Transition-Metal-Substituted Acylphosphanes and Phosphaalkenes. 18.¹ P-Metalated Iminophosphiranes by Isocyanide Addition to a Metallophosphaalkene. X-ray **Structure Determination of**

 $(\eta^5-C_5Me_5)(CO)_2FePC(SiMe_3)_2C = NPh$

Lothar Weber,* Annette Rühlicke, Hans-Georg Stammler, and Beate Neumann

Fakultät für Chemie der Universität Bielefeld, Universitätsstrasse 25. D-33615 Bielefeld, Germany

Received June 10, 1993®

The reaction of $(\eta^5-C_5Me_5)(CO)_2FeP=C(SiMe_3)_2$ (1) with the isocyanides arylNC (2: aryl = Ph (a), 2-MeC₆H₄ (b), 2,6-Me₂C₆H₃ (c)) in benzene at 20 °C afforded the transition-metalfunctionalized iminophosphiranes 3a-c as red crystalline solids. The novel compounds were characterized by elemental analyses and spectroscopic methods (IR, ¹H, ¹³C, and ³¹P NMR, and

mass spectroscopy). The molecular structure of the iminophosphirane $(\eta^5 - C_5 Me_5)(CO)_2 FePC$

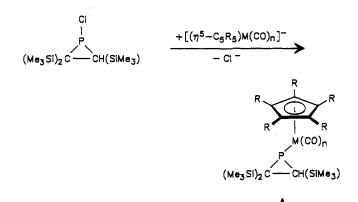
 $(SiMe_3)_2C = NPh$ (3a) was established by a complete single-crystal diffraction study (space group, C2/c; Z = 8, a = 27.214(4) Å, b = 15.146(2) Å, c = 15.854(2) Å, $\beta = 114.350(10)^{\circ}$).

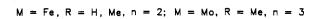
Introduction

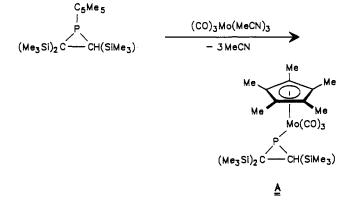
Three-membered rings containing heavy p-block elements are of continuing interest for theoretical and preparative chemists.^{2,3} The first phosphirane was discovered in 1963, when sodium derivatives of PH_3 and RPH_2 were allowed to react with 1,2-dichloroalkanes in liquid ammonia.⁴ Meanwhile, several synthetic routes to this ring system are known. They include approaches starting with P and C₂ as well as PC and C building blocks.³ In addition, cyclization processes of functionalized PCC or CPC units proved to be useful for this target.³

The first P-metalated phosphiranes were recently obtained by the reaction of a P-chlorophosphirane with carbonylmetalates. Alternatively, the insertion of a metal complex fragment into the reactive P-C bond of a η^1 -C₅-Me₅-substituted phosphirane was also successful.⁵

During the course of our chemical studies on metallodiphosphenes and metallophosphaalkenes we attempted the conversion of the latter to metallophosphiranes by means of sulfur ylides.⁶ This method, however, which was highly successful in the chemistry of diphosphenes,7 failed with phosphaalkenes. Instead of the expected threemembered ring **B**, we obtained η^3 -phosphaallyl complexes such as C.⁶


The preparation of metalated iminodiphosphiranes from metallodiphosphenes and isocyanides^{8,9} which parallels the synthesis of an iminodisilirane from a disilene and o-xylyl isocyanide,¹⁰ prompted us to employ the metal-


• Abstract published in Advance ACS Abstracts, October 15, 1993. (1) Part 17: Weber, L.; Schumann, I.; Schmidt, T.; Stammler, H.-G.;

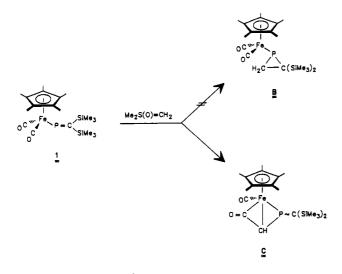

(1) Fart 11: Weber, L., Schulann, A., Schultur, T., Schultur, T., Schultur, T., Schultur, T., Schultur, S., Neumann, B. Z. Anorg. Allg. Chem., in press.
(2) Roesky, H. W.; Witt, M. Rev. Inorg. Chem. 1982, 4, 45.
(3) (a) Mathey, F.; Marinetti, A. Bull. Soc. Chim. Belg. 1984, 93, 533.
(b) Mathey, F. Chem. Rev. 1990, 90, 997.
(4) Wagner, R. I. U.S. Patents 3086053 and 3086056 1963; Chem. Abstr.

1963, 59, 10124; 1964, 60, 559.

(9) Lentz, D.; Marschall, R. Z. Anorg. Allg. Chem. 1992, 617, 53.

lophosphaalkene $(\eta^5 - C_5 Me_5)(CO)_2 FeP = C(SiMe_3)_2$ in the reaction with a number of aryl isocyanides.

Experimental Section


General Information. Standard inert-atmosphere techniques were used for the manipulation of all reagents and reaction products. Infrared spectra were recorded on a Mattson Polaris

⁽⁵⁾ Brombach, H.; Niecke, E.; Nieger, M. Organometallics 1991, 10, 3949.

⁽⁶⁾ Weber, L.; Lücke, E.; Boese, R. Chem. Ber. 1990, 123, 23.

Weber, L.; Lücke, E.; Boese, R. Organometallics 1988, 7, 978.
 Buchwald, S. Ph.D. Thesis, Universität Bielefeld, 1992.

⁽¹⁰⁾ Yokelson, H. B.; Millevolte, A. J.; West, R. J. Chem. Soc., Chem. Commun. 1987, 1605.

(FT/IR)/Atari 1040 STF. The ¹H, ¹³C, and ³¹P NMR spectra were taken in C₆D₆ solution at 22 °C on Bruker AC 100 (¹H, 100.131 MHz; ¹³C, 25.180 MHz; ³¹P, 40.539 MHz) and Bruker AM 300 (¹H, 300.1 MHz; ¹³C, 75.5 MHz; ³¹P, 121.7 MHz) spectrometers. Spectral standards were SiMe₄ (¹H, ¹³C) and 85% H₃PO₄ (³¹P). Elemental analyses were obtained from the Microanalytical Laboratory DORNIS and KOLBE, Mülheim, Germany.

Materials. $(\eta^5-C_5Me_5)(CO)_2FeP=C(SiMe_3)_2^{11}$ and the isocyanides¹² were prepared as described in the literature. All solvents were rigorously dried with an appropriate drying agent and distilled before use.

Preparation of Compounds. (75-C5Me5)(CO)2FePC-

(SiMe₃)₂C==NPh (3a). To a solution of 0.64 g (1.47 mmol) of $(\eta^5-C_5Me_5)(CO)_2FeP=C(SiMe_3)_2$ (1) in 30 mL of benzene was added 0.15 g (1.47 mmol) of phenyl isocyanide at 20 °C, and the mixture was stirred for 2 h. The course of the reaction was monitored by ³¹P NMR spectroscopy. Solvent and volatiles were removed in vacuo, and the dark red residue was extracted with 40 mL of pentane. The filtered extract was concentrated to ca. 10 mL and stored at -40 °C for 3 days. The mother liquor was decanted from orange-red crystalline 3a, and the product was dried in vacuo; yield 0.44 g (56%). IR (KBr, cm⁻¹): 2951 w, 2900 w, 1995 s [v(CO)], 1933 s [v(CO)], 1630 w, 1590 m, 1437 w, 1383 w, 1246 m [δ (Si(CH₃)₃)], 1043 m, 841 s [ρ (Si(CH₃)₃)], 696 w, 639 w, 581 s. ¹H NMR (δ): 0.45 [d, ⁴J_{PH} = 2.2 Hz, 9H, Si(CH₃)₃]; 0.55 [s, 9H, Si(CH₃)₃]; 1.25 [s, 15H, C₅Me₅]; 6.95 s, 6.99 s, 7.35 s, 7.40 s [phenyl H]. ${}^{13}C{}^{1}H$ NMR (δ): 1.43 [s, Si(CH₃)₃]; 1.44 [d, ${}^{3}J_{PC}$ = 12.1 Hz, Si(CH₃)₃]; 8.56 [d, ${}^{3}J_{PC}$ = 9.3 Hz, C₅(CH₃)₅]; 96.26] d, ${}^{2}J_{PC} = 1.5 \text{ Hz}, C_{5}(CH_{3})_{5}$; 122.41 s, 122.45 s, 123.40 s [C phenyl]; 155.11 [d, ${}^{3}J_{PC} = 2.4$ Hz, *i*-C phenyl]; 186.92 [d, ${}^{1}J_{PC} = 85.9$ Hz, C==N]; 216.40 [d, ${}^{2}J_{PC}$ = 3.4 Hz, CO]; 217.24 [d, ${}^{2}J_{PC}$ = 2.7 Hz, CO]. ³¹P{¹H} NMR (δ): -34.2. Anal. Calcd for C₂₆H₃₈FeNO₂-PSi₂ (mol wt 539.6): C, 57.87; H, 7.09; N, 2.59. Found: C, 54.48; H, 6.75; N, 2.81.

 $(\pi^{5}-C_{5}Me_{5})(CO)_{2}Fe^{D}C(SiMe_{3})_{2}C = N(2-MeC_{6}H_{4})$ (3b). Orange-red crystalline 3b was analogously synthesized from 0.80 g (1.83 mmol) of 1 and 0.22 g (1.83 mmol) of 2-methylphenyl isocyanide in 30 mL of benzene; yield 0.68 g (67%). IR (KBr, cm⁻¹): 2955 w, 2911 w, 1994 vs [ν (CO)], 1946 vs [ν (CO)], 1588 w, 1574 w, 1481 w, 1379 w, 1243 m [δ (Si(CH₃)₃)], 1030 m, 840 s [ρ (Si(CH₃)₃)], 757 w, 637 w, 580 m. ¹H NMR (δ): 0.45 [d, ⁴J_{PH} = 2.2 Hz, 9H, Si(CH₃)₃]; 0.55 [s, 9H, Si(CH₃)₃]; 1.26 [d, ⁴J_{PH} = 0.6 Hz, 15 H, C₅(CH₃)₅]; 2.60 [s, 3H, CH₃C₆H₄]; 7.03 s, 7.07 s, 7.10 s, 7.20 s [aryl H]. ¹³C{¹H} NMR (δ): 1.32 [s, Si(CH₃)₃]; 1.36 [d, ³J_{PC} = 11.8 Hz, Si(CH₃)₃]; 8.63 [d, ³J_{PC} = 8.6 Hz, C₅(CH₃)₅]; 18.70 s, [s, 2-(CH₃)C₆H₄]; 96.25 [d, ²J_{PC} = 1.8 Hz, C₅(CH₃)₅]; 118.70 s,

118.73 s, 123.74 s, 132.93 s [C aryl]; 153.06 [d, ${}^{3}J_{PC} = 1.9$ Hz, *i*-C aryl]; 185.62 [d, ${}^{1}J_{PC} = 85.7$ Hz, C=N]; 216.22 [d, ${}^{2}J_{PC} = 3.0$ Hz, CO]; 217.22 [d, ${}^{2}J_{PC} = 2.0$ Hz, CO]. ${}^{31}P{}^{1}H$ NMR (δ): -36.2. Anal. Calcd for C₂₇H₄₀FeNO₂PSi₂ (mol wt 553.6): C, 58.58; H, 7.28; N, 2.53. Found: C, 58.45; H, 7.04; N, 2.58.

 $(\eta^5-C_5Me_5)(CO)_2FePC(SiMe_3)_2C=N(2,6-Me_2C_6H_3)$ (3c). Orange-red crystalline 3c was prepared as described before from 0.92 g (2.11 mmol) of 1 and 0.28 g (2.11 mmol) of 2,6dimethylphenyl isocyanide in 35 mL of benzene; yield 0.83 g (69%). IR (KBr, cm⁻¹): 2956 w, 2920 w, 1989 s [v(CO)], 1948 s $[\nu(CO)], 1744 \text{ w}, 1623 \text{ w}, 1584 \text{ w}, 1381 \text{ m}, 1244 \text{ m} [\delta(Si(CH_3)_3)],$ 1015 m, 836 s [ρ (Si(CH₃)₃)], 759 m, 645 w, 582 m. ¹H NMR (δ): $0.47 [d, {}^{4}J_{PH} = 1.1 Hz, 9H, Si(CH_{3})_{3}]; 0.57 [s, 9H, Si(CH_{3})_{3}]; 1.22$ [s, 15H, C₅(CH₃)₅]; 2.54 [S, 6H, 2,6(CH₃)₂C₆H₃]; 7.01 s, 7.06 s [aryl H]. ${}^{13}C{}^{1}H$ NMR (δ): 1.71 [d, ${}^{3}J_{PC} = 10.8$ Hz, Si(CH₃)₃]; 1.78 [s, Si(CH₃)₃]; 8.59 [d, ${}^{3}J_{PC} = 9.0$ Hz, C₅(CH₃)₅]; 20.44 [s, $(CH_3)_2C_6H_3$; 20.65 [s, $(CH_3)_2C_6H_3$]; 96.47 [d, $^2J_{PC} = 1.5$ Hz, C_5 - $(CH_3)_5$; 97.90 [s, C aryl]; 122.63 [s, C aryl]; 152.60 [d, ${}^{3}J_{PC} = 2.3$ Hz, *i*-C aryl]; 184.70 (d, ${}^{1}J_{PC}$ = 89.1 Hz, C=N]; 216.47 [d, ${}^{2}J_{PC}$ = 3.5 Hz, CO]; 216.80 [d, ${}^{2}J_{PC}$ = 2.9 Hz, CO]. ${}^{31}P{}^{1}H$ NMR (δ): -28.7. Anal. Calcd for C₂₈H₄₂FeNO₂PSi₂ (mol wt 567.6): C, 59.25; H, 7.46; N, 2.47. Found: C, 58.71; H, 7.41; N, 2.65.

X-ray Structure Determination of (75-C5Me5)(CO)2FePC-

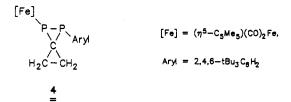
 $(SiMe_3)_2$ C=NPh (3a). Crystals of 3a were grown from *n*-pentane at -40 °C. An irregularly shaped crystal of the approximate dimensions $0.25 \times 0.25 \times 0.30 \text{ mm}^3$ was coated with a layer of hydrocarbon oil, attached to a glass fiber, cooled to 163 K for data collection, and mounted on a Siemens P21 four-circle diffractometer (Mo K α radiation, graphite monochromator). The cell dimensions were determined by refinement of the setting angles of 30 reflections (5° $\leq 2\theta \leq 20^{\circ}$): a = 27.214(4) Å, b =15.146(2) Å, c = 15.854(2) Å, $\beta = 114.350(10)^{\circ}$, V = 5953.2(15)Å³. The space group was established to be C2/c (Z = 8, D_{calc} = 1.204 g cm⁻³, μ = 6.58 cm⁻¹), with ω -scan data collection of 5237 independent intensities ($3^{\circ} \le 2\theta \le 50^{\circ}$), 2654 of which were treated as observed $(F_o \ge 4.0\sigma(F))$. The structure was solved by direct methods, successive difference Fourier maps, and full-matrix least-squares cycles. The crystallographic program applied was Siemens SHELXTL PLUS (VMS), using intrinsic scattering factors. All non-hydrogen atoms were given anisotropic displacement parameters; all the hydrogen atoms were fixed at calculated positions with an isotropic U value of 0.08 Å².

The *R* values, based on the final model refined with 298 parameters, were $R = \sum [\langle |F_o| - |F_c| \rangle / \sum (|F_o|) = 0.065$ and $R_w = [\sum w(|F_o| - |F_c|)^2 / \sum w|F_o|^2)^{1/2} = 0.045$, where $w^{-1} = \sigma^2(F)$. The maximum residual electron density was 0.71 e/Å³.

Results and Discussion

Diphosphenes^{8,9} and a disilene¹⁰ are effectively converted into iminodiphosphiranes and iminodisiliranes, respectively, by isocyanides. We have extended this synthetic approach to the phosphorus-carbon double bond in a transition-metal-functionalized phosphaalkene (metallophosphaalkene).

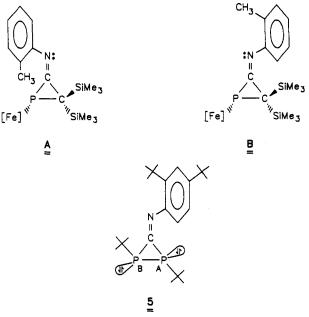
The iron compound 1 smoothly reacts with equimolar amounts of the aryl isocyanides $2\mathbf{a}-\mathbf{c}$ in benzene at ambient temperature to give the orange-red crystalline iminophosphiranes $3\mathbf{a}-\mathbf{c}$ in 56-69% yield. In contrast to the situation with diphosphenes,⁸ the employment of an excess of the isocyanides does not lead to the incorporation of a second molecule into $3\mathbf{a}-\mathbf{c}$ to give bis(imino)phosphetanes.


The course of the reaction is conveniently monitored by ^{31}P NMR spectroscopy. The low-field singlet of the starting material is replaced by a singlet in the characteristic high-field region for strained three-membered rings. The compounds **3a-c** are isolated by fractional crytallization from *n*-pentane. The diamagnetic products are air- and moisture-sensitive. They can be stored under a nitrogen atmosphere at room temperature without significant decomposition.

⁽¹¹⁾ Gudat, D.; Niecke, E.; Arif, A. M.; Cowley, A. H.; Quashie, S. Organometallics 1986, 5, 593.
(12) Weber, W. P.; Gokel, G. W.; Ugi, I. K. Angew. Chem. 1972, 84, 587;

⁽¹²⁾ Weber, W. P.; Gokel, G. W.; Ugi, I. K. Angew. Chem. 1972, 84, 587; Angew. Chem., Int. Ed. Engl. 1972, 11, 530.

The P-metallophosphiranes 3 were initially characterized by elemental analyses and spectroscopic methods. The ³¹P{¹H}NMR spectra of **3a-c** display singlets at high field (**3a**, δ -34.2; **3b**, δ -36.2; **3c**, δ -28.7) which are diagnostic for three-membered strained phosphorus ring compounds.^{13,14} The metalated P atom in the metallodiphosphirane fragment of 4 is observed at δ -37.95.⁷

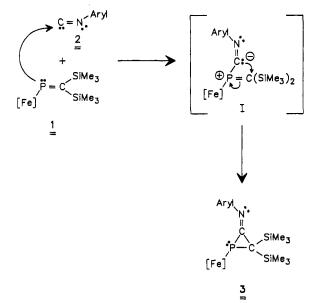


Due to the presence of a chiral center at the phosphorus atom the two trimethylsilyl groups are diastereotopic. In the ¹H NMR spectra their protons give rise to a doublet and a singlet at δ 0.45 (d, ⁴J_{PH} = 2.2 Hz) and 0.55 (s) for **3a** as well as **3b** and δ 0.47 (d, ⁴J_{PH} = 1.1 Hz) and 0.57 (s) for **3c**.

The doublet is assigned to the silyl group which is cisoriented with respect to the lone pair of the phosphorus atom. For the *o*-methyl group of the aryl substituent of **3b** one singlet is observed at δ 2.60.

In 3c only one singlet at δ 2.54 for the two *o*-methyl groups is registered. Due to chirality these groups should be chemically and magnetically different and thus be discriminated by NMR. Obviously they are isochronous by accident. The ¹H NMR spectra of 3a-c do not change markedly at -80 °C.

The ¹³C{¹H} NMR spectrum of **3c** (20 °C) shows the expected two discrete resonances for the carbon atoms of the o-methyl groups at δ 20.4 and 20.7. In the low-field region of the ¹³C{¹H} NMR spectra of **3a**-c a doublet at δ 184.7-186.9 (¹J_{PC} = 85.7-89.1 Hz) is assigned to the carbon atom of the imino function. The chemical shifts as well as the absolute values of the ¹J_{PC} couplings compare well with the respective data in iminodiphosphiranes such as **5** (¹³C: δ 180.0 dd, ¹J_{PC} = -90.0, ¹J_{PC} = -57.6 Hz).¹⁵ The resonance for the tetracoordinate ring carbon atoms in **3a**-c could not be detected in the ¹³C{¹H} NMR spectra.



The magnetically different carbonyl ligands at the iron atom in 3a-c were observed as two doublets in the narrow range of δ 216.2–217.2 with ${}^{2}J_{PC} = 2.0-3.5$ Hz.

The observation of only one set of signals in the ¹H, ¹³C, and ³¹P NMR spectra for 3a-c is consistent with either the presence of only one isomer (A or B) or a rapid inversion at the sp²-hybridized nitrogen. As shown below for 3a, the isomer corresponding to A is present in the crystal.

In the IR spectra of the complexes the carbonyl stretching vibrations give rise to two intense bands at 1989–1995 and 1933–1948 cm⁻¹. In 1 two carbonyl stretches at 1980 and 1935 cm^{-1 11} are registered, which implies that the phosphaalkenyl ligand in the latter transfers more electron density to the metal than the three-membered ring ligand in **3a-c**.

It is conceivable that the formation of the iminophosphiranes is initiated by the electrophilic attack of the highly nucleophilic phosphorus at the carbene-like carbon atom of the isocyanide. The attack of the negatively polarized C atom of the isocyanide fragment at the positively polarized C atom of the phosphaalkene fragment in the intermediate I leads to the final products.

X-ray Structure Analysis of 3a. An X-ray structure analysis was desirable to unambiguously determine the

⁽¹³⁾ Baudler, M. Angew. Chem. 1982, 94, 520; Angew. Chem., Int. Ed. Engl. 1982, 21, 492.

⁽¹⁴⁾ Baudler, M. Z. Chem. 1984, 24, 352.

⁽¹⁵⁾ Baudler, M.; Simon, J. Chem. Ber. 1987, 120, 42.

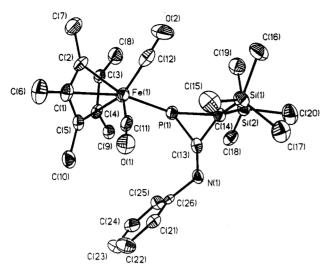


Figure 1. Molecular structure of 3a in the crystal (ORTEP; ellipsoids at the 50% probability level; hydrogen atoms omitted for clarity).

Table I. Atomic Coordinates ($\times 10^4$) and Equivalent Isotropic Displacement Coefficients ($A^2 \times 10^3$)

1.54	ou obie Disbu	coment coom		
	x	У	z	$U(eq)^a$
Fe(1)	1367(1)	647(1)	1958(1)	29(1)
Si(1)	739(1)	3475(1)	1540(1)	35(1)
Si(2)	1136(1)	3343(1)	-119(1)	32(1)
P(1)	1498(1)	1768(1)	1114(1)	28(1)
N(1)	2111(2)	3153(3)	2452(4)	25(2)
O(1)	1756(2)	1555(3)	3735(3)	44(3)
O(2)	228(2)	1087(4)	1211(4)	72(3)
C(1)	1579(3)	-584(5)	2617(5)	32(3)
C(2)	1180(3)	-698(5)	1709(5)	29(3)
C(3)	1381(3)	-384(4)	1082(5)	27(3)
C(4)	1926(3)	-104(4)	1594(5)	29(3)
C(5)	2039(3)	–192(4)	2541(5)	29(3)
C(6)	1553(3)	-902(5)	3497(5)	51(4)
C(7)	647(3)	-1141(5)	1468(5)	51(4)
C(8)	1098(3)	-429(5)	30(4)	46(4)
C(9)	2315(3)	184(4)	1191(4)	34(3)
C(10)	2570(3)	17(4)	3325(5)	43(4)
C(11)	1590(3)	1238(4)	3007(5)	32(4)
C(13)	1755(3)	2772(4)	1750(5)	24(3)
C(14)	1207(3)	2981(4)	1071(4)	25(3)
C(15)	784(3)	2975(5)	2649(5)	51(4)
C(16)	30(3)	3394(5)	655(5)	51(4)
C(17)	931(3)	4660(4)	1836(5)	51(4)
C(18)	1787(3)	3225(4)	-243(4)	39(3)
C(19)	599(3)	2681(5)	-1028(4)	50(4)
C(20)	950(3)	4536(4)	-354(5)	55(4)
C(21)	2812(3)	2684(4)	3911(5)	36(4)
C(22)	3302(3)	2290(5)	4415(5)	51(4)
C(23)	3591(3)	1901(5)	3965(6)	50(4)
C(24)	3385(3)	1931(5)	3006(6)	45(4)
C(25)	2895(3)	2316(4)	2506(5)	33(3)
C(26)	2602(3)	2696(4)	2950(5)	29 (3)

^a Equivalent isotropic U, defined as one-third of the trace of the orthogonalized U_{ii} tensor.

stereochemistry of the iminophosphiranes. Single crystals of **3a** are grown from *n*-pentane at -40 °C. The results of the structural determinations are shown in Figure 1. Positional parameters for the complex are given in Table I, and selected distances and angles are presented in Table II. The analysis confirms the presence of an iminophosphirane system linked to the metal by an Fe-P single bond (2.279(2) Å), which compares well with the corresponding bond length in 1 (2.26 Å).¹¹ Usually Fe-P bond distances in low-valent carbonyliron complexes fall in the range 2.11– 2.37 Å.¹⁶ The organophosphorus ligand could be regarded as one leg in a distorted three-legged piano-stool arrangement. The three angles the ligands form with the metal center are P(1)-Fe-C(11) = 95.7(3)°, C(11)-Fe-C(12) =

Table II. Selected Bond Lengths (Å) and Bond Angles (deg) for 3a

101 Ja						
Fe(1)-P(1)	2.279(2)	Fe(1)-C(1)	2.098(7)			
Fe(1)-C(2)	2.097(7)	Fe(1) - C(3)	2.101(7)			
Fe(1)-C(4)	2.159(8)	Fe(1) - C(5)	2.103(7)			
Fe(1)-C(11)	1.762(7)	Fe(1) - C(12)	1.754(9)			
Si(1)C(14)	1.875(8)	P(1)C(14)	1.990(7)			
Si(2)-C(14)	1.897(7)	N(1)-C(26)	1.421(8)			
P(1)-C(13)	1.799(7)	O(2) - C(12)	1.152(10)			
N(1)-C(13)	1.273(7)	O(1)-C(11)	1.156(9)			
C(13)-C(14)	1.469(8)					
C(14)-Si(1)-C(15)	114.8(3)	P(1)-Fe(1)-C(11)	95.7(3)			
Fe(1) - P(1) - C(13)	114.8(3)	P(1)-Fe(1)-C(12)	88.9(3)			
C(13)-P(1)-C(14)	45.3(3)	C(11)-Fe(1)-C(12)	98.4(4)			
Fe(1)-C(11)-O(1)	173.8(6)	Fe(1) - P(1) - C(14)	123.6(3)			
P(1)-C(13)-N(1)	148.5(5)	C(13) - N(1) - C(26)	117.9(6)			

 $98.4(4)^{\circ}$, and P(1)-Fe-C(12) = $88.9(3)^{\circ}$. Two legs of the piano stool are represented by terminal, nearly linear, carbonyl groups.

The most interesting feature of **3a** is the geometry of the phosphirane ring. In the PC₂ triangle the P–C distances (P(1)–C(14) = 1.990(7) Å, P(1)–C(13) = 1.799-(7) Å) are expectedly longer than the C–C distance (1.469-(8) Å). The shorter P–C distance resembles those in 4 (1.799(5), 1.824(5) Å), whereas the longer one exceeds the standard value of a P–C single bond (ca. 1.85 Å)¹⁷ markedly. Similarly long endocyclic P–C bonds (1.931(12)–1.967-

(12) Å) are reported for the 1,2-diphosphetane $PhCH_2P'$ -

(PhCH₂)PC(Ph)(OSiMe₃)C(Ph)OSiMe₃.¹⁸ The endocyclic angle at the trigonal-planar ring carbon atom C(13) of 74.3(4)° is very acute as compared to the standard value of 120°. Also, the endocyclic angle at phosphorus (45.3-(3)°) is compressed. In the spiro compound 4 such angles are determined to 52.0(2) and 53.0(2)°.⁷ The endocyclic angle at C(14) (60.5(3)°) is close to the ideal valence angle in cyclopropane. The exocyclic angles at phosphorus Fe-(1)-P(1)-C(14) = 123.6(3)° and Fe(1)-P(1)-C(13) = 114.8-(3)° are significantly different, the more obtuse of which presumably results from steric interactions between the iron complex fragment and the cis-located silyl group. The difference in the exocyclic angles at C(14) (Si(1)-C(14)-P(1) = 132.8(4)° and Si(2)-C(14)-P(1) = 100.2(4)°) supports this view.

The C=N distance of the imino group (1.273(7) Å) and the bond angle C(13)-N-C(26) (117.9(6)°) are not unusual.

The phenyl substituent at the N atom is directed toward the phosphorus atom with a nearly perpendicular orientation with respect to the plane of the PC_2 triangle.

Presumably because of steric repulsions between the complex iron fragment and the phenyl ring the angle P(1)-C(13)-N(1) (148.5(5)°) clearly exceeds the exocyclic angle N(1)-C(13)-C(14) (136.1(6)°).

Acknowledgment. This work was supported by the Deutsche Forschungsgemeinschaft, Bonn, Germany, the Fonds der Chemischen Industrie, Frankfurt, Germany, and BASF-AG, Ludwigshafen, Germany, which are gratefully acknowledged.

OM930390G

^{(16) (}a) Knoll, K.; Huttner, G.; Wasiucionek, M.; Zsolnai, L. Angew. Chem. 1984, 96, 708; Angew. Chem., Int. Ed. Engl. 1984, 23, 739. (b) Lal De, R.; Vahrenkamp, H. Z. Naturforsch., B.: Anorg. Chem., Org. Chem.. 1986, B41, 273. (c) Arif, A. M.; Cowley, A. H.; Pakulsky, M. J. Am. Chem. Soc. 1985, 107, 2553. (d) Huttner, G.; Mohr, G.; Friedrich, G.; Schmid, H. G. J. Organomet. Chem. 1978, 160, 59. (e) Williams, G. D.; Geoffroy, G. J.; Whittle, R. R.; Rheingold, A. L. J. Am. Chem. Soc. 1985, 107, 729.
(17) Tabba K. K. Z. Anorg. Allg. Chem. 1960, 466 202 and literature.

⁽¹⁷⁾ Tebbe, K.-F. Z. Anorg. Allg. Chem. 1980, 486, 202 and literature cited therein.

⁽¹⁸⁾ Becker, G.; Becker, W.; Mundt, O. Phosphorus Sulfur Relat. Elem. 1983, 14, 267.