IR (KBr); δ 2962 (m), 2023 (vs) [ν (CO)], 1972 (vs) $[\nu(CO)]$, 1392 (w), 1362 (w), 1272 (s), 1257 (s), 1228 (s), 1184 (s), 1077 (s), 946 (w), 909 (m), 879 (w), 841 (s), 758 (m), 581 (m) cm⁻¹. ¹H NMR: δ 0.12 (s, 9H, SiMe₃), 0.18 (s, 9H, SiMe₃), 1.31 (s, 9H, p-tBu), 1.46 (s, 9H, o-tBu), 1.47 (s, 9H, o-tBu), 4.83 (s, 2H, H-4,5 ring), 4.89 (s, 1H, H-2), 7.38 (s, 1H, m-H aryl), 7.40 (s, 1H, m-H aryl). ¹³C{¹H} NMR: δ -0.85 (s, SiMe₃), -0.46 (s, SiMe₃), 31.3 (s, p-C(CH₃)₃), 33.6 (s, o-C(CH₃)₃), 33.7 (s, o-C(CH₃)₃), 34.5 (s, p-C(CH₃)₃), 39.4 (s, o-C(CH₃)₃), 92.1 (s), 92.9 (s), and 94.1 (s, C-2,4,5 ring), 98.7 (s), and 101.6 (s, C-1,3 ring), 122.9 (s, m- and p-C aryl), 149.4 (s, o-C aryl), 154.7 (s, i-C aryl), 214.1 (s, CO), 214.4 (s, CO). ¹⁹F{¹H} NMR: δ -75.9 (ddq, ³J_{PF} = 27.4, ⁴J_{FF} = 10.8, ${}^{4}J_{PF} = 3.3 \text{ Hz}$, 3F, CF₃), -71.4 (ddq, ${}^{4}J_{FF} = 10.8$, ${}^{3}J_{PF} = 5.7$, ${}^{4}J_{PF} = 2.8 \text{ Hz}$, 3F, CF₃). ${}^{29}\text{Si}{}^{1}\text{H}$ NMR: δ -3.5 (s, 1Si, SiMe₃), -5.8 (s. 1Si, SiMe₃). ³¹P{¹H} NMR: δ 121.8 (qqd, ¹J_{PP} = 93.0, ³J_{PF} = 27.4, 5.7 Hz, PFe), 190.1 (d, ${}^{1}J_{PP}$ = 93.0 Hz, PO). MS/El: m/z629 (M+ - HFA), 573 (M+ - HFA - 2CO), 516 (M+ - HFA - 2CO - tBu), 265 [((Me₃Si)₂C₅H₃)Fe(CO)₂⁺], 73 (SiMe₃⁺), 57 (tBu⁺). Anal. Calcd for $C_{34}H_{50}F_6FeO_3P_2Si_2$ (794.7): C, 51.39; H, 6.34. Found: C, 51.41; H, 6.16.

 $(\pi^{5}-1.3-tBu_{2}C_{5}H_{3})(CO)_{2}RuP-P(Mes^{*})OC(CF_{3})_{2}$ (12d). Analogously, 0.26 g (80%) of yellow 12d (mp 149 °C dec) was prepared from 0.26 g (0.40 mmol) of 8d and 11 mL (0.46 mmol) of HFA in 20 mL of n-hexane (5 h, 20 °C). IR (KBr): v 2969 (s), 2024 (vs) [v(CO)], 1973 (vs) [(CO)], 1363 (m), 1276 (s), 1261 (s), 1252 (s), 1221 (s), 1184 (s), 1081 (s), 950 (m), 913 (m), 758 (s), 706 (m), 564 (s) cm⁻¹. ¹H NMR: δ 0.91 (s, 9H, C₅-tBu), 0.99 (s, 9H, C₅tBu), 1.31 (s, 9H, p-tBu), 1.53 (s, br, 18H, o-tBu), 4.74 (s, br, 1H, H-4 or -5 ring), 4.95 (m, 1H, H-5 or -4 ring), 5.08 (m, H-2 ring), 7.43 (m, 1H, m-H aryl), 7.44 (m, 1H, m-H aryl). ¹³C{¹H} NMR: δ 30.7 (s, C₅C(CH₃)₃, 31.3 (s, C₅C(CH₃)₃), 31.5 (s, C₅C(CH₃)₃), 31.8

(s, p-C(CH₃)₃), 33.5 (s, o-C(CH₃)₃), 33.6 (s, o-C(CH₃)₃), 34.5 (s, p-C(CH₃)₃, 39.4 (s, o-C(CH₃)₃), 82.7 (s) and 83.9 (s, C-4.5 ring), 93.6 (s, C-2 ring), 116.5 (s, C-1,3 ring), 123.0 (s, m- and p-C aryl), 149.2 (s, o-C aryl), 154.6 (s, i-C aryl), 201.0 (s, CO). ¹⁹F{¹H} NMR: $\delta -70.8$ (dq, ${}^{4}J_{FF} = 10.0$, ${}^{3}J_{PF} = 4.6$ Hz, CF₃), -75.4 (ddq, ${}^{3}J_{PF} = 28, {}^{4}J_{FF} = 10, {}^{4}J_{PF} = 3 \text{ Hz}, \text{ CF}_{3}$). ${}^{31}P{}^{1}H{} \text{NMR}$: $\delta 94.7$ $(dqq, {}^{1}J_{PP} = 88.8, {}^{3}J_{PF} = 28.0, 4.6 Hz, PRu), 183.7 (qd, {}^{1}J_{PP} = 88.8, {}^{4}J_{PF} = 3 Hz, PO).$ MS/El: m/z 642 (M⁺ – HFA), 614 (M⁺ - HFA - CO), 585 (M⁺ - HFA - 2CO), 557 (M⁺ - HFA - CO tBu), 528 (M⁺ – HFA – 2CO – tBu), 69 (CF₃⁺), 57 (tBu⁺). Anal. Calcd for C36H50F6O3P2Ru (807.8): C, 53.52; H, 6.24. Found: C, 53.35: H. 6.22.

 $[\eta^{5}-1,3-(Me_{3}Si)_{2}C_{5}H_{3}](CO)_{2}RuP-P(Mes^{*})OC(CF_{3})_{2}$ (12e). Analogously, 0.35 g (56%) of orange crystalline 12e (mp 120 °C) was obtained from the reaction of 0.50 g (0.74 mmol) of 8e with 18 mL of HFA (0.75 mmol) at 20 °C (2 h). IR (KBr): v 2963 (s), 2031 (vs) [v(CO)], 1982 (vs) [v(CO)], 1363 (m), 1272 (m), 1257 (s), 1226 (s), 1177 (s), 1079 (s), 840 (s, br), 757 (m), 559 (w) cm⁻¹. ¹H NMR: δ 0.09 (s, 9H, SiMe₃), 0.14 (s, 9H, SiMe₃), 1.30 (s, 9H, p-tBu), 1.50 (s, 18H, o-tBu), 5.10 (t, ${}^{4}J_{HH} = 1.5$ Hz, 1H, H-2 ring), 5.27 (d, ${}^{4}J_{HH} = 1.5$ Hz, 2H, H-4,5 ring), 7.40 (s, 2H, m-H aryl). $^{13}C^{1}HNMR: \delta - 0.4 (s, SiMe_3), -0.1 (s, SiMe_3), 31.3 (s, p-C(CH_3)_3),$ 33.5 (s, o-C(CH₃)₃), 33.6 (s, o-C(CH₃)₃), 34.5 (s, p-C(CH₃)₃), 39.4 (s, o-C(CH₃)₃), 94.7 (s) and 95.4 (s, C-4,5 ring), 99.5 (s, C-2 ring), 105.8 (s, C-1,3 ring), 122.9 (s, m- and p-C aryl), 149.4 (s, o-C aryl), 154.6 (s, *i*-C aryl), 200.1 (s, CO). ¹⁹F{¹H} NMR: δ -70.7 (q, ⁴J_{FF} = 10.6 Hz, CF₃), -75.3 (ddq, ${}^{3}J_{PF}$ = 28.6, ${}^{4}J_{FF}$ = 10.6, ${}^{4}J_{PF}$ = 3.3 Hz, CF₃). ²⁹Si 1 H} NMR: δ -4.3 (s, SiMe₃), -5.0 (s, SiMe₃). ³¹P-{¹H} NMR: δ 86.4 (dqq, ¹J_{PP} = 88.0, ³J_{PF} = 28.6, 3.9 Hz, PRu), 184.9 (d, ¹J_{PP} = 88.0 Hz, PO). Anal. Calcd for C₃₄H₅₀F₆O₃P₂-RuSi₂ (839.9): C, 48.62; H, 6.00. Found: C, 48.55; H, 6.08.

Cross Experiment of 10d with 8c. A 0.3-g (0.37-mmol) quantity of freshly prepared 10 d and 0.24 g (0.37 mmol) of 8c were dissolved in 3 mL of toluene in an NMR tube. The course of the reaction was monitored by ³¹P{¹H} NMR. 10d cleanly rearranged to 12d over a period of 45 min, whereas metallodiphosphene 8c remained unaffected. No transfer of HFA from 12d to 8c was observed.

Results and Discussion

Syntheses and Spectra. A prerequisite for reliable results was the availability of a series of analogously substituted ferrio- and rutheniodiphosphenes. We have chosen the C_5Me_5 (a), C_5Me_4Et (b), 1,2,4-i $Pr_3C_5H_2$ (c), 1,3-t $Bu_2C_5H_3$ (d), and 1,3-(Me₃Si)₂C₅H₃ (e) ligands at the metal center with a decreasing σ -donor/ π -acceptor capacity along this series and the supermesityl substituent (2,4,6 $tBu_3C_6H_2 = Mes^*$) at the P=P unit.

The missing members in the series were synthesized from the dimers 1 and $2^{19,20}$ by following literature methods. In some cases slight modifications of these were necessary.

The stability of the ruthenium derivatives in general exceeded that of the iron analogues. Thus the ferriodisilylphosphanes 5c and 5e are unstable and had to be converted in situ into the ferriodiphosphenes 7c and 7e, whereas the corresponding ruthenium compounds 6c and 6e could be isolated in good yields without difficulty. Similarly, 7c was unstable in contrast to the rutheniodiphosphene 8c.

The ³¹P{¹H} NMR data for 7a-7e and 8a-8e parallel the decreasing electron donation of the ligands. Thus the resonances of the metalated phosphorus atom in each series was shifted to high field in going from a-e.

⁽¹⁹⁾ King, R. B.; Bisnette, M. B. J. Organomet. Chem. 1967, 8, 287.
(20) Neilson, G. O. Organometallics 1983, 2, 1474.
(21) King, R. B.; Douglas, W. M.; Efraty, A. J. Organomet. Chem.

^{1974, 69, 131.}

 ⁽²²⁾ Weber, L.; Reizig, K.; Boese, R. Chem. Ber. 1985, 118, 1193.
 (23) Weber, L.; Reizig, K.; Boese, R. Organometallics 1985, 4, 2097.

Table 1. ${}^{31}P{}^{1}H{}$ NMR Data for the Metallodiphosphenes 7a-e and 8a,c-e (in C₆D₆)

i) $X_2 (X=Br, 1)^{21}$; i i) LiP(SiMe₃)₂*DME 22,23 ; i i i) Mes*PCl₂ 9,10

Compd.	C₅R5	м	x
<u>1,3,5,7c</u>	1,2,4-iPr ₃ C ₅ H ₂	Fe	1
2.4, <u>6,8c</u>	1,2,4-iPr ₃ C ₅ H ₂	Ru	Br
2, 4, 6, 8d	1,3-tBu ₂ C ₅ H ₃	Ru	8r
<u>3,5,7e</u>	1,3-(Me ₃ Si) ₂ C ₅ H ₃	Fe	I
2, 4, <u>6</u> , <u>8</u> e	1,3-(Me ₃ Si) ₂ C ₅ H ₃	Ru	Br

11 a,d,e 12d,e

The reaction of the ferriodiphosphenes 7a,b with an excess of HFA in *n*-pentane solution afforded the cycloadducts 9a,b as orange crystalline solids. These transformations were completed over a period of 1 week. During crystallization experiments in pentane solution at -40 °C pure 9a rearranged to the 1-oxa-2.3-diphosphetane 11a within the course of 4 weeks. This conversion stopped at a ratio of 9a:11a = 3:1. Both complexes could not be separated on a preparative scale. In contrast to this no propensity to rearrangement was evident with 9b. The ferriodiphosphenes 7d,e and excess of HFA, however, underwent reactions with the exclusive generation of the red microcrystalline 1-oxa-2,3-diphosphetanes 11d,e. Monitoring by ³¹P{¹H} NMR revealed the initial formation of the five-membered rings 9d (δ 204.9 (d) (PC), 476.8 (d) (PFe), ${}^{1}J_{PP} = 634.2 \text{ Hz}$) and **9e** (δ 206.2 (d) (PC), 478.2 (d) (PFe), ${}^{1}J_{PP} = 630.0$ Hz), which rapidly rearranged to the final products.

Presumably for steric reasons, metallodiphosphene (η^5 -C₅Me₅)(CO)₂Fe—P=P—C(SiMe₃)₃ was not affected by HFA, whereas (η^5 -C₅H₅)(CO)(PPh₃)Fe—P=P—Mes* was decomposed by the ketone.

The rutheniodiphosphenes 8a, c-e were also considered as suitable candidates in this study mainly because of their increased metal basicity relative to their Fe analogues. Moreover, due to longer metal-carbon and metalphosphorus bond lengths steric hindrance may be of minor importance, as in the iron derivatives.

Compounds 8a,c were cleanly converted into the cycloadducts 10a and 10c, which did not show any evidence of rearrangement. The increased thermal stability of 10d as compared to 9d is underlined by the fact that 10d was isolated as a yellow microcrystalline product from the reaction between 8d and HFA after 30 min.

In toluene solution a quantitative conversion of 10d to 12d occurred within 45 min at 20 °C (Scheme 3). The stability of cycloadduct 10e markedly decreased relative to 10d. Only at the beginning of the reaction between 8e and HFA was 10e briefly detectable by ³¹P NMR (δ 190.0

(d) (PC), 441.7 (d) (PRu), ${}^{1}J_{PP} = 642$ Hz), before it was transformed into orange-yellow 12e. In a ${}^{31}P$ NMR experiment equal molar amounts of freshly prepared 10d and 8c were allowed to react in toluene. 10d was cleanly converted into 12d, whereas metallophosphene 8c remained unaffected. No trace of 10c, which would indicate a mechanism for the conversion $10d \rightarrow 12d$ via free HFA, was detected. The novel compounds 9–12 were diamagnetic solids, which were soluble in most aprotic organic solvents. The structures of the cycloadducts were assigned on the basis of spectral evidence and confirmed by singlecrystal X-ray diffraction studies with 9a, 10a,c, and 11a. The ${}^{31}P$ NMR spectra of the complexes 9a,b,d,e display two doublets at δ 478.2–483.6 (FeP) and 180.7–206.2 (PC) with large coupling constants ${}^{1}J_{PP} = 630-633$ Hz, sug-

Figure 1. Molecular structure of 9a in the crystal.

Figure 2. Molecular structure of 10a in the crystal.

gesting the presence of P=P double bonds. The corresponding data for the Ru analogues are δ ⁽³¹PRu) = 441.7-451.7 and δ ⁽³¹PC) = 167.0-192.0 ($^{1}J_{PP}$ = 639-643 Hz).

	9a	10a	10c	11a
formula	C33H44F6FeO3P2	C ₃₃ H ₄₄ F ₆ O ₃ P ₂ Ru	C ₃₇ H ₅₂ F ₆ O ₃ P ₂ Ru	C ₃₃ H ₄₄ F ₆ FeO ₃ P ₂
mol wt	720.5	765.7	821.8	720.5
cryst size/mm	$0.1 \times 0.45 \times 0.5$	$0.2 \times 0.4 \times 0.4$	$0.3 \times 0.2 \times 0.1$	$0.1 \times 0.35 \times 0.5$
cryst syst	monoclinic	monoclinic	triclinic	monoclinic
space group	$P2_1/c$	$P2_1/c$	PĪ	C_2/c
a/Å	21.809(4)	22.308(8)	9.416(5)	46.79(3)
b'/Å	10.066(2)	10.174(4)	9.784(6)	9.316(5)
c/Å	16.250(3)	16.014(10)	24.40(2)	16.611(5)
α/deg	90	90	92.74(5)	90
β/deg	95.87(1)	96.62(4)	98.42(5)	101.52(3)
γ/deg	90 `´	90	117.37(4)	90
$V/Å^3$	3560(2)	3610(3)	1958(2)	7121(6)
Z	4	4	2	8
$D_{\rm calcd}/{\rm g}~{\rm cm}^{-3}$	1.344	1.409	1.394	1,344
F(000)	1504	1576	852	3008
$\mu(Mo K\alpha)/mm^{-1}$	0.571	0.584	0.544	0.571
temp/K	183	177	173	179
$2\theta \max/\deg$	50.0	55.0	50	45.0
no. of measd rflns	6870	8593	7380	5086
no. of obsd rflns $(F_o > 4\sigma(F_o))$	2383	5223	4164	2143
no. of variables	232	406	439	254
min/max transm	0.4225/0.4904	0.1943/0.2261		0.2728/0.3101
goodness of fit	2.26	1.90	1.044	1.78
progr used	SHELXTL	SHELXTL	SHELXL-93	SHELXTL
R	0.106	0.059	0.065	0.080
R _w	0.072	0.046	0.100	0.058
based on	F	F	F^2	F
largest peak in diff map/e Å-3	0.88	0.70	0.6	0.50
abs corr	emp (ψ -scan)	emp (↓-scan)	none	emp (ψ-scan)

Table 2. (Crystal Data	Collection and	Refinement	Parameters [*]
------------	--------------	----------------	------------	-------------------------

^a Siemens P2₁ diffractometer, Mo K α (graphite monochromator), $\lambda = 0.710$ 73 Å, full-matrix least-squares refinements.

Transition-Metal-Substituted Diphosphenes

Figure 3. Molecular structure of 10c in the crystal.

In both series the arylated phosphorus atoms were deshielded in going from 9 and 10a-c to 9 and 10d,e which parallels the decrease of the donor capacity of the Cp ring. $(\delta(PO) (9e) - \delta(PC) (9a) = 25.5; \delta(PC) (10e) - \delta(PC) (10a)$ = 23). In the ¹⁹F NMR spectra of 9e,b and 10a,c two quartets in the range from -70.0 to -71.8 ($^4J_{FF}$ = ca. 7 Hz) agree with two magnetically nonequivalent CF₃ groups with no PF coupling and infer the absence of any direct $PC(CF_3)_2$ contact. The ¹³C{¹H} NMR spectra of the five membered cycloadducts largely fulfill the expectations. The resonances of the acylic carbonyl groups in 9b and 10a,c were observed as doublets at δ 236.4–242.3 (²J_{PC} = 9.2-14.0 Hz). A doublet of doublets at δ 213.5 (²J_{PC} = 22.0; ${}^{3}J_{PC} = 5.0 \text{ Hz}$) in the spectrum of **9b** and doublets at δ 200.7 ($^{2}J_{PC}$ = 21.3 Hz, 10a) and 201.6 ($^{2}J_{PC}$ = 13.2 Hz, 10c) were assigned to the remaining terminal CO ligands. The ¹³C nuclei of the HFA building block in 9 and 10 could not be detected in the spectra. The IR spectra (KBr) of compounds 9 and 10 display only one intense band at ν 1958 (9b), 1960 (9a), 1983 (10a), and 1991 (10c) cm⁻¹ which parallels the σ -donor/ π -acceptor capability of the Cp rings in these molecules. The acylic carbonyl group in these complexes give rise to an absorption at 1650 (9a), 1656 (9b), and 1665 \pm 1 (10a,c) cm⁻¹ of medium intensity.

The presence of PP single bonds in four-membered rings can be deduced from the ³¹P NMR parameters of the 1-oxa-2,3-diphosphetanes 11a,d,e and 12d,e. The arylated phosphorus atoms are registered as doublets at δ 180.4– 194.7 (${}^{1}J_{PP}$ = 93 ± 1 Hz) and δ 183.7–184.9 (${}^{1}J_{PP}$ = 88 Hz), respectively. The linkage between the metalated phosphorus centers and the $C(CF_3)_2$ group is manifested in the PF coupling with one or two CF_3 groups. In 10a a doublet of quartets at δ 136.0 with a ${}^{3}J_{\rm PF}$ coupling of 26 Hz underlines the exclusive interaction of the ³¹P nucleus with the CF_3 group in cis position to the P lone pair. In 11d,e and 12d,e doublets of quartets of quartets feature PF couplings to the cis CF_3 (${}^3J_{PF} = 26-28.6$ Hz) and the trans CF_3 group (${}^3J_{PF}$ = 3.9–5.9 Hz). The ${}^{31}P$ NMR signals fall in the range δ 86.4–121.8. Due to the multiplicity of the signals and the size of the ${}^{3}J_{PF}$ and ${}^{4}J_{PF}$ couplings the assignment of the high field resonances at δ ⁽¹⁹F) = -75.1 to -75.9 to the CF₃ group which is cis oriented to the lone pair at the metalated P atom is possible. In keeping with this the absorptions of the trans CF₃ groups are measured at $\delta(^{19}\text{F}) = -70.6 \text{ to } -71.4 \text{ ppm in the } ^{19}\text{F}{^1\text{H}} \text{NMR spectra.}$ The presence of a $(\eta^5-C_5R_5)(CO_2)$ unit in 11d,e and 12d,e is evident from two intense $\nu(CO)$ stretches at $\nu = 2008$ -

Table 3. Atomic Coordinates ($\times 10^4$) and Equivalent Isotropic Displacement Coefficients ($\mathring{A} \times 10^3$) of 9a

	x	У	Z	$U(eq)^a$
Fe(1)	6087(1)	1830(2)	3363(1)	28(1)
P(1)	6988(2)	1588(4)	3908(2)	27(1)
P(2)	7532(2)	2128(4)	4929(2)	32(2)
F (1)	6669(3)	-1836(8)	3280(5)	49(3)
F(2)	7569(4)	-1994(8)	2886(5)	55(3)
F(3)	6775(3)	-2034(8)	1992(5)	57(4)
F(4)	7345(3)	1897(8)	1941(5)	56(3)
F(5)	7941(4)	182(8)	2010(5)	56(4)
F(6)	7119(4)	147(9)	1197(4)	63(4)
O(1)	5602(5)	-353(10)	4289(7)	78(6)
O(2)	7349(4)	499(8)	3374(5)	31(4)
O(3)	6000(4)	168(10)	1934(6)	58(5)
C(1)	5777(4)	3169(10)	2402(4)	27(3)
C(2)	6140	3854	3043	29(4)
C(3)	5848	3721	3781	38(4)
C(4)	5305	2954	3596	41(4)
C(5)	5261	2613	2744	41(4)
C(6)	5883(6)	3208(16)	1499(8)	58(5)
C(7)	6687(6)	4691(14)	2933(8)	53(5)
C(8)	6042(7)	4422(15)	4575(9)	72(6)
C(9)	4836(6)	2676(15)	4178(9)	75(6)
C(10)	4745(7)	1848(16)	2301(9)	81(6)
C(11)	5803(7)	474(16)	3933(9)	38(4)
C(12)	7016(6)	46(13)	2626(8)	25(4)
C(13)	6034(6)	593(13)	2526(9)	29(4)
C(14)	7364(7)	560(15)	1931(10)	33(4)
C(15)	6997(7)	-1464(15)	2690(10)	36(4)
C(16)	8249(6)	1241(12)	4722(7)	20(4)
C(17)	8327(6)	-148(13)	4887(8)	25(4)
C(18)	8733(6)	-845(13)	4482(8)	·30(4)
C(19)	9107(6)	-262(14)	3959(9)	32(4)
C(20)	9084(6)	1135(14)	3901(8)	34(4)
C(21)	8681(6)	1913(15)	4309(8)	38(4)
C(22)	7967(6)	-897(14)	5540(9)	37(4)
C(23)	7907(7)	-50(15)	6314(8)	62(5)
C(24)	8378(7)	-2135(15)	5874(9)	73(6)
C(25)	7350(6)	-1390(14)	5195(9)	66(5)
C(26)	9537(8)	-1027(17)	3443(10)	58(5)
C(27)	10189(8)	-707(18)	3706(10)	125(8)
C(28)	9379(8)	-759(18)	2535(10)	117(8)
C(29)	9432(10)	-2453(19)	3471(13)	151(10)
C(30)	8769(7)	3512(16)	4224(10)	58(5)
C(31)	9434(7)	3792(15)	4123(9)	81(6)
C(32)	8681(9)	4086(19)	5058(11)	121(8)
C(33)	8354(8)	4003(19)	3535(11)	126(8)

^a Equivalent isotropic U defined as one-third of the trace of the orthogonalized U_{ij} tensor.

2023 and 1964–1972 cm^{-1} and 2024–2031 and 1973–1982 cm^{-1} , respectively.

Singlets in the ¹³C{¹H} NMR spectra of 11d,e and 12d,e at δ 215 ± 1 and δ 201 ± 1, respectively, are caused by the terminal CO ligands. Resonances due to the C(CF₃)₂ group were not detected in the ¹³C{¹H} NMR spectra.

At room temperature solutions of the five-membered rings 9a and 10c in benzene decompose within a few weeks to give the metallodiphosphenes and unidentified products.

We suggest that the formation of 9 and 10 as well as 11 and 12 is initiated by a [2 + 1] cycloaddition with the result of the transient adduct A, which in no case could be detected spectroscopically. This process, which parallels the formation of I, is dependent on the steric encumbrance of the metallodiphosphene, e.g. the very bulky $(\eta^5$ -Me₅C₅)(CO)₂Fe—P=P—C(SiMe₃)₃ was inert toward HFA. Subsequent scission of the P—C linkage in A and attack of the carbanion at a positively polarized carbon atom of a terminal carbonyl ligand affords the fivemembered metallaheterocycles 9 and 10 (path a). Compounds 11 and 12 result from P—O bond rupture in A and attack of the oxygen at the arylated P atom. The cross

Table 4. Atomic Coordinates ($\times 10^4$) and Equivalent Isotropic Displacement Coefficients ($\mathring{A} \times 10^3$) of 10a

	x	У	Z	$U(eq)^a$
Ru(1)	1099(1)	1846(1)	3418(1)	28(1)
P(1)	2035(1)	1530(1)	3979(1)	25(1)
P(2)	2599(1)	2053(1)	5000(1)	33(1)
F(1)	1696(1)	-1866(3)	3284(2)	49(1)
F(2)	2586(1)	-1975(3)	2889(2)	55(1)
F(3)	1804(2)	-2017(3)	1967(2)	56(1)
F(4)	2345(2)	1888(3)	1959(2)	56(1)
F(5)	2951(1)	246(4)	2029(2)	60(1)
F(6)	2141(2)	169(4)	1190(2)	66(1)
O(1)	639(2)	-418(4)	4387(3)	67(2)
O(2)	2367(1)	455(3)	3411(2)	29(1)
O(3)	1043(2)	179(4)	1913(2)	50(2)
C(1)	834(3)	3897(6)	3776(4)	49(2)
C(2)	318(3)	3155(7)	3616(4)	56(2)
C(3)	270(2)	2748(5)	2748(4)	41(2)
C(4)	760(2)	3288(5)	2392(3)	33(2)
C(5)	1128(2)	3964(5)	3025(4)	39(2)
C(6)	1058(4)	4650(7)	4573(4)	125(4)
C(7)	-152(3)	2896(8)	4189(4)	112(4)
C(8)	-246(3)	2002(7)	2278(5)	92(3)
C(9)	856(3)	3221(7)	1480(3)	67(3)
C(10)	10/2(3)	4/03(0)	2895(5)	86(3)
C(11)	831(3)	430(0)	4014(4)	41(2)
C(12)	2041(2)	33(3)	2652(3)	28(2)
C(13)	1340(2)	300(3)	2540(5)	33(2)
C(14)	2033(3)	-1408(3)	2090(3)	30(2)
C(15)	2303(3)	1172(5)	1747(3)	37(2)
C(10)	3252(2) 3360(2)	-187(5)	4773(3)	$\frac{2}{28(2)}$
C(18)	3771(2)	-866(5)	4929(3)	$\frac{20(2)}{32(2)}$
C(10)	4121(2)	-266(5)	3944(3)	31(2)
C(20)	4106(2)	1095(5)	3914(3)	34(2)
C(21)	3714(2)	1849(5)	4327(3)	29(2)
C(22)	3038(2)	-958(6)	5580(3)	$\frac{1}{38(2)}$
$\tilde{C}(23)$	3400(3)	-2174(6)	5891(4)	68(3)
C(24)	2985(3)	-144(6)	6371(3)	65(3)
C(25)	2405(3)	-1445(6)	5216(4)	63(3)
C(26)	4534(2)	-1042(6)	3418(4)	41(2)
C(27)	4451(3)	-2488(7)	3477(5)	98(4)
C(28)	4380(3)	-661(8)	2492(4)	78(3)
C(29)	5190(2)	-676(7)	3687(4)	74(3)
C(30)	3782(3)	3377(5)	4296(4)	46(2)
C(31)	4410(3)	3758(6)	4063(5)	76(3)
C(32)	3752(3)	3973(7)	5170(4)	82(3)
C(33)	3316(3)	3998(7)	3655(5)	91(3)

^a Equivalent isotropic U defined as one-third of the trace of the orthogonalized U_{ij} tensor.

experiment between 8c and 10d, which gave only 12d and no 10c is in agreement with an intramolecular rearrangement 9, $10 \rightarrow 11$, 12. The intermediacy of free metallodiphosphenes cannot, however, be excluded completely, as the decomposition of 9 and 10 over the period of several days indeed furnished the free metallodiphosphenes. In our opinion, the reluctance of the initially formed fivemembered cycloadducts toward conversion into the 1-oxa-2.3-diphosphetanes, is largely determined by the strength of the M-P bond. Scherer, e.g., observed that the thermal stability of the RuP bonds in $(\eta^5 - c - P_5)$ Ru complexes markedly exceeds that of the corresponding iron species.²⁴ The dependency of the stability of 9 and 10 on the electron donating ability (basicity) of the $(C_5R_5)(CO)M$ fragment infers that the $M \rightarrow P$ back-bonding, and thus π -bond contribution is an important factor for their stability.

One might also envisage steric reasons for the ease of the transformation 9, $10 \rightarrow 11$, 12 (e.g. in Ru derivatives 10 steric pressure is relieved by increased RuP and RuC distances). Molecular models of the structurally characterized five-membered cycloadducts, however, showed no

for 10c				
	x	У	Z	U(eq)
Ru(1)	4690(1)	2268(1)	1472(1)	21(1)
P (1)	4282(2)	1551(2)	2301(1)	22(1)
P(2)	2810(2)	1433(2)	2836(1)	28(1)
F(1)	8840(5)	2121(5)	3076(2)	50(1)
F(2)	9662(5)	2548(6)	2302(2)	59(1)
F(3)	8491(5)	3770(5)	2610(2)	54(1)
F(4)	5235(5)	-1479(4)	1864(2)	48(1)
F(5)	6659(5)	-1010(5)	2685(2)	45(1)
F(6)	7824(5)	-542(5)	1978(2)	55(1)
O (1)	7132(7)	5572(6)	1970(2)	57(2)
O(2)	5690(5)	1126(5)	2580(2)	24(1)
O(3)	7220(5)	1435(5)	1307(2)	35(1)
C(1)	2425(7)	2258(7)	993(3)	23(2)
C(2)	3781(8)	3116(7)	741(2)	23(2)
C(3)	4393(8)	2128(7)	537(3)	23(2)
C(4)	3373(8)	625(7)	673(2)	24(2)
C(5)	2179(7)	681(7)	951(2)	23(2)
C(6)	1383(8)	2873(8)	1209(3)	32(2)
C(7)	5718(7)	2554(7)	211(2)	23(2)
C(8)	823(7)	-694(7)	1143(3)	29(2)
C(9)	2381(9)	4413(8)	1592(3)	48(2)
C(10)	330(9)	30/3(10)	/12(3)	54(2)
C(11)	6238(9)	4299(8)	1797(3)	36(2)
C(12)	6804(8)	1157(7)	2247(3)	25(2)
C(13)	0428(7)	1581(7)	1624(3)	21(2)
C(14)	8493(8) 6650(0)	2414(9)	2557(3)	34(2)
C(15)	2875(7)	-4/3(9)	2192(3)	30(2)
C(10)	5100(8)	1034(7)	3437(2)	21(2)
C(17)	6251(8)	2339(7)	3013(3)	23(2)
C(10)	6248(8)	645(7)	4151(5)	26(2)
C(20)	4837(8)	-613(7)	3865(3)	25(2)
C(20)	3611(8)	-013(7) -477(7)	3525(2)	23(2)
C(22)	5372(9)	4021(8)	3874(3)	$\frac{25(2)}{35(2)}$
$\tilde{C}(23)$	6100(11)	4924(8)	3398(3)	62(3)
C(24)	6499(10)	4986(8)	4432(3)	55(2)
$\tilde{C}(25)$	3736(10)	3957(9)	3911(3)	58(2)
C(26)	7597(8)	402(8)	4493(3)	31(2)
C(27)	6943(6)	-568(6)	4958(2)	47(2)
C(28)	9091(6)	1951(6)	4754(2)	51(2)
C(29)	8130(9)	-461(9)	4099(3)	44(2)
C(30)	2042(8)	-1992(7)	3256(3)	30(2)
C(31)	542(9)	-1768(10)	3184(5)	89(4)
C(32)	1703(10)	-3249(8)	3635(3)	62(3)
C(33)	2190(11)	-2589(9)	2700(3)	82(4)
C(34)	5053(8)	2260(8)	-420(3)	31(2)
C(35)	7079(8)	4229(7)	387(3)	36(2)
C(36)	-813(8)	-1167(8)	768(3)	44(2)
C(37)	1145(8)	-2089(7)	1168(3)	35(2)

^a U(eq) is defined as one-third of the trace of the orthogonalized U_{ij} tensor.

significant steric interactions between the heterocycle and the substituents of the cyclopentadienyl ligands.

X-ray Structure Analyses of 9a, 10a, and 10c. Crystals of 9a were grown from pentane solutions at -40 °C; those of 10a and 10c were obtained from hexane at -30 °C.

The compounds 9a, 10a, and 10c display comparable structures (9a and 10a are isomorphous). The most interesting feature of the molecular structures of these species (Figures 1-3 and Table 6) is the geometry of the nearly planar five-membered metallaheterocycle (mean deviation from planarity: 9a, 0.024 Å; 10a, 0.024 Å; 10c, 0.049 Å). The Fe-P bond in 9a of 2.084(4) Å is remarkably short and strongly suggests multiple-bond contributions. Similarly, short Fe-P bond distances were found for compounds 13 (2.117(2) Å)²⁵ and 14 (2.112(1) and 2.202(1) Å).²⁶

In 7a the Fe—P contact was determined to be 2.260(1) Å.⁹ From the Fe—Fe distance in $(C_5H_5)_2Fe_2(NO)_2$ (2.326

⁽²⁴⁾ Scherer, O. J. Personal communication.

Table 6. Selected Bond Lengths (Å) and Angles (deg) of 9a, 10a. and 10c

	9a ª	10a ^b	10c ^b
M-P (1)	2.084(4)	2.200(2)	2.202(2)
M-C(11)	1.795(16)	1.864(6)	1.884(7)
M-C(13)	1.937(14)	2.038(6)	2.030(6)
P(1) - P(2)	2.014(5)	2.016(2)	2.009(3)
P(1) - O(2)	1.647(9)	1.649(4)	1.632(4)
P(2)-C(16)	1.860(13)	1.859(5)	1.841(6)
O(1) - C(11)	1.128(19)	1.159(8)	1.149(7)
O(2)-C(12)	1.427(15)	1.409(5)	1.408(7)
O(3) - C(13)	1.191(16)	1.210(6)	1.196(7)
C(12) - C(13)	1.640(19)	1.633(7)	1.628(8)
M - P(1) - P(2)	140.3(2)	140.0(1)	138.75(11)
M - P(1) - O(2)	109.5(3)	109.7(1)	109.9(2)
P(2)-P(1)-O(2)	109.0(3)	110.2(1)	111.1(2)
P(1)-O(2)-C(12)	115.6(7)	117.2(3)	117.0(4)
O(2)-C(12)-C(13)	111.8(10)	112.5(4)	112.9(5)
M-C(13)-C(12)	116.3(9)	117.7(3)	117.3(4)
P(1)-M-C(13)	86.4(4)	82.5(2)	82.1(2)

^a M = Fe. ^b M = Ru.

Å)²⁷ and the P=P bond length (ca. 2.00 Å),² an Fe-P double bond may be estimated to 2.16 Å.

The observed Ru-P distances in 10a and 10c of 2.200-(2) and 2.202(2) Å, respectively, are also suggestive of a rather substantial M-P π -type interaction. The calculated value for a Ru-P single bond is 2.43 Å,²⁸ which is about realized in $(\eta^{5}-C_{5}Me_{5})(CO)_{2}RuP[C(O)tBu]_{2}[2.404(1) Å]^{.29}$ Observed Ru-P distances in low valent rutheniumphosphorus compounds range from 2.175 Å in $(\eta^6-C_6H_6)$ - $Ru[(F_5C_2)_2PCH_2CH_2P(C_6F_5)_2]^{30}$ to 2.426(6) in [RuCl- $(NO)_2(PPh_3)_2]^+(PF_6)^-C_6H_6.^{31,32}$

- Inc. San Diego, 1993; p 684.
 (28) Pauling, L. The Nature of the Chemical Bond; Cornell University
 Press: Ithaca, NY, 1960; p 249.
 (29) Weber, L.; Reizig, K.; Boese, R. Organometallics 1985, 4, 1890.
 (30) Koola, J. D.; Roddick, D. M. J. Am. Chem. Soc. 1991, 113, 1450.
 (31) Pierpont, C. G.; Eisenberg, R. Inorg. Chem. 1972, 11, 1088.
 (32) Guggenberger, L. J. Inorg. Chem. 1973, 12, 1317.

Figure 4. Molecular structure of 11a in the crystal.

Table 7. Atomic Coordinates (×104) and Equivalent Isotropic Displacement Coefficients ($Å \times 10^3$) of 11a

	x	у	z	U(eq) ^a
Fe (1)	4432(1)	3024(2)	427(1)	33(1)
$\mathbf{P}(1)$	3994(1)	1892(4)	-124(2)	30(1)
P(2)	3820(1)	2667(4)	-1410(2)	28(1)
F(1)	4450(1)	456(8)	-1267(4)	50(3)
F(2)	4261(2)	-1611(8)	-1357(4)	51(3)
F(3)	4446(2)	-744(8)	-174(4)	59(4)
F(4)	3708(2)	-1782(8)	-1316(4)	58(3)
F(5)	3902(2)	-1628(7)	-26(4)	54(3)
F(6)	3541(2)	-321(8)	-546(4)	49(3)
$\mathbf{O}(1)$	4820(2)	2524(9)	-707(6)	67(5)
O(2)	4263(2)	5686(11)	-423(6)	65(5)
O (3)	3894(2)	917(8)	-1632(4)	26(3)
C(1)	4427(3)	1819(15)	1538(7)	35(3)
C(2)	4341(3)	3223(15)	1628(7)	40(4)
C(3)	4569(3)	4189(15)	1530(8)	44(4)
C(4)	4795(3)	3360(14)	1363(7)	37(4)
C(5)	4712(2)	1905(15)	1356(6)	33(3)
C(6)	4277(3)	498(13)	1669(7)	42(4)
C(7)	4062(3)	3685(14)	1878(7)	53(4)
Č(8)	4569(3)	5806(14)	1632(8)	70(5)
C(9)	5094(3)	3863(15)	1279(8)	70(5)
C(10)	4905(3)	623(13)	1288(7)	45(4)
C(11)	4650(3)	2636(15)	-306(8)	48(4)
C(12)	4317(3)	4625(17)	-81(9)	43(4)
Č(13)	3999(3)	292(14)	-857(7)	30(3)
C(14)	4285(3)	-426(16)	-909(9)	39(4)
C(15)	3782(3)	-888(16)	-702(9)	40(4)
C(16)	3417(2)	2464(13)	-1576(7)	30(3)
C(17)	3246(2)	2899(14)	-1002(6)	31(3)
C(18)	2987(2)	2166(12)	-991(6)	24(3)
C(19)	2880(3)	1121(13)	-1544(7)	28(3)
C(20)	3023(3)	920(13)	-2186(7)	35(4)
C(21)	3281(2)	1580(12)	-2248(7)	25(3)
C(22)	3316(3)	4144(13)	-391(7)	29(3)
C(23)	3586(3)	4980(13)	-448(7)	45(4)
C(24)	3070(3)	5250(13)	-661(7)	48(4)
C(25)	3323(2)	3673(13)	491(7)	44(4)
C(26)	2609(3)	196(15)	-1475(8)	47(4)
C(27)	2397(6)	164(35)	-2258(17)	62(10)
C(28)	2725(5)	-1357(27)	-1220(15)	51(10)
C(29)	2478(6)	630(30)	-752(16)	64(11)
C(27')	2492(7)	-678(36)	-2277(18)	35(11)
C(28')	2334(7)	1343(34)	-1530(19)	53(13)
C(29')	2652(7)	-461(39)	-662(21)	62(13)
C(30)	3384(3)	1415(13)	-3079(7)	29(4)
C(31)	3121(2)	1882(14)	-3772(6)	46(4)
C(32)	3636(2)	2316(12)	-3222(6)	33(4)
C(33)	3437(3)	-171(13)	-3242(7)	42(4)

^a Equivalent isotropic U defined as one-third of the trace of the orthogonalized U_{ii} tensor.

The exocyclic P-P bond lengths in 9a, 10a, and 10c (2.014(5) Å; 2.016(2) Å; 2.009(3) Å) are comparable to the P-P bond in 7a (2.027(3) Å). The bond lengths P(1)-O(2)[9a, 1.647(9) Å; 10a, 1.649(4) Å; 10c, 1.632(4) Å] are shorter

⁽²⁵⁾ Weber, L.; Frebel, M.; Boese, R. New J. Chem. 1989, 13, 303. (26) Bartlett, R. A.; Dias, H. V. R.; Flynn, K. M.; Olmstead, M. M.; Power, P. P. J. Am. Chem. Soc. 1987, 109, 5699. (27) Porterfield, W. W. Inorganic Chemistry, 2nd ed.; Academic Press,

Inc. San Diego, 1993; p 684.

Table 8. Selected Bond Lengths (Å) and Angles (deg) of 11a

Fe-P(1)	2.327(4)	P(1)-C(13)	1.927(13)
Fe-C(11)	1.779(15)	P(2)-O(3)	1.722(8)
Fe-C(12)	1.744(15)	O(3) - C(13)	1.409(13)
P(1) - P(2)	2.249(5)	O(1)-C(11)	1.139(18)
P(2) - C(16)	1.865(11)	O(2) - C(12)	1.144(18)
Fe - P(1) - P(2)	110.7(2)	O(3) - P(2) - C(16)	96.6(5)
Fe-P(1)-C(13)	118.5(4)	P(1)-Fe-C(11)	103.0(4)
P(1)-P(2)-C(16)	105.9(4)	P(1)-Fe-C(12)	92.0(5)
P(1)-C(13)-O(3)	102.2(8)	C(11)-Fe- $C(12)$	90.4(7)
P(2)-O(3)-C(13)	104.2(7)		

than the sum of the covalent single-bond radii for P (1.10 Å) and O (0.66 Å). 33

In the complexes 9a and 10a the atoms P(2) and C(16) are located in the ring plane, as evidenced by the deviations of P(2) (0.07 Å) and C(16) (0.01 and 0.07 Å, respectively). In 10c, the deviation of the ipso-carbon atom from the plane of the five-membered ring amounts to 0.174 Å. The E configuration of the educts 7a,8a, and 8c has been maintained throughout the cycloaddition. The internal ring distances C(12)-C(13) are conspicuously long [9a, 1.640(19) Å; 10a, 1.633(7) Å; 10c, 1.628(8) Å] as compared to the standard value of a C-C single bond (1.54 Å).

X-ray Structure Analysis of 11a. Red crystals of 11a were obtained from crystallization experiments with pentane solutions of 9a at -40 °C after a period of 4 weeks. The X-ray diffraction analysis (Figure 4 and Table 8) shows the presence of an essentially planar 1-oxa-2,3-diphosphetane (mean deviation from planarity 0.01 Å) which is

linked to the $(\eta^5-C_5Me_5)(CO)_2Fe$ fragment via an Fe-P single bond of 2.327(4) Å. The P-P bond of 2.249(5) Å reveals a bond order of unity.³⁴ In the four-membered ring the oxygen atom of the ketone is added to the arylated P atom [P(2)-O(3) = 1.722(8) Å]. In keeping with this, the (CF₃)₂C fragment in 11a is connected to the metalated phosphorus via a long P-C single bond [P(1)-C(13) = 1.927(13) Å], which is quite common for diphosphetane derivatives.^{35,36}

Due to the longer distance P(1)-P(2) the bond angles at the phosphorus atoms are markedly more acute [C(13)-P(1)-P(2) = 72.3(4)°, P(1)-P(2)-O(3) = 81.3(3)°] as compared to the angles at carbon and oxygen (102.2(9) and 104.2(7)°, respectively). Like in 7a and 9a the P-P bond is *E* configurated.

Acknowledgment. This work was generously supported by the Deutsche Forschungsgemeinschaft, Bonn, Germany, the Fonds der Chemischen Industrie, Frankfurt/ Main, Germany, BASF AG Ludwigshafen, and Degussa AG, Hanau, Germany.

Supplementary Material Available: Tables of crystal data, bond distances and angles, anisotropic displacement coefficients, and H-atom coordinates for 9a, 10a, 10c, and 11a (28 pages). Ordering information is given on any current masthead page.

OM940062W

⁽³³⁾ See ref 28 p 224.

⁽³⁴⁾ The standard bond length of a P-P single bond amounts to 2.225 Å: Tebbe, K. F. Z. Anorg. Allg. Chem. 1980, 468, 202 and literature cited therein.

 ⁽³⁵⁾ Weber, L.; Frebel, M.; Boese, R. Chem. Ber. 1990, 123, 733.
 (36) Weber, L.; Frebel, M.; Müller, A.; Bögge, H. Organometallics 1991, 10, 1130.