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We consider a sequence {Zg}i~ 1 of independent, identically distributed random 
variables where each Z i is a pair (Xi, Y/). For any pair of events {X"~ ~r { Y"~ N} 
satisfying Pr(Y" e NIX" s d )  > 1 - ~ and for any non-negative real c we investigate 
how small P r ( Y " ~ )  can be in case P r ( X " e d )  is larger than 2 -"c. We give the 
full answer to a generalized form of this question. 

These estimates enable us to prove strong converses of the coding theorems 
for two recently emerged questions in Shannon's information theory, i.e. the 
source coding problem with side information and the coding problem for the 
degraded broadcast channel. 

1. Statement  o f  Problems and Results 

The concept of a decoding set N corresponding to a sequence x of letters is basic 
in Shannon's information theory. Extending the classical problems to networks 
of information sources and noisy channels one is led in a natural way to the 
concept of a decoding set ~ corresponding to a set zJ  of sequences of letters. 
Based on this tool the aim of our paper is to develop a technique for proving 
strong converses of coding theorems. The main result is Theorem 1. The results 
are applied to a source coding problem with side information and to the degraded 
broadcast channel. 

This research is restricted to memoryless stationary sources and channels. 
All the random variables (r.v.) have finite range. Unless it is stated otherwise, 
exp's and log's are to the base 2. "ln" stands for the natural logarithm, h(e) denotes 
the entropy of the binary distribution (e, 1 -  e). I[ Z lr denotes the cardinality of the 
range of the r.v. Z, I1~r is the cardinality of the set d .  Throughout the paper the 
word measure stands for probability measures. 
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We are given the finite sets 5f, ~ and the transition probabilities W(ylx) 
for x e ~ ,  y ~ / .  For the n-th cartesian power ofs and ~r we define 

W"(ylx) = l~I W(Yilxi) 
i=1 

where x = x 1 x 2 ... x, and y = Yl Y2 ... Y,. 

Definition I. The set ~ c ~r e-decodes the sequence x ~ f "  if 

W " ( ~ l x ) >  1 - e .  

We put ~ ( ~ ) ~ X "  for the set of all the x's which are e-decoded by ~.  
We shall say that d is e-decoded by ~ i f d  c ~ (~ ) .  
We are interested in the minimum "size" of a ~ which satisfies a prescribed 

lower bound on the "size" of ~(~) .  We measure the "size" of sets by probability 
measures of the product type. 

Let us denote by Q a measure given on x and by R a measure on ~ .  Q" and R" 
are the corresponding product measures on ~r, and ~". We suppose that Q and R 
never vanish. 

Put 

S,(c, e ) = 1 .  log 1 min R"(~). 
n nlog Qn(~ (~)) >_--c 

(Note that c and S,(c, ~) are non-positive quantities.) 

We shall show that the limit of S,(c, e) is independent of ~ for any fixed value 
of c and give a computable formula for this limit. 

To express this we have to introduce the concept of the relative entropy of a 
random variable Z having distribution P relative to an underlying measure Q. 
(See Kullback [-6]. However, he uses a slightly different terminology.) 

Definition 2. Given the r.v. Z with values in a finite set ~ ,  distribution P and 
measure Q on ~, we define the relative entropy of Z as 

z ~  1o Q(z) Ho(Z) ~= ~, P(z) . g ~ . 

Given the r.v.'s U and Z with distribution P and values in the sets ay a n d ~  
and the measure Q on ~ x ~, the relative conditional entropy of Z given U is 

He(ZI U)~HQ(Z, U)-HQ(U)= ~ P(u). ~ P(z[u). log Q(zlu) 
. ~  ~ P(z[u) " 

Remark that if Q(z]u) does not depend on u, H~(Z] U) depends only on the Lr-mar- 
ginal of the measure Q. We are only interested in such situations and will simply 
define even for any distribution R on 5(: 

R(z) 
HR(Z I U) -~ ~ P(u). ~ P(zlu). log 

Definition 3. Consider the sets ~ ,  ~,' and a countable set ~r Let ~ ( W )  be the 
set of all the r.v.'s (U, X, Y) with values on ~ x .~ x ~J such that U, X, Y form a 
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Markov chain, and P ( Y = y [ X  = x ) =  W(y]x). We define 

T(c)~ inf HR(YJ U). 
HQ(Xt u)>-_c 

(u,x, Y ) ~ ( w )  
NV[l<~ 

We write (X, Y ) s ~ ( W )  if (X, Y) satisfy P ( Y = y [ X = x ) =  W(ylx). (This is 
justified by the fact that in this case for any r.v. U taking a single value: 
(U, X,  Y ) ~ ( W ) . )  

Hence 

T(c)< min HR(Y). 
HQ(X)>=c 

(X, Y)e~(w) 

We shall prove the following 

Lemma 1 A. We can suppose that I] ~ <= 3, that is 

T(e)= min HR(Y] U). 
HQ (XI U)_>-c 

(v, x, Y)~(w), II vii =< 3 

Theorem 1. 

lim S,(c, e) = T(c). 
n~oo 

Remark that by this theorem S,(c, e) is asymptotically independent of e. 

Though Theorem 1 is of no immediate use for the coding problems treated 
in later sections, it enlightens our topic from a probabilistic viewpoint. Our 
immediate purposes are served by a modified version of Theorem 1 where the sets 
underlying the minimization will be restricted to consist of "typical sequences". 

Definition 4. For a sequence r, of positive reals with r,. n-  1/z ~ o% and r,. n-  1 ~ 0  
x~Y" is a (Q, {r,})-typical source sequence, if for every x e ~  

I tl {i; x i =x} I] -nQ(x)[ <r,. 

We denote by ~(Q) the set of all the typical sequences of ~r,. 

It is well-known that Q'(~-s 1. 
Put 

S,(c, e ) -  ~ 1 .  log 1 min R"(~). 
- -  n n - logQn( tP~ (~)nJ-n(Q))>=c 

We shall prove that the limit of ~n(c, e) is independent of both, e and {r~}. Define 

T(c)= ~ inf HR(YI U) 
HQ(XIU)>c 

(u, x, ~)E~(w, Q) 
[I u II < 

where ~(W, Q) consists of those triples (U, X, Y ) ~ ( W )  where the distribution 
of X is Q. Similarly to Lemma 1A we shall show that 

Lemma lB. We can suppose I[~l[ _-< II~ll +2 and still have 

T(c) = rain HR(YI U). 
HQ(XIU)>c 

(O, X, Y )~ (W,  Q) 



160 R. Ahlswede et  al. 

After this we prove that 

Theorem 2. 

lirn ~,(c, e)= ~(c). 

Two problems involving communication networks will be treated below, 
one for source-coding and one for channel-coding. For the source-coding problem 
see [1], where a coding theorem and weak converse result is proved. The corre- 
sponding results for the channel coding problem are to be found in [1-4] and 
[9]. These results are "weak" converses in Wolfowitz' sense [10], meaning that 
they give precise asymptotic bounds on the exponent of the size of the respective 
coding functions for the case when the probabilities of decoding errors are tending 
to 0. A strong converse theorem states that allowing large probabilities for 
erroneous decoding does not effect the asymptotic bounds. In this paper we give 
strong converses for the above problems by a method which seems to apply to 
many coding problems. 

It is the same technique which allows us to prove that the limit in Theorems 1 
and 2 is independent of e. The method is based on a combinatorial lemma 
of Margulis [8] which consists in a lower bound on the size of the Hamming 
1-neighbourhood of a set of binary sequences. The proof of a slightly generalized 
form of this lemma will be postponed to the last section of the present paper. 

Let us formulate the coding problems. 

Source Coding with Side Information 

A sequence {(Xi, Y/)}iaZ__l of independent and identically distributed pairs of 
r.v.'s is called a discrete memoryless correlated stationary information source 
(DMCSS). Two independent encoders observe X" = X 1X2... X, and Y" and produce 
the functions f , (X  ~) and g,(Y"). These are the codes. A decoder having access to 
both f,(X") and g,(Y") has to construct a function of the two with the property 

Pr (V,(f~(X"), g,(Y")) = Y") >__ 1 - e. (1) 

Thus the decoder reproduces only the Y"-sequence. 
A pair (R1, R2) of non-negative reals is called an e-achievable rate pair if for 

any 6>0  and sufficiently large n there exist functions f , ,  g, and V, satisfying (1) 
and the inequalities 

II/,(X") II _<exp {(R 1 +6) .  n} ; II g,(Y") II <exp {(R2 q- 6 ) - n}. (2) 

A rate pair is achievable if it is e-achievable for every 0 < e < 1. 
Let us denote by N(e) the ensemble of all the e-achievable rates, and by 

that of all the achievable rates. Clearly N = 0~(e) .  
e>0 

In [1] the following theorem was proved: 

= {(R1, Rz); RI >= I (X  A U), R 2 > H(YI U), II U II _-< II X II + 2, 

U, X, Y Markov chain}. (3) 
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In this paper we prove the strong converse to this theorem, i.e. 

Theorem 3. 

~ ( s ) = ~  for 0 < e <  1. 
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Degraded Broadcast Channel (DBC) 

Broadcast channels were first considered by Cover [3]. His paper created immediate 
interest, because new information-theoretic techniques were needed in order to 
find characterizations of the capacity region. Those characterizations still do not 
exist for the general case, however, in an important special case, the broadcast 
channel with degraded components described below, the problem is completely 
solved. Those later channels were studied by Bergmans [2], who also described 
a coding scheme which he conjectured to be optimal. The conjecture was proved 
to be true by Wyner [9] in the special case of binary symmetric broadcast channels. 
His proof uses very special properties of binary symmetric channels and does not 
allow for extension to the general degraded case. Then Gallager [4] proved a 
coding theorem and weak converse for arbitrary degraded broadcast channels. 
However, he gives a slightly weaker characterization of the capacity region than 
the one conjectured by Bergmans. Finally this conjecture was also proved to be 
true in [1]. The result is stated in (6) and (7) below. We give now the necessary 
definitions. 

Let us be given finite sets ~ ,  YJ, ~ and the stochastic matrices 

{ W~(ylx); x e ~ ,  yeY/}, { W3(z[y); ye~J, z e ~ } .  

Put 

w~(zlx)~ ~ w~(zly). W~(ylx), 
y e ~  

and for each of the channels W~ denote by Wi" its product extension to the corre- 
sponding sets ~", ~", ~" .  

Let Mr, M 2 and n be natural numbers. A set of triples {xi2 , ~ ,  Nj, 1 < i < M ~ ,  
1 <j<M2} is a code for the DBC if x i j s~" ,  the ~ ' s  are disjoint subsets of o~, 
and the Ni's disjoint subsets of ~".  An error occurs if either a sequence y~s~ or 
zr  was received provided that the codeword xq had been sent. Thus the error 
probability of the code is the pair of reals (q ,  s2) where 

s 1 max max t ('~i[xq) (4) 
I <=j<M2 l <-i<:M1 

and 

W ~"  - s z = max max 2 (~jlxlj). 
I <=j<=M2 l <=i<_M1 

(This is the so-called maximal error.) 
We shall say that {(Xlj, d i ,  ~j)} is an (n, sl, @-code if (4) holds. 
A pair (R~, R2) of non-negative reals is called (sa, e2)-achievable rate for the 

DBC {W1, Wa} if for any 6 > 0  and sufficiently large n there exists a code {(Nj, 
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~ ,  ~)}  such that 

a) M k > exp [n(R k -  ~)] k = 1, 2 

b) max max W 1(~[xi)_</31 
I <j<~M2 l <-i<=Mt 

c) max max W2"(~jlxi)</32. (5) 
I <j<=M2 l <i~M1 

A rate pair is achievable if it is (/31,/32) "achievable for 0 </3k ~ 1 ; k = 1, 2. Denote 
the region of achievable rates by cg, and that of the (/31,/32) "achievable rates by 
(~(/31'/32)" Clearly, ~g = ~ cg(/3 a ,/32)' 

0<et, 
k = 1 , 2  

In [1] it is proved that (R 1 , RE) is achievable iff there exist r.v.'s U, X, Y, Z 
forming a Markov chain in this order with given conditional probabilities 

P r ( r = y ] X = x ) =  WI (ylx), Pr(Z = zl Y = y ) =  W2(zly), (6) 

satisfying [[ U[[ <rain {[IX[[, [[ YH, [[Z]/} and such that 

RI<I(X/x  Y]U); RE<I(U^Z) .  (7) 

Here again we prove the corresponding strong converse. This will be 

Theorem 4. If  (R1, R2) is (/31,/32) "achievable for a fixed pair O < /3k < 1; k=  1, 2; 
then it is achievable, i.e. 

(~ ~--- (~(gl  ' g2) for any 0 < e k_-< 1 ; k = 1, 2. (8) 

2. Proof of Theorem 1. Weak Version 

In this Section we shall prove Theorem 1 for"small" ds. We recall the following 
well-known property of relative entropies: 

Fact 1 ([6]). Given a finite set ~, the product measure Q" on Lr", a sequenceZ, 
of i.i.d.r.v.'s with values in Lr and distribution P, and any sequence 6, bounded 
away from 1 and satisfying n-a .  log 6, ~ 0 we have 

1 
inf - -  log Q,(Cg) ~ HQ(Z) 

cg:Pr(Zn~)>_-i-~n n 

A) Consider any triple of r.v.'s (U, X, Y ) ~ ( W ) .  We shall construct a sequence 
{~,} of subsets of q/" and a sequence e, ~ 0  such that 

n -1. logg"(~,)-+Hg(rl U) 

lirn_, infn -1. log Q"(~,(~,))->_ Ho,(X[ U). (9) 

We shall first show that for r.v.'s (X, Y ) ~ ( W )  we can construct a sequence 
{~,} of subsets of q/" and a sequence/3, ~ 0  with 

n -1 .logR"(~,)-+HR(y); lim inf n -1 �9 log Q"(~,(~.)) > HQ(X). (10) 
n~ oo 
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By Fact 1 for 6. = n-a there exists a sequence of sets ~ .  c ~" such that 

n -1. logR"(~. )~HR(Y);  Pr(Y"E@.)> 1 _//-1. (11) 

r n Since P ( r  ~ . ) =  ~ Pr(X"=x). W"(~.]x), we conclude from (11) by a "reverse" 

Markov inequality (see [7]) that 

pr(x" > 1 - n - 1 / 2 .  

Hence by Fact 1 

lim inf 1 .  log Q"(~,_,/~(~,)) > H a (X). 

Putting now e, = n -~/2 the last mequahty and (11) establish (10). 
Considering the given U, X, Y write 

HR(Y] U)= Z Pr(U =u).  HR(Y ] U =u), 
uEO// 

HQ(XI U)= • Pr(U = u). Ha(X [ U = u). 
u~Oll 

For any integer n and pr.d. P on og there exist integers J.(u) such that 

E J,(u)=n; ]J,(u)-P(u). nJ < 1. (12) 
u~Oll 

Clearly J,(u)~oo for every ue~ .  

Applying (10) to a pair of r.v.'s (X,, Y,) having joint pr.d. Pr(X,=x, Y,=y)~= 
Pr(X = x, Y= y] U = u), we construct a sequence ~,(u) of subsets of ~ts,(,) with 

[J. (u)] -~. log R s" (")( ~ .  (u) ) ---, H R ( Y I U = u) 

liminf [J,(u)] - 1  log QJ"(u)(~[j.(u)]_~/z(~] (u))~= HQ(XJ U = u). (13) 

For any fixed n we consider 

uaO// 

the cartesian product of the ~,(u)'s. 

(12) and (13) imply that this set satisfies (9) for 

= 1 - H ( 1  - 
u ~ q /  

B) The proof of inequality 

lim/nf S,(c, e,) > Y(c) (14) 
en ~ 0 

goes by several lemmas. 
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The Proof of Lemma 1A is the very same as that of Lemma 3 in [1]. Denote 
by D(~ r) the set of all pr.d.'s on Y'. For peD(Y) we consider the functions 

 oo(p)  Y, p(x). log Q(x  
x~x p(x) 

and 

qh(p) -~ ~ ( ~ p(x). W(y]x)). log R(y) 
y~, x~r ~, p(x). W(ylx) " 

xe~," 

We denote the conditional distribution of 2 on { gr = u} by p.. 

Notice that the conditional entropies are the convex linear combinations 

He(X ] U)= 2 Pr (U=u) .  %(p.) 
u~o// 

HR(YI U)= ~ Pr (U=u) .  qol(p, ). (15) 
uffq/ 

Hence the vector (HQ(XI U), HR(Y I U)) is an element of cg, the convex hull of the 
image of D ( f )  under ((Po, (Pl). Since D(5 c) is compact, and the functions ~o o 
and ~01 are continuous, cs is a compact subset of lE e. Thus by Carath6odory's 
theorem every element of cg is a convex linear combination of at most 3 extremal 
points. Clearly, the extremal points are contained in the image of D(f) .  Hence 
there exist elements Pi of D(X) and nonnegative reals c~ i (1=<i=<3) summing 
up to 1 with 

3 

HQ(Xl u)= Z 
i=1  

3 

HR(Y ] U)= ~ ~i qh (Pi)' 
i=1  

Choosing a (U, X, Y)e~(W) with 

P r ( U = i ) = a  i, Pr(X=xlU=i)=pi(x) 

we get the statement of the Lemma. 

Lemma 2. T(c) is convex (~) and monotonically increasing in c. 

Proof Let us be given the triples (U i, Xi, Yi)e~(W) for i=  1, 2. We introduce 
a new r.v. T ranging over the set { 1, 2} and independent of the U/s, Xi's and Y/s. 

(HQ(XIUT, T), HR(YIUT, T)) = ~ P r ( r =  i). (HQ(X ilU~), HR(Y~I U~)). 
i=1,2 

Varying the distribution of T we thus get every point of the segment of the straight 
line connecting the points (HQ(XiIUi),HR(YiIUI)); i=1,2. Hence the convexity 
of M follows because ((T, UT), XT, YT)e~(W). 

The monotonicity is obvious. 

Lemma 3. Let us consider arbitrary sets 2Y and ~1 satisfying ~ V = ~ "  1 X ~ 2 '  

~ = ~ l X ~ 2  . Set W(Yl,Y2[Xl,X2)= [I Wi(yilxi)" We suppose further that the 
i = 1 , 2  
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measures Q on 3s and R on ~J are the products oJ the Q(~ on the ~'s ,  and of the 
R(i)'s on the sets ~ for i= 1, 2. For W,, Q, R and the (Wi, Qti), R(i)),s we define the 
functions r(c) and Ti(c ) (i = 1, 2) as in Definition 3. Then the following identity holds 

T(c)-- inf> [Tl(Cl)+ T2(c2) ]. 
Cl +C2=C 

Proof It is easy to see that T ( q  + c2)< T , (q)+  T2(c2). Actually, consider two 
triples (U~, X~, Y3eN(W 3. We choose a (U, X, Y) such that its distribution is the 
product of those of the (U~, Xi, Y~)'s for i=  1, 2. This triple will establish the state- 
ment, since relative entropies are additive for independent r.v.'s. 

Now we prove that for any c there exist q ,  c: with T(c)= T1(Cl)+72(c2); 
c, + c 2 = c. We write 

HR(Y~ Yzl U)-=HRo,(Y~ IU)+ HR(2,(Y2I UY~) 

=> HR.,(~ 1U)+ HR,2,(r21U ~ Xl) (16) 

where the last inequality follows from the identity 

HR,2,(Y21UY,)-HR,2,(Yzl U Y  1 X1) = I ( X  1 A Y21UY,) 

by the non-negativity of conditional mutual information. By the same identity, 

HR,2,(Y2IUY~ X1)=HRo,(Y2[UX,)-I(Y2 /x Y~IUX~). (17) 

Since Y~ is independent of the remaining variables given the value of Xl,  the con- 
ditional mutual information in (17) is 0. From (16) and (17) we thus get that 

HR(Y~ ](2] U)>=HR,.(Y~ ] U)+ HR,~,(Y21UXI). 

Since (V, X~. Y1)e#(W~) and ((U. X,). X2, Y2)e#(W2), we conclude that 

HR(Y~ Y2IU) > T~ (HQo,(X~]U))+ T2(HQo,(X 2 I UX1) ). (18) 

For the given e consider any e > 0  and a triple (U, (X1, X2) , (YI, Y2)) achieving 

Ho(X, X2IU)>-_c; HR(YI Y21U)<= T(c)+e. 

Applying (18) to this triple we get 

T(c) => T~ (Ha,,, (X~ J U)) + T 2 (HQ(~, (X 2 [ UX~)) - e. 

Our statement follows now because 

Ho(,( X, ] U ) + HQ(2,( X2 I U X~ ) = HQ( X, X 2 I U)_-> c. 

We extend now the function T(c) to product spaces. 

Definition. For the given sets 0//, s 03, ' measures Q, R and transition matrix W 
put 

T~(c) ~ inf t H  m (Y"] U) 
. i  

HQn(Xn]U)>_c n 

(U, X n, Y n ) ~ ( w n )  

Corollary. 

T.(c) = T~ (c) 
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Proof The inequality 

T.(c) < T~ (c) 

is a trivial consequence of Lemma 3, also the equality 

T.(c)= inf 1.~Tdc(~ 
l]~c(i)>_, c F/ i = i  
n i  

The convexity and the monotonicity of Tt(c)= T(c), as expressed in Lemma 2, 
yield 

n 

n ~=, ,,n i7", ! 

and therefore T,(c) > T 1 (c). 
We go over to the proof of inequality (14). 
Let us be given a set ~ c ~/". Put d = ~(~).  If ~ is not the empty set, we shall 

construct a r.v. X", with distribution concentrated on d and give an estimate of 
the probabilities of d and ~ through relative entropies. 

We define 
(~" (x )  

if 

otherwise 

and an Y" with (X", Y')e~(W"). 
Then 

HQ,(X") = log Q"(d). 

Let )(~ denote the characteristic function of the set ~.  Clearly, 

HR,(Y,) = HR,(Z~( Y")) + HR.( Y"I)~( Y")) 

< HR,(Z~(Y"))=Pr(Y"~ ).log R"(~) 
Pr(Y"e~)  

+Pr(Y"eM).  log R"(~) 
P r ( Y ' ~ )  

= H(z~(Y")) + Pr(Y" ~ g~). log R"(~) + Pr(Y" ~ ~) .  log R"(~) 

< 1 + Pr(Y'eM).  logR"(~). (19) 

Notice that 

Pr(Y"~g~)= ~ Pr(X" =x). W"(~[x)> 1 -e .  (20) 
x~a~ 
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Comparing the last inequality with (19) we get 

1 . 1 
and substituting ~-  Ha,(X ) = - - .  logQ (~r this becomes 

n 

By the definition of S,(c, e) this means that 

S , ( c , e )>(1 -O-~ .  [ T ( c ) - l ] .  

This establishes the relation (14). 

167 

(21) 

3. The Strong Version of  Theorem 1 : Blowing up a Decoding Set 

Let us introduce in the set Yg" the Hamming-distance 

d ' ' ~ " "  (y ,Y")=l l{ i : l~ i<-n ,  yi Yilll. 

We define the k-Hamming-neighbourhood FkN of a set ~ ~ Y/" as 

Fk:~= A {y; ye~ ", 3y 'e~ ' :  d(y, y') <k}. 

Notice that F1Fk ~ Fk + l ~ 

We write F instead of F 1. 

O g g N c ~ F ~ .  

We put 

q)(t)=(2rc)-l/2, e 2; ~( t )= q)(u)du and f (s)gq~(~-l(s))  (22) 
- - o O  

where ~ - t  is the inverse function of r By Margulis's theorem (see our Theorem 5 
in Section 6) for any set ~cYr and x e ~  r" 

W"(~?~lx) > a .  n -~/2 . f(W"(~[x)),  

where the constant a depends only on W. 

As an application, we obtain 

Lemma 4. Given the sets Y(", ~", the transition probability matrix W ~ from 
Y(" to ~", there is a constant a depending only on W such that for any ~ ~ ~ and 
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Xff.~ n 

wn(r~ ~ [ x ) >  ~ [ 4  -1 (Wn(~lx)) + n -1/2" (k - 1). a].  

Proof. Estimating W"(Fk~]x) we shall use the relations 

F ~  - N = ~ (F~),  F N  - N = 0~ .  (23) 

Let us denote for a m o m e n t  

t k g 4 - 1  ( W " ( F ~ l x ) ) .  

By Margulis '  theorem, and (23) 

4(tk+l) -- 4(tk)  ~ n -1 /2 .  a " max {~0(tk) , (p(t k +1)}' 

Now, q~ is mono tone  on both  ( - 0% 0) and (0, m). So, unless t k < 0 < t k + 1, 

max q~(u)=max{q)( tk) ,  q~(tk+l)}, 
tk~U~tk+l 

and hence by Lagrange's theorem tk+ 1 --  t k ~ n -1/2 . a. Q.e.d. 

For  the applications of L e m m a  4 we note  that  as t-~ - ~ ,  

4 ( 0  = 1 - 4 ( -  t ) ~ ~ .  q~(t) (24) 

(see [11]). 

Hence it follows easily that  as s ~ 0, 

- 4 - 1  (s)= 4 -1 (1 - s ) ~ l / / -  2.  logs. (251 

Let  us prove one m o r e - r a t h e r  t r i v i a l -  

L e m m a  5. Given a set  ~ ,  a m eas ur e  Q on ~ which  never  van ishes  and a sequence  

k n o f  pos i t i ve  in tegers  wi th  n - 1  �9 k n " + O  , t hen  

lim 1 .  log sup [Q"(F k" {y}). [Qn(y)]- i  ] = 0. 
n~oo n y ~ n  

Proof .  Let us denote by mQ the min imum of Q on oy. For  any y'~Fk{y}, 

Q"(y') < Q"(y) �9 (mQ) -k". 

Hence 

Q,(Fk.{y}). [Q , (y ) ] - i  < (mq) -k , .  ~ . [iO~tl ~ 
i = 0  

-=-(mQ)-~"" (k"+ 1 )  k. 

n 
because k. < ~-.  The rest is trivial by Stirling's formula. 

Now we turn to the strong version of Theorem 1. 

Choose any sequence of integers {k.}~_ 1 with 

kn. n-l--+ 0, kn.  n - 1 / 2 - ~ o o .  (26) 
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For  an arbitrary e put 

g.  = i - -  ~ [ ~  -1  (1 - -  ~) -~ n - 1 / 2 .  a "  ( k  n - 1)]. 

Then s, ~ 0  as n--* 0% and any set N c ~"  satisfies the relation 

%(~) ~ ~.(r~-~), 
On the other hand Fk"N is "not  much larger" than ~.  In fact, 

R"(rk"~) < Y R"(Fk~ sup ~R"(F~~ 

Hence by the estimate of Lemma 5, 

1 R"(Fk"~) 
lira sup - - . l o g  - -  =0 .  

From (27) and (28) it follows that 

IS.(c,O-s.(~,~.)l--,o. 

This establishes Theorem 1. 

169 

(27) 

(28) 

4. Source Coding with Side Information. Proof of Theorems 2 and 3 

We start with the 

Proof of Lemma 1B. This is an obvious analogon of Lemma 1A. Remark that 
adding to the conditions we had in Lemma 1A that for every x e s  r and the function 
~0(p)_4 p(x) we must have 

Pr(U = u). Cx(P,) = Q(x) 
ueOg 

and observing that one of these conditions can be omitted since it follows from 
the others (Q is a pr.d.!), we get the statement of Lemma 1B by the very same 
arguments, which led to Lemma 1A. 

Next we pass to the 

Proof of Theorem 2. The inequality 

lim sup S,(c, e)< T(c) 
n~o0 

easily follows from the proof of Theorem 1. Now we prove that 

lim~nf S.(c, 0->- :F(c). (29) 

As in the deduction following (26) one proves that 

I~.(c, 0-N.(c, ~.)1~0, 
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for a suitable sequence ~n--* 0. Thus it is enough to show that 

lim inf ~n(c, en)> ~(c). (30) 
~:n~0 
n ~ o o  

Let us consider a set ~ c q/" with 

n -1. log Qn(~.(~) n~n(Q) ) > c. 

We define on the set d -~ ~ . ( ~ )  n~,(Q) a random variable xn with distribution 

Pr(X,  = x )=  {0Qn(x). [Q"(M)]-I if x ~ d ,  
otherwise 

Y" is defined by the relation (X", Y")~ #(wn).  NOW we have Ho,(X" ) = log  Qn(~r 
and, as in (19) and (20) we get 

HR.(Yn)< 1 +(1 -en) .  logRn(~). 

Paralleling the treatment of Lemmas 2 and 3 we introduce the random variables 
U, X, ~" as follows. Let I be uniformly distributed on { 1, 2 . . . . .  n} and independent 
of X", Y". Then put 

(J--(I, XI-1); ~ = X  I 

~=r~ 
with the convention that X ~ is a constant. Notice that (U, X, Y)e~(W);  H~(~7[ 0)  

1 
= - - .  H~.(X"); and, as in Lemma 3, 

n 

HR(~'] O) < 1 .  HR,(Yn). 
rl 

We are done if we show that, roughly speaking, the distribution of X is "close" 
to Q. Let us introduce for a moment the function 

t(c, Q, Q) ~- inf HR(Y[ U). 
nQ(xlv)>_c 

(U,X,Y)~#(W,Q) 

Then t(c, Q, Q)= T(c). Obviously t is continuous in (~ at any nonvanishing (). 

Denote by ( ~  the distribution of X. We have shown that 

n -1. HR.(Y n) > t(n -1. log Qn(d), Q, Q~). 

It remains to show that ()~ tends to Q (uniformly in ~ as n tends to o~). 
Let us introduce an arbitrary nonvanishing measure # on Y'. An elementary 

computation shows that for any x~ J,(Q) 

In-1" log ~ " ( x ) -  [H u (Q) - H(Q)] I ~ 0 

uniformly in x. Then 

]r l - - l "  H l t n ( X  n) _ [ -H#(Q)  - H ( Q )  --}- n - 1 .  H ( X n )  .] .__). O. 
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Since n -1.  Hu.(X")= Hu(X [ (7); n -1 �9 H(X")= H()([ U), we have 

I EH.(2 J 0 ) -  H(21 (7)] - [ H ~  (Q) - H ( Q ) ]  I ~ 0 
i.e. 

(On(x)-  Q(x)) . log #(x )~  0 
x~r"  

uniformly in ~.  Since this holds for an arbitrary nonvanishing measure ~t, it 
implies that 

lim sup [Q~(x)-Q(x)[=O 
n ~ c c ~  ..~ c o ~ n  

for every xeY'. 

This completes the proof of (30). 

Theorem 3 follows now easily. 

Let us fix an arbitrary 0 < e <  1. Consider a code f,(X"), g,,(yn), and a decoder 
Vn(f ., g,) which together are e-reproducing the DMCSS {(Xi, Y/)}L1, i.e. satisfy 
condition (1). 

For a given value u of f ,  we denote 

~ v ~  {y; y =  V,,(u, gn(y))}. 

This means that Mu is the set of those y's which are correctly decoded given a 
value f, of the code of X". With this notation (1) becomes 

Z Pr (X"=x) .  W"(~y.(x)lx)> 1 - e .  
x ~ ~f 'n  

Applying a reverse Markov inequality this yields 

Pr(W"(~y.(x.)[X")> 1 - V/e-) > 1-1/~.  (31) 

Putting 

d , ~  {x; Wn(~.<x)IX)> 1 - V  ~-} and denoting Pr(X 1 =x)=  Q(x) 

we get from (31) that 

Q"(z~,, c~ y~,(Q)) > 1 - 2 l /~ (31 a) 

for all sufficiently large n. 
We observe that by definition 

dn = U [ 7'r c~f-~ (U)] (a disjoint union) 
t t  

and thus (31a) implies that there exists a value u* off ,  such that 

Q"(kuv~(~,. ) c~ ~ ,  (Q)) > ( 1 - 2  ~/~). [I f ,  It-~. (32) 

On the other hand we also have the obvious estimate 

I]gn[t > H~u, ll. (33) 
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Now we shall apply Theorem 2 to this situation in the following set-up: 
For R choose the uniform distribution on q/, and for Q the distribution of X 1 

With this choice (32) and (33) imply (by the definition of g,) that 

log lig.li (!" Flog (1-2] / /e) - log II f,,i,], V/e)+log li dii, / 1 - 1  . 

and hence by Theorem 2 

n -1 .log IIg, N > 7"(n -1. [log ( 1 - 2  V~)- log  II f.tl])+log IlJ#ll +~. (34) 

where ~, tends to 0. 
Consider now an element (R1, R2)EN(e ). By the definition of the rate regions 

there exists a sequence {(f,, g,, V,)}~=, of e-reproductions of the given DMCSS 
such that n -1 .log Nf.II~R, and n -1 .log lig, ll---,R 2. Hence substituting the 
limits in (34) the continuity of 7"(c) in c implies that 

R2> T ( - R , ) + l o g  I1@11 (35) 

Now we observe that since (U,X, Y ) ~ ( W ,  Q), we have H Q ( X I U ) = - - I ( X A  U) 
and since R is the uniform distribution on ~ ,  we also have 

HR(YIU)----H(YI U)- log  II ~ II. 

By these remarks the triple (U, X, Y) yielding :F(-R1) satisfies 

I (X A U)<:R 1 and ~F(--RO=H(YIU)--loglI~tlI.  (36) 

Comparing (35) and (36) we get that R 2 >H(YI  U). This and (35) when compared 
with (3) mean that 

(R1, R2)E~ 
what we wanted to prove. 

We remark that in proving the strong converse we have not made any use of 
the weak converse theorem. 

5. The Degraded Broadcast Channel. Proof of Theorem 4 

The main idea of the proof is that the error probability of every code of the DBC 
can be decreased substantially by "blowing up" its decoding sets. The original 
code becomes a list code with so small a list size (non-exponential) that Fano's 
lemma can still be applied and give the strong converse. 

For an arbitrary O<~_< 1, t= 1, 2 and a natural number n let us be given an 
(n, 71, e2) -c~ {x/j, d / ,  ~ j  ; 1 _< i--< M 1, 1 =j=< M2} for the DBC described in the 
introduction. 

Consider a sequence k, of integers with k, .  n-112--*00 and k,.  n - l ~ 0 .  For 
any 1 _< i < M 1 and 1 = j  =< M 2 we define the sets 

zx Fk"~"  . ~j .  i = ~ i  ' ~ j  A-~Fkn 

Since our original code was an (n,~l,~2)-code, we had W l " ( ~ [ x i j ) > l - ~ l ,  
t t  W~ (~il xii ) > 1-~2 for every i,j by definition. Applying Lemma 4 we thus obtain 
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that Wln(~ti[Xij)~l--,%, Wz"(~jlxi j)>l-e,  for every i,j, Where e , ~ 0  if n~oo.  
Notice that this is not any more an "ordinary" code, since the new decoding sets 
s~ and Ni are not disjoint. However every y e ~ "  is contained in a smallnumber 
of d / s  and the same holds true for the elements of ~ "  and the decoding sets Nj. 
In fact, denoting 

.A~l(y)~{i; yed /}  a n d  JVz(Z)- ~ {j, ze~j}  

we clearly have II ~ (Y)H < H Fk" {Y} I[, since 

ye~=r~-s~ iff s~c~Fk"{y}~eO 

and the ~@s are disjoint. The same holds for any z e ~  e" and the ~*'s. 
Hence by Lemma 5 

JlJv;~(y)ll<2 "~ and IIJVz(z)ll<2 "~ (37) 

for every yea#" and z e ~ " ,  where 6 ,~0.  
Our remaining argument is just Fano's lemma as in [1]. We introduce a r.v. 

U ranging over 1 < j  < M 2 and taking its values with equal probability. We define 

J-0")~ {xij; 1 <_i<M1} 

and introduce a r.v. X" which conditional on any fixed value j of U has uniform 
distribution on Y(j). Y" and Z" are defined to be the output r.v.'s on ~#" and Y'" 
if the input is X". Clearly, 

log M z = H(U) = I (U /x Z") + n(uJz").  (3 8) 

We define for z e ~ "  

e(z) ~- Pr( U r (z) l Z"= z). 

By Fano's inequality and (37) we have 

H(U[Z" = z) < h(e(z)) + e(z)- log m z + (1 - e(z))- n 3, 

and hence- introducing the notation ~,~ ~ Pr(Z"=z) .e (z) -pass ing  to the 

expected values on both sides and using the concavity of the entropy h, we obtain 

H(glz")<h(C.)+~..  log M e +(1 -C.) .  n~. 

Substituting this into (38) and observing that O<~.<e .  thus ~. also tends to O, 
we get that 

n -~ �9 log M 2 <n-~I(g/x  Z")+h(~,)+~,. log M 2 +(1 - ~ , ) .  n6, 

= n-  1. I(U/x Z") + o(1). (39) 

Furthermore, 

I(X"/x Y"I U)=H(X"I U)-H(X"l  U, r") =log M~ -H(X"I  U, Y"). (40) 

By Fano's inequality and (37) analogously to the foregoing we obtain 

H(X"J U, r")<=h(~.)+~ . log M~ +(1 -~.). n6. 
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and substituting this into (40) we obtain that 

n -1.  log m 1 <n -1 .  I(X" ^ Y"I U)+ n - i .  h(~,) 

+n  - 1 . ~ . . l o g M  l + ( 1 - ~ . ) . n  - i . n 6 .  

= n -1 .  I(X"/x g"l U)+ o(1). (41) 

By the weak converse to the DBC coding theorem [1] for R 1 =n  -1. I(X"/x Y"I U) ; 
R z = n  - i .  I (U A Z n) we have (Ri, R2)ecg. Hence observing that any element of 
qf(e~, e2) can be obtained as limit of code rates (n- 1. log M 1 , n- 1. log M2), the 
relations (39), (41) and the closedness of cg, yield that 

which proves Theorem 4. 

6. On a Theorem of Margulis 

Given the sets Y', ~ and a transition probability matrix W from Y" to ~ we denote 
by m w the smallest non-zero element of W. In this section we use the natural 
logarithm In. 

We prove that 

Theorem 5. There is a constant a depending only on Wsuch that for any ~ c ~1" 
and x e Y(" 

W"(~9~[x) > a.  n -1/2 . /(W"(~[x)).  (42) 

Proof We put a~- �89 �9 ( - l n  row) -1/2. 

The proof goes by induction based on two simple combinatorial observations. 
For N c ~J" we define the following subsets of ~J"- 1 : 

~y~ {w~"-l; vye~}. 

Notice that N is the disjoint union of the sets ~ ,y  and 

W.(~lx)=~W(ylx.). W"-a(~ylx "-x) 
y 

where X = X l X  2 . . . X n ~  X n - 1  = X  1 X 2 . . . X n _  1 , X~---X n - 1  X n. 

W e  use the inequalities 

(i) W"(8~]x)>=~W(y]x.) .  W"-~(#~y]x"-~), 
y 

(ii) W"(O~lx)>mw. d 

where 

d =  max w"-a(~ylx"- l )  - min W"-l(9~ylx "-1) 
YeSPxn YEScx~ 

and 5~= {y; W(yix)>O}.  
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(i) follows from the fact that 

U x {y}]. 
Y 

To prove (ii) observe that for any Y0, Yl e ~  

x {yo}. 

We start with some analytic properties o f f :  

f ,  = 1//_ 2 in ( l / /~f~;  f , , _  1 1 / ~ f  (43) 

f ( s )  is defined on 0 < s < l ,  it is concave and symmetric around �89 (Notice that 
in 0 f ( s )  is asymptotically equal to s. l / -  2. ln. s, though this will not be used in 
the sequel.) 

Denote ~Amin {s, 1 -s} .  Then obviously 

f ( s )  > 2. (2n) - '/2 .X ~_~2. (44) 

1 (It suffices to check this at s - ~ . )  
Hence using (43) 

I/'(s)[ < 21f  Z- ln~. (45) 

Starting the induction proof one easily sees that (42) holds for n = 1. Suppose 
that it is true for n - 1 .  

Now we consider two cases. Introducing the notation cA (3 .1 / / - In  row) -1. 
Suppose first 

d>=c . n -1/2 . f(W"(~lx)).  

Then (42) follows from (ii). Now suppose 

d < c . n -1/z .f(W"(~[x)).  (46) 

By (i) and the induction hypothesis we have 

W " ( a ~ l x ) > ~ W ( y l x , ) .  W " - I  (O~y I x"-l)  
Y 

> E W ( y l x n ) .  m w �9 c .  ( n -  1)  - 1 / 2  n - 1  n- -1  = . f ( W  (~ylx )). (47) 
Y 

Denote s -~ W'(NJx), sy -~ W'- l (Ny[x ' - l ) ,  and consider the interval 

A A [min s y, max s,]. 

By Taylor's formula 

f ( s , ) = f ( s ) + ( S y - S )  ' 1 ,, �9 f (s)+ 7.  ( s y - s )  2 . f  (%) where o-yeA. 

Hence 

~ W ( y [ x , )  . f (sy)> f ( s ) - � 8 9  d 2. max I f"(o-)l. 
y ceA 
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This, (46) and (43) imply in (47) that 

c m a x  

We denote by s o the point of A, where f (a) takes its minimum. By a simple re- 
arrangement one gets: 

IV-- ~ C2-=f(s) .] 
W"(ON[x)>mw'C'n-*' f(s)" n 1 2 . f ( S o ) . ~ l '  

It is enough to show that the term in brackets is not smaller than 1. This is equi- 
valent to 

f ( So ) . ( f ( s) )- l >= c 2 . ( ]/~ + ill,S_ 1). (2- l /~)-1 .  

Therefore we are ready if we show that 

f(So)" ( f  (S)) -1 ~ C 2. (48) 

Using Lagrange's formula we have 

f(So)>_f(s)-d" I f'(o')l 

for some aeA. Applying (45) and (46) this becomes 

f (So)>-_f (s) ( 1 - 2 c "  ~ n n  ?) .  

Since our distribution is a finite one, we know that 

> m  n 

hence writing out c, 

f (s~ > ~  = 1 - 2 .  m w �9 (3-1]fZ]~w) -1 .  l / / -  In mw= 1-3mw>=~2 

while clearly c 2 <�89 which proves (48). 

Note. The estimate given by this form of Margulis's theorem is exact up to 
a multiplicative constant, as it can be verified either directly, or by this same 
method, for "spheres" in {0, 1}". 

Recently, Katona [5] showed by combinatorial  methods the exact result 
t h a t - r o u g h l y  s p e a k i n g - a m o n g  all the subsets of {0, 1}" with given cardinality 
the "spheres" have smallest "surface". (The surface of a set N is ~ ) .  
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