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CHAPTER 1

Detecting visual motion: Theory and models

Alexander Borst and Martin Egelhaaf

Max-Planck-Institut fiir biologische Kybernetik, Spemannstrafe 38, D-7400 Tiibingen, Germany

1. Introduction

Whenever an animal is moving in its environment
or when an object moves in front of the eyes, the
visual system is confronted with motion. How-
ever, this motion information is not explicitly
represented in the two-dimensional brightness
pattern of the retinal image as sensed by the array
of photoreceptors. Instead, motion has to be com-
puted from the brightness changes in the retinal
image, as one of the first and most basic proces-
sing steps in the visual system. Understanding
this primary process of motion detection is im-
portant, because the performance of all subse-
quent processing steps depends on the informa-
tion about the moving visual surround which is
provided by it. In the following we shall see that it
cannot be taken for granted that a biological
motion detection system is able to determine
correctly the direction and speed in which the
different segments of the retinal image are mov-
ing.

1.1. What is motion?

In physics, the velocity of a moving object is
defined as the object’s spatial displacement over
time. In order to detect this displacement visually,
physical motion has to go along with changes in
the spatial brightness distribution on the retina. If
this is not the case, for example, when a homo-
geneous sphere is rotating under constant illumi-
nation, no motion can be seen by any mechanism

whatsoever. What characterizes visual motion?
Consider a sequence of video frames in which a
vertical, black bar is moving to the right in front
of a white background (Fig. 1A). Since the bright-
ness does not change along the vertical axis, the
representation of this stimulus can be further
simplified by plotting only the horizontal bright-
ness distribution against the temporal axis. When
sketched in this space-time domain the moving
bar appears as a slanted black stripe (Fig. 1B).
The slope of the stripe reflects the amount of bar
displacement between consecutive frames, or in
other words, the velocity of object motion: The
steeper the slope, the lower is the velocity. To
further illustrate how motion can be distinguished
from non-motion in the space-time domain, an-
other example is shown in Fig. 2. Here, instead of
a black bar, a stimulus pattern is used where the
brightness is distributed statistically along one
spatial dimension (Fig. 2, top). For simplicity, the
brightness assumes only two values, either black
or white. If the pattern is stationary, there is no
change in brightness over time at any location in
space. In the space-time domain this results in
vertical stripes (Fig. 2A). If the pattern is moving
to the right, the stripes in the space-time domain
become slanted towards the right (Fig. 2B), as
was the case for the moving bar. From the differ-
ent appearance of the representation of static and
moving patterns in the space-time domain one
might tend to conclude that, in order to tell motion
from non-motion, it would be sufficient to detect
temporal brightness changes at a fixed spatial
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Fig. 1. A, A black vertical bar is moving to the right as shown by its position in three frames (frame 1, frame 11, frame 21) out of a
longer sequence of consecutive frames. B, By omitting the vertical spatial axis this motion can be pictured in the space-time domain as
a slanted black stripe. The times are indicated at which the frames shown in A were taken.

location. In the example shown in Fig. 2C it is
illustrated that this procedure is not adequate:
Random brightness fluctuations also lead to tem-
poral changes, although there is certainly no co-
herent motion in this stimulus.

1.2. How to detect motion?

In all examples shown in Fig. 2 the brightness of
the stimulus pattern changes in space. In addition,
for non-static patterns brightness also changes

x Static

Fig. 2. A one-dimensional brightness distribution (top) is shown in the space-time domain for three different situations: A, When it is
static, B, when it is moving at constant velocity to the right, and C, when the spatial brightness distribution fluctuates randomly in time.
Motion is characterized by a slanted orientation of the resulting pattern in the space-time domain.



over time. The slanted bars in the space-time
domain seem to be the critical feature which
allows a moving pattern to be distinguished from
both static patterns and random brightness fluc-
tuations. How can this feature be exploited to
build a mechanism detecting motion? There are
basically two ways in which this can be done: i)
the brightness at a particular location and at a
given instant of time is compared with the bright-

Fig. 3. Two different ways to measure visual motion. The
slanted orientation of the pattern in the space-time domain can
be detected by correlating the brightness values along this line
(A), or by relating the spatial change of brightness dF/dx to its
temporal change dF/dr (B). These are the two basic computa-
tional principles underlying correlation detectors (A) and gra-
dient detectors (B), respectively. Points of measurement are
indicated by black squares, operations are symbolized by open
circles. In the case of the gradient detector, the spatial and
temporal gradients are approximated in the most primitive way
by the difference of the brightness values as measured at two
spatial locations and two instants of time, respectively.

ness value at a neighboring location rmeasured
some time later (Fig. 3A); and ii) the brightness
change in time observed at one location is related
to the brightness change in space at the same
location. For simplicity, the spatial and temporal
brightness changes are approximated in Fig. 3B
by the brightness difference in space and time,
respectively (see below). These two strategies of
motion detection form the basis of two classes of
model mechanisms, the so-called correlation- and
the gradient-detectors.

2. Models of motion detection

Various versions of correlation- and gradient-
detectors have been proposed in the past to under-
ly motion detection in biological systems (for
review see Reichardt, 1961, 1987; Ullman, 1983;
Buchner, 1984; Hildreth and Koch, 1987; van
Santen and Sperling, 1985; Borst and Egelhaaf,
1989). Depending on the scientific tradition and
the problems to be explained, some of these
models were formulated as a kind of general
purpose motion detection mechanism without any
sophisticated elaborations, whereas others in-
clude rather specific assumptions and, conse-
quently, assume highly specific functional prop-
erties. In the first step of our analysis, we restrict
ourselves to motion in one spatial dimension such
as was shown in Figs. 1-3; later we turn to motion
in two spatial dimensions (Section 5).

2.1. Correlation detectors

The first correlation detector was proposed on the
basis of experimental studies on the optomotor
behavior of insects (Hassenstein and Reichardt,
1956; Reichardt, 1961; Reichardt and Variju,
1959; Varji, 1959). According to common usage
(van Santen and Sperling, 1984, 1985) this corre-
lation detector will be referred to here as the
Reichardt detector. In subsequent studies, the
Reichardt model has also been applied to explain
motion detection in different vertebrate species
including man (e.g. Foster, 1969, 1971; Wilson,




1985; van Doorn and Koenderink, 1982a,b; van
Santen and Sperling, 1984; for review see Borst
and Egelhaaf, 1989). Such a detector consists of
two mirror-symmetrical subunits (Fig. 4A,B). In
each subunit, the signals derived from two neigh-
boring inputs are multiplied with each other after

one of them has been shifted in time with respect
to the other by a delay line or some sort of
temporal low-pass filter. In the case of a pure
delay, such a subunit performs the operation
pictured in Fig. 3A. The final detector response is
given by the difference of the output signals

Fig. 4. Reichardt model. The detector (C,D) consists of two mirror-symmetrical subunits. In each of the subunits the detector input
signals are multiplied (M) after one of them has been delayed (£) with respect to the other by some sort of temporal filter. Both subunit
outputs are subtracted to give the final detector output signal. To facilitate an understanding of the operations performed by such a
detector, the response of a single subunit to motion in opposite directions is considered first. When the stimulus (represented by a
Gaussian brightness distribution superimposed on the background brightness) passes the detector input channels they are activated in
sequence. A, When the pattern moves in the detector’s “preferred direction”, the temporal separation of the signals is, more or less,
compensated for by the delay in the left branch of the detector. At the appropriate velocity, both signals coincide at the multiplication
stage giving rise to a comparatively large output signal. B, When the stimulus moves in the detector’s “null direction”, the temporal
sequence of the signals in both channels is reversed. The delay further increases their time interval which resalts in two comparatively
small response peaks (it should be noted that these responses arise in this example because the background brightness is represented to
some extent at the movement detector input). C,D, Subtraction of the output signals of both subunits eliminates those response
components which are independent of the direction of motion. The responses to motion in opposite directions show the same amplitude
and time course but different signs.



of both subunits (Fig. 4C,D). The combination of
a temporal delay and a multiplication is the reason
why this type of detector measures the degree of
coincidence of the signals in its input channels or,
in other words, performs on average a spatio-
temporal cross-correlation. If an object passes the
detector it activates both input channels in se-
quence. For motion in one direction (the “pref-
erred direction”) the delay line compensates for
the time-shift between the signals (Fig. 4A), for
motion in the opposite direction (the “null direc-
tion™), it increases the time-shift (Fig. 4B). This
leads to a large response in one but not in the
other case. Although a motion detector as shown
in Fig. 4A,B is directionally selective, it responds
also to correlated input signals which are inde-
pendent of the direction of motion, such as to the
background brightness or its temporal changes.
Since these direction-independent signals are the
same in both mirror-symmetrical subunits of the
complete detector, they are eliminated by sub-
tracting the two subunit outputs from each other.
The subtraction stage, therefore, increases the
direction selectivity of the movement detector. If
a motion detector responds to motion in opposite
directions with the same amplitude but an op-
posite sign (Fig. 4C,D) it is called “fully oppo-
nent”,

Various elaborations of the basic Reichardt
model have been proposed to accommodate this
motion detection scheme to the particular perfor-
mance of different biological systems. The sim-
plest schemes rely on different types of linear
spatial and/or temporal frequency filters which
are inserted in the input channels of the move-
ment detector (Reichardt, 1961; van Santen and
Sperling, 1984, 1985; Borst and Egelhaaf, 1989).
However, Reichardt detectors can also operate on
representations of the retinal image which are the
result of more sophisticated pre-processing. For
instance, the retinal input signals may pass non-
linearities, such as a full-wave or half-wave recti-
fier (Chubb and Sperling, 1988; Sperling, 1989).
The movement detectors may also be fed by
elements which respond only to a particular tex-

ture, spectral frequency composition or even to
motion. Hence, such motion detectors are special-
ized to detect motion of image patches of a
specific color, texture or of moving objects, such
as of a spinning wheel. All these different ways of
pre-processing are currently being discussed with
respect to motion perception of man (Lelkens and
Koenderink, 1984; Cavanagh and Mather, 1989;
Zanker, 1990).

Perhaps the simplest correlation-type move-
ment detector has been proposed by Barlow and
Levick to explain their experimental findings on
directionally selective ganglion cells in the rabbit
retina (Barlow and Levick, 1965). The Barlow-
Levick model (Fig. 5) is almost identical with
respect to its layout with one subunit of the basic
Reichardt model. It consists of two input lines
carrying the brightness signals which are com-
pared after one of the signals has been delayed. In
contrast to the Reichardt model, this comparison
is accomplished by a special logical gate, an
“AND-NOT” or “veto” gate. This means that the
detector’s activity is suppressed when both input
signals arrive simultaneously at the “AND-NOT”
gate (Fig. 5A). The corresponding direction of
motion is, therefore, the detector’s null direction.
For motion in the detector’s preferred direction
the veto signal arrives too late to have an effect.

Another type of correlation detector, the so-
called motion energy model (Adelson and Bergen,
1985; Watson and Ahumada, 1985; Watson et al.,
1986), was inspired by the formal equivalence of
detecting the orientation of, for instance, a sta-
tionary bar in ordinary two-dimensional spatial
displays and of a moving one-dimensional stimu-
lus in the space-time domain (see Figs. 1 and 2). It
is a commonplace notion that the orientation of
spatial patterns can be detected by sensors with
receptive fields consisting of separate elongated
excitatory and inhibitory subregions; in the spa-
tial domain such elements have been described,
for instance, in the visual cortex of cats and
monkeys (e.g. Hubel and Wiesel, 1962). By re-
placing formally one spatial dimension by the
temporal dimension, motion of an object, i.e.
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Fig. 5. Barlow-Levick model. The detector consists of two input
lines, a delay line (€) and a logical AND-NOT gate. Such an
element leads always to an output, unless both of its input
channels are activated simultaneously. A, When a visible object
(drawn as a Gaussian brightness distribution) passes the detector
from the left to the right, the input lines are activated in
sequence. The delay line compensates for the temporal separa-
tion between the signals in such a way that, at a given velocity,
they coincide at the AND-NOT gate. As a consequence, the
output goes down. B, For motion in the opposite direction the
temporal sequence of the input signals is reversed so that they
are completely separated in time when arriving at the gate.
Hence, the detector output does not change and remains at its
normal level.

orientation in the space-time domain, can be
detected by sensors with so-called oriented spa-
tio-temporal receptive fields (Fig. 6A). As is
illustrated in Fig. 6B such sensors can be con-
structed in two steps: (i) the retinal image is

filtered in parallel by two input channels which
contain different combinations of appropriate
spatial and temporal linear filters. (ii) The filtered
signals of the two input channels are either added
or subtracted (Adelson and Bergen, 1985). How-
ever, because these sensors consist of purely
linear filters they reverse the sign of their output if
the contrast of the stimulus pattern is inverted.
This flaw is overcome by a nonlinear operation
such as squaring of the output of the linear filters
(Adelson and Bergen, 1985). Although the result-
ing element is directionally selective, its response
is temporally modulated when, for instance, a
grating pattern passes its input channels (see
Section 3.3). In the energy model these temporal
response modulations are prevented by summing
two such elements the inputs of which are filtered
in a specific way. If these elements form a so-
called “quadrature pair”, i.e. if their responses to
grating patterns with sinusoidal brightness dis-
tribution are 90° out of phase (Fig. 6C), their
summed output shows a steady amplitude during
motion with a constant velocity. Since the output
of such a squared quadrature pair extracts a
measure of the motion energy, these models are
called motion energy models (Adelson and Ber-
gen, 1985). Such a detector responds only to
motion in its preferred direction and not to motion
in its null direction. To obtain positive and nega-
tive responses to motion into these directions,
respectively, two oppositely oriented squared
quadrature pairs are subtracted from each other.
Then the response is “fully opponent” (Fig. 6D).

If the Reichardt model as shown in Fig. 4 is
equipped with the same spatial and temporal
filters in its input channels, it assumes the same
specific functional characteristics as the energy
model and may even become mathematically
equivalent (van Santen and Sperling, 1985; Adel-
son and Bergen, 1985). This identity, however,
only holds for the final, fully opponent output
signal of both detectors. The responses of the
more peripheral processing stages may differ con-
siderably.



Fig. 6. Motion energy model. A, A dark bar moving on a bright background from the left to the right with constant velocity as pictured
in the space-time domain, together with a spatio-temporal filter exactly matched to this particular motion. Shown are the excitatory and
the inhibitory lobes of its receptive field. B, Filters with a slanted or oriented spatio-temporal receptive field can be constructed from a
linear combination of two different “separable” filters which are the product of a spatial and a temporal filter function (shown by the
curves on top and on the side of the receptive fields, respectively). C, Two oriented filters with the same orientation in the space-time
domain but with 90° phase shift form a so-called quadrature pair. When squared and added, the resulting signal is independent of the
spatial phase of the pattern. D, An energy model for motion detection (left) together with the receptive fields of its various processing
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stages (right). It is composed of components as shown in B and C. The input signal representing the brightness as a function of space
and time first passes two spatial band-pass filters f] and f, with receptive fields which are 90° out of phase (“even” and “odd”). (f1(x)
and f(x) are their spatial impulse responses.) Each of these signals is then split up and fed through the units #; and #; which have
different temporal band-pass characteristics. (h1(r) and hy(2) are their temporal impulse responses.) The resulting four units (a,a’,b’,b)
show separable spatio-temporal receptive fields. They still are not oriented in the space-time domain. Oriented or slanted receptive
fields are obtained by linear combinations of these units. Two out of the resulting four units are oriented to detect motion to the left and
two are oriented to detect motion to the right. The members of each quadrature pair differ along the spatial axis in that one is derived
from an even and the other from an odd receptive field. Each of them is squared and added with its counterpart. The signals of both pairs
are then subtracted. The result is a fully opponent unit which signals motion in opposite directions with the same time course and
amplitude but an opposite sign. The optimum velocity and optimum spatial frequency range of such a detector is set by the band-pass
characteristics of the input filters f1, f> and hy,h,, respectively. Note that most of the computational expenditure of the energy model is

needed to construct linear filters with oriented spatio-temporal receptive fields. (Modified from Adelson and Bergen, 1985.)

2.2. Gradient detectors

Gradient detectors calculate a motion estimate by
relating the spatial change of brightness to the
temporal change at a given location of the image
(Fig. 3B). These changes are related physically to
each other: The temporal brightness change JF/d¢
induced by a moving object at point x is propor-
tional to the brightness change along the spatial
axis (i.e. the brightness gradient) JF/dx;
(F=F(x,r) designates the brightness of the stimu-
lus pattern as a function of the spatial coordinate x
and time 7). The proportionality constant in this
relation is given by the negative pattern velocity
—v=dx/dt (note: leftward and rightward motion
are conventionally defined as negative and posi-
tive velocities, respectively!):

JF/dt = (JF/dx) - (dx/dr) M

The velocity can, thus, be formally recovered at
least for motion in one spatial dimension by
dividing the temporal brightness change by the
spatial gradient.

v =—dx/dt = — (JF/o¥) / (IF/ox) (2)

The gradient scheme was first applied in compu-
ter analysis of video image sequences (Limb and
Murphy, 1975; Fennema and Thompson, 1979)
and only later discussed with respect to biological
motion vision (e.g. Hildreth and Koch, 1987).
However, this formalism does not represent a
model in the same sense as the different correla-

tion models which were discussed above: It is just
a mathematical formulation of the relation of
spatial and temporal brightness changes induced
by a moving object. It does not specify how the
temporal and spatial change of the image bright-
ness should be measured. There are various ways
in which this can be done. The spatial pattern
gradient may be approximated in the simplest
way by the difference between the brightness at
two adjacent image points and the temporal deriva-
tive by the temporally high-pass filtered bright-
ness signal (Fig. 7) (Buchner, 1984). The re-
sponse properties of this simple type of hardware-
implemented gradient detector differ consider-
ably from the ones of the “ideal” mathematical
scheme (see below). However, more sophisti-
cated approaches are available in computer vision
to approximate spatial and temporal brightness
changes (e.g. Ballard and Brown, 1982; Homn,
1986). The performance of gradient models based
on such approximations may then come much
closer to the properties of the formalism given by
Eqn. 2 and, thus, to an “ideal” gradient scheme.
Whereas the gradient detectors discussed so far
operate directly on the brightness values of the
retinal image, modified models have also been
proposed which are fed by spatially band-pass
filtered versions of the retinal image (Wang et al.,
1989; Srinivasan, 1990).

As a consequence of the divisive nonlinearity
which is characteristic of gradient detectors, the
velocity estimate may become indefinite. This
can happen when the denominator of the expres-
sion relating the approximation of the temporal
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Fig. 7. Gradient model. This detector computes the ratio of the
g j \ J temporal and spatial change of the pattern brightness. In the
model shown here the temporal gradient dF/dt is approximated
by a temporal high-pass filter (HP) and the spatial gradient
k? dF/dx is approximated by the difference between the two input
dF signals. Here, the mean of both high-pass filtered input signals is
dx used in the numerator of the division operation. Note, that the
performance of this simple hardware implemented gradient

scheme differs substantially from the ideal mathematical one.

and spatial brightness gradient, respectively, be-
. comes zero while the numerator assumes a finite
()

7 value. For instance, this situation may be encoun-
———————————— ~ar tered if the detector looks at a spatially homo-
4 geneous pattern which just changes its brightness
as a consequence of changes in illumination.

—————————————— ~at Appropriate means have been proposed to over-
come this problem; amongst others, these include
the addition of a small constant in the denomina-
tor of the ratio between the approximations of the
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Fig. 8. Marr-Ullman model. A, An on-center or S+ unit and an off-center or S— unit having overlapping receptive fields are maximally
excited by an edge of appropriate contrast polarity. By feeding both signals through a logical AND gate the edge can be detected. Edges
of opposite contrast polarity are detected by a unit where the S+ and S~ unit are interchanged. B, A T* unit with an on-center receptive
field responding to the temporal change of its input. The time course of the responses to a bright-dark edge moving to the right and its
temporal derivative are shown. Note that the same signals are obtained for a dark-bright edge moving to the left. C, Various
combinations of STS-triplets detect the direction of motion of edges of both contrast polarities. In each detector the output signals of all
three subunits are fed through a logical AND gate which leads only to an output when all three input signals exceed a certain threshold
value, i.e. when the edge has the right polarity and is moving in the proper direction.
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temporal and spatial brightness gradients (Wang
et al., 1989).

The Marr-Ullman model (Marr and Uliman,
1981) (Fig. 8) which is also frequently classified
as a variant of a gradient detector circumvents this
problem by using an “AND” gate rather than a
division to relate an estimate of the temporal and
spatial brightness changes. Hence, in this respect
itis similar to the Barlow-Levick model and, thus,
to a correlation detector. The Marr-Ullman model
is based on two processing steps. In the first step
it determines the location of edges, i.e. the steep-
est local brightness changes, in the retinal image.
By relating their polarity to the corresponding
temporal brightness change, in a second proces-
sing step, the direction of pattern motion can be
determined. The location and polarity of the edges
are detected by a conjunction of a pair of adjacent
units with antagonistic center-surround organiza-
tion, one responding to positive brightness values
(“on-center”, S*), the other to negative brightness
values (“off-center”, S-) (Fig. 8A) (Marr and
Hildreth, 1980; Marr and Ullman, 1981). Com-
bining such edge detectors of either polarity with
another unit which responds to either temporal
brightness increments or decrements (T*+- and
T--units, Fig. 8B) motion detectors can be con-
structed which signal the direction of moving
edges (Fig. 8C).

2.3. Physiological implementation

The motion detection models described so far
belong to the group of so-called algorithmic mod-
els: They describe the different processing steps
by formal operations such as convolutions, sub-
tractions, multiplications etc. without referring to
the specific properties of the biological substrate
by which these computations are realized in the
nervous system. In contrast, physiological models
start off from the physiological properties of
neurons, synapses etc. and try to build from these
a neuronal machinery for motion vision. Of
course, physiological models still are models and,
for that reason, have a formal character: When

describing the action, for instance, of a synapse
they make use of electrical circuits as an equiva-
lent for the neuronal membrane. Hence, “physio-
logical models” are formal models the same way
as algorithmic models are: They are settled just
one step closer to the biological substrate.

Many components of the algorithmic motion
detection models can be implemented quite easily
in neuronal terms. Some of them have even been
inspired by the properties of different types of
visual interneurons. This is true, most notably, for
the different types of spatial and temporal filters
that were proposed in the input channels of vari-
ous versions of correlation detectors or the Marr-
Ullman model. For instance, spatial band-pass
filters are well approximated by the antagonistic
center-surround organization of the receptive
fields of ganglion cells in the vertebrate retina
(e.g. Rodieck and Stone, 1965; Enroth-Cugel and
Robson, 1966). It is more demanding to account
for the nonlinear interaction between the input
signals of the movement detector in neuronal
terms. Mainly two types of proposals have been
made of how this processing step might be real-
ized in biological movement detectors.

The shunting inhibition model (Fig. 9) has been
considered as a physiological means to account
for the AND-NOT gate of the Barlow-Levick
model (Thorson, 1965; Torre and Poggio, 1978).
In this model signals of the two input lines of the
movement detector are thought to alter in a post-
synaptic neuron the conductances of different
ions, an excitatory and an inhibitory one (Fig.
9A). During motion in the preferred direction
signals are transmitted by the excitatory channel
(Fig. 9B), whereas during motion in the null
direction the action of the excitatory synapse is
shunted by the simultaneous activation of the
inhibitory synapse (Fig. 9C). A multiplication,
the nonlinear interaction of the Reichardt model,
is approximated by the mechanism of shunting
inhibition, if two conditions are met: (i) the re-
versal potential of the inhibitory ion is close or
equal to the resting potential of the postsynaptic
cell; (ii) the input signals are small compared with
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Fig. 9. Shunting inhibition model. A, The input signals derived from adjacent image points are assumed to change the conductances of
different ion channels of a postsynaptic cell after one of the input signals is delayed with respect to the other. B, If the conductance of
the inhibitory ion is low, activation of the excitatory channel leads to a pronounced EPSP. C, If simultaneously to the excitatory signal
an inhibitory signal arrives, as is the case for motion in the “null direction”, the EPSP is shunted. For motion in the “preferred direction”
the depolarization caused by the excitatory input line is unaffected since the inhibitory signal arrives too late. The postsynaptic potential
can be quantitatively determined according to the electrical equivalent circuit shown in A.
V= (g1 + Eege + Eigi)/(81 +8e + &)

£} denotes the leak potential and E,, and E; the reversal potential of the excitatory and inhibitory ion, respectively, g) denotes the lumped
leak conductances and g, and g; the conductances of the excitatory and inhibitory ion, respectively. As can be seen by a Taylor
expansion of this expression the resulting postsynaptic potential approximates a multiplication of the input signals 8. and g; if these are
small compared with the leak conductance g; and if the reversal potential of the inhibitory ion E; is close to the leak potentia! E| | (Torre
and Poggio, 1978).

the leak conductance of the postsynaptic cell. If
these conditions are not satisfied, considerable
deviations from a quadratic nonlinearity may ap-
pear (Torre and Poggio, 1978; Grzywacz and
Koch, 1987).

The threshold model is another cellular possi-

bility to account for the nonlinear interaction
between the detector input signals (Fig. 10) (Sri-
nivasan and Bemnard, 1976; Grzywacz and Koch,
1987). A threshold operation is performed by any
neuron which transmits information along its
axon by means of action potentials. The threshold
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Fig. 10. Threshold model. The action potentials of two cells (A and B) induce excitatory potentials (C) in a postsynaptic cell. When
arriving alone the EPSPs are too small to trigger an action potential. Only when two spikes arrive simuitaneously the EPSPs are
superimposed, exceed the threshold (Thr.: threshold as indicated by the dashed line in C) and give rise to an action potential (D). Note
that the width of the temporal window within which the superposition of the two EPSPs causes an action potential is set by the time

course of the EPSPs.

model proposes that both input lines of the detec-
tor induce excitatory postsynaptic potentials in a
common follower neuron which may superimpose
in a linear way. If the resulting membrane poten-
tial exceeds a given threshold, a spike will be
triggered. Since the probability of coincidence of
two events is the product of the probabilities of
each single event alone, the output of this type of
threshold model is equivalent, on average, 1o a
multiplication (Srinivasan and Bernard, 1976),
the core of the Reichardt model.

Both of these cellular models rely on the most
common properties of neurons such as on changes
in their input resistance or on spike thresholds.
During recent years a number of more complex
nonlinear synaptic interactions have been charac-
terized electrophysiologically in various systems
which may potentially qualify for the nonlinear
interaction in biological movement detectors. The
ionic channels subserving the NMDA receptor
(e.g. Ascher and Nowak, 1987) may be such an
example. However, there is no positive evidence
so far that these cellular mechanisms play a role
in motion detection. Moreover, how well these

mechanisms are approximated by the different
formal operations of the algorithmic movement
detection models needs to be analyzed theoreti-
cally.

2.4. Common properties

Despite the apparent differences between the
movement detector models discussed in Section
2.1-2.3, all of them satisfy three requirements
which any motion detection mechanism has to
meet in order to signal motion in a directionally
selective way (Poggio and Reichardt, 1973;
Buchner, 1984; Borst and Egelhaaf, 1989). (i)
They have at least two input channels. A single
input channel could not distinguish, for instance,
a dark bar crossing its receptive field in one
direction from a dark bar moving in the opposite
direction, or from a transient dimming of the
light. For the correlation method in its basic form
two spatially separate measurements form the
signals which are correlated; for the gradient
method at least two spatially separate measure-
ments have to be used to approximate the spatial



gradient. (ii) The processing of the movement
detector input signals has to be asymmetrical in
some way. If it were symmetrical, the detector
input channels could be interchanged without
affecting the output. In this case, it would no
longer be possible to tell which channel was
excited first and which later, and the detector
would no longer be directionally selective. In the
different versions of correlation detectors the
asymmetry is due to the fact that the detector
input signals which are correlated are temporally
filtered in a different way. In gradient detectors
the asymmetry is inherent in the determination of
the spatial brightness gradient. (iii) To compute
motion, the input channels of a detector have to be
related to each other in a nonlinear way. Other-
wise, the mean output of a detector would be
equal to the detector’s response to its averaged
input signals; in the averaged input signals, how-
ever, all information about the temporal sequence
is lost. Thus, the result of a linear interaction
cannot be directionally selective. The logical gates
used by the Barlow-Levick and Marr-Ullman
model, as well as the different analog operations
such as the multiplication in the Reichardt model,
the squaring operation in the energy model and
the division used by the gradient detector repre-
sent such nonlinear interactions.

All the models of biological motion detection
discussed here operate on continuous time-de-
pendent signals of discrete neighboring input
channels. In this respect, they differ from many
motion detection algorithms used in machine vis-
ion. These algorithms derive motion information
from a sequence of temporally discrete consecu-
tive image frames. In a particular class of algo-
rithms, certain features, so-called “tokens” are
identified in subsequent image frames in a first
processing step. In the next processing step, the
displacement of these tokens is determined. From
this and the interframe time interval the velocity
of the token can be calculated. As one might
expect, the biggest computational problems intro-
duced by this method are the identification of the
object or token in a frame and the discovery of
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which token in one frame corresponds to which in
the next frame. This problem is the well-known
correspondence problem. Since the token has to
be identified before its displacements can be
detected, it has to be known in advance which
objects are the relevant ones.

3. Performance of motion detectors

How well are the various motion detectors suited
to signal visual motion? Detector models which
use a logical gate as their essential nonlinear
interaction can only respond with binary signals;
therefore, they are only able to signal in an
all-or-none fashion motion of a particular velocity
(Barlow-Levick model) or to distinguish motion
in one direction from non-motion or motion in the
opposite direction (Marr-Ullman model). In con-
trast, motion detectors with analog interactions
(multiplication, division, addition followed by a
squaring or threshold operation) can signal mo-
tion in a graded way. Therefore, only these mod-
els will be further considered and the dependence
of their responses on the various stimulus para-
meters will be examined.

3.1. Velocity dependence

An ideal motion sensor should monitor the veloc-
ity, for instance, like the speedometer of a car:
Within its operating range, the higher the velocity
the higher should be the output signal. Yet, most
of the models show a different behavior. Con-
sider, for instance, the response of a single sub-
unit of the Reichardt model to an object moving
in its preferred direction. It responds optimally to
a certain velocity, i.e. when the maxima of the
two input signals coincide at the multiplication
stage; this optimal velocity thus depends on the
movement detector delay. If the object is moving
at a lower or higher velocity the result of the
multiplication will be smaller. Consequently,
such a detector shows a peak in its velocity
dependence (Reichardt and Varjd, 1959) which
makes the interpretation of a given output signal
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ambiguous with respect to the velocity of the
object.

Depending on their realization, gradient detec-
tors may also show a velocity dependence which
differs from an ideal velocity sensor. For in-
stance, when the spatial and temporal brightness
changes are approximated by the difference of the
pattern brightness at neighboring points of the
retinal image and by the temporally high-pass
filtered input signal, respectively (see Fig. 7), the
detector response shows an optimum at a particu-
lar velocity and then decreases again. Hence, at
least this simple gradient detector exhibits a
velocity dependence similar to correlation-type
movement detectors and does not signal the cor-
rect pattern velocity.

The response optimum of correlation detectors
is not located at a constant velocity. It rather
depends on the spatial properties of the pattern in
such a way that the ratio of the optimum velocity
and the spatial wavelength of the pattern, i.e. the
temporal frequency, is constant (Reichardt, 1961;
Gotz, 1964; Buchner, 1984; Reichardt, 1987).
This relation only holds for steady-state condi-
tions and fully opponent correlation-type move-
ment detectors. Otherwise deviations from the
linear relationship between the optimum velocity
and the pattern wavelength may appear.

3.2. Pattern dependence

The response of several motion detector models is
not exclusively determined by the velocity but
depends also on the contrast and the spatial fre-
quency content of the stimulus pattern. The rea-
son for this may be most intuitive for the Rei-
chardt detector. The output of the multiplicative
interaction between the detector input channels
not only depends on how well the signals coincide
temporally at the multiplication stage, but also on
the shape and size of the signals themselves.
Since higher contrasts lead to higher amplitudes
of the detector input signals, the outcome of the
multiplication will be the larger the higher the
contrast of the moving stimulus. Thus, the detec-

tor “mixes” up velocity with contrast. This is also
true for the energy model. An ideal gradient
detector does not show this contrast dependence:
Although a pattern with higher contrast leads to a
larger spatial gradient, the temporal brightness
change becomes larger accordingly. Thus, when
dividing spatial and temporal brightness changes,
the contrast factors out. However, this may be no
longer true if the gradient scheme is realized by
technical or biological hardware. Due to the fact
that both the spatial gradient and the temporal
brightness change have to be approximated by
certain filters and care has to be taken to prevent
the spatial gradient from being zero (the denomi-
nator of the division in Eqn. 2), the output signal
even of gradient detectors may also become, at
least to some extent, contrast sensitive.

The response amplitude of a movement detec-
tor is also affected by the spatial frequency con-
tent of the stimulus pattern. This is a consequence
of the geometry of the movement detector and the
spatial filters in its input channels. The angular
distance between the two input channels is often
referred to as the “sampling base” and determines
the spatial resolution of the motion detection
system and its dependence on the spatial frequen-
cy components of the stimulus pattern. According
to Shannon’s sampling theorem (Shannon and
Weaver, 1949), the smallest spatial wavelength
that is resolved adequately amounts to twice the
sampling base. For smaller wavelengths the re-
sponse may become inverted, signalling the
wrong direction of motion. This phenomenon is
known as “geometrical interference” or “spatial
aliasing” (Varji, 1959; Gétz, 1964; van Santen
and Sperling, 1984). Maximum responses are
expected for four times the sampling base. To-
wards higher spatial wavelengths the response
amplitude decreases again. This means that,
owing to its finite sampling base, a motion detec-
tion system has an intrinsic spatial band-pass
characteristic, even if there are no additional
spatial filters in its input channels (Gétz, 1964,
1965, 1972). This fact is sometimes neglected
when the spatial frequency dependence of motion



detection systems is interpreted (Burr et al.,
1986). This intrinsic spatial band-pass character-
istic of movement detectors may be modified by
spatial filters in their input channels. Depending
on the spatial frequency of the pattern, the effect
of these filters on the movement detector input is
the same as reducing the pattern contrast. Accord-
ingly, the detector output depends on the spatial
frequency of the pattern (as it depends on pattern
contrast). An important consequence of filtering
out the high spatial frequency components in the
movement detector input signals is that spatial
aliasing can be prevented (For a more detailed
discussion, see Borst and Egelhaaf, 1989).

Although the output of the ideal gradient detec-
tor does not depend on the spatial frequency of
the stimulus pattern (for the same reason that it
does not depend on pattern contrast), its discrete
implementations (such as shown in Fig. 7) may
depend to some extent on the structure of the
stimulus pattern, too.

3.3. Time course of the response

Imagine a pattern with sinusoidal brightness dis-
tribution moving at a constant velocity across the
receptive field, for instance, of a Reichardt detec-
tor. Let us further assume that the spatial wave-
length of the grating is large compared to the
sampling base of the detector. This implies that
during some time of the stimulation cycle the two
detector input signals are large (though different),
then they decrease, reach a minimum and finally
increase again. Since these signals are multiplied,
the output signal of a Reichardt detector is ex-
pected to be modulated over time (Grzywacz and
Koch, 1987; Egelhaaf et al., 1989b). In the case of
a multiplicative interaction between the move-
ment detector input channels (or any other type of
quadratic nonlinearity) the response is modulated
with the temporal frequency of the stimulus pat-
tern and its second harmonic (for a detailed
discussion of this feature, see Egelhaaf and Borst,
this volume). Temporal response modulations
will also arise if the nonlinear interaction cannot
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be approximated by a multiplication. Depending
in a characteristic way on the nature of the non-
linearity, the time-dependent detector response
will then also contain higher-order frequency
components.

In principle, the temporal response modula-
tions can be prevented by filtering the movement
detector input in a specific way. This is true for
both Reichardt and energy models if the fully
opponent detectors are concerned. Then the modu-
lations disappear if the detector input signals are
filtered, either spatially or temporally, in such a
way that the background brightness is no longer
represented at the movement detector input. How-
ever, as soon as there are any time-independent
components in the detector input signals or the
detectors are no longer perfectly mirror-sym-
metrical, the response modulations will persist. In
the case of the energy model, the temporal modu-
lations can already be eliminated at the level of a
detector subunit. However, this imposes even
more severe constraints on the filters in the detec-
tor input channels. If the signals are filtered in
such a way that the filter responses to sinewave
gratings moving at a constant velocity differ in
their phase by exactly one quarter of a temporal
cycle (i.e. they are in “quadrature phase”, see
Section 2.1), the temporal response modulations
disappear (Adelson and Bergen, 1985; van Santen
and Sperling, 1985). However, as soon as the
phase shift deviates from this value, response
modulations in the detector output appear.

A gradient detector, when realized in a mathe-
matically ideal form, i.e. when the temporal and
spatial brightness changes are always strictly pro-
portional (see Eqn. 2), does not show modulated
responses (o pattern motion with a constant veloc-
ity; instead, the timne course of its response imme-
diately reflects the time course of pattern velocity.
However, hardware implemented gradient detec-
tors such as shown in Fig. 7 may deviate from this
ideal performance. In particular, when the spatial
brightness gradient becomes small, pronounced
changes in the time course of the response may
occur.
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4. Further processing of motion detector re-
sponses

Unless implemented in a very specific way, most
detector models discussed here do not encode
faithfully the velocity of the stimulus pattern. We
have seen that this is reflected in two response
characteristics: (i) The output signal of a detector
may be modulated over time, even if the pattern
moves with a constant velocity. (ii) The mean
response amplitude may depend on the textural
properties of the pattern. Different ways of coping
with these limitations will be discussed in the
following.

4.1. Spatial integration

One way to get rid of the temporal response
modulations is to integrate spatially over an array
of movement detectors looking at neighboring
points in the visual field. Ideally, this array has to
cover an integer multiple of spatial periods of a
periodic stimulus pattern (Fig. 11A). Since then
all local detectors look at different spatial phases
of the pattern, their output signals are phase-
shifted, too. Spatially integrating these output
signals leads to a smooth time course of the
overall response which is, within certain limits
(see below), proportional to the time course of
pattern velocity. However, this useful conse-
quence of spatial integration has to be paid for by
a reduced spatial resolution of the motion detec-
tion system. It is obvious that the minimum range
of spatial integration which is necessary for the
response modulations to disappear depends on the
spatial frequency content of the stimulus pattern
which has access to the motion detection system.
This implies that if the retinal image is spatially
band-pass filtered peripheral to the site of move-
ment detection, the minimum range of spatial
integration depends on the low frequency cut-off
of the spatial filters. Of course, the temporal
modulations in the response of individual move-
ment detectors are also eliminated when the sig-
nals are integrated over time instead of space.

This suggests a trade-off between spatial and
temporal resolution of a movement detection sys-
tem. However, spatial or temporal integration
only eliminates the temporal modulations of the
detector signal. The mean response amplitude still
depends on the structure of the stimulus pattern.

The time course of the spatially integrated
movement detector response is proportional to
pattern velocity only within a certain dynamic
range. If the pattern velocity changes too rapidly,
for instance at the onset of motion, characteristic
response transients may occur. This has been
studied in some detail for the Reichardt model
(see Egelhaaf and Borst, this volume; Borst and
Bahde, 1986; Egelhaaf and Reichardt, 1987;
Egelhaaf and Borst, 1989, 1990). However, the
response transients are neither a special feature of
this model, nor are they due to adaptational
changes of some parameters of the motion detec-
tion system. They rather reflect the consequence
of response transients of the temporal filters
which are a constituent part of any motion detec-
tion system.

4.2. Recovery of pattern velocity in one spatial
dimension

As discussed above with correlation-type motion
detectors, the spatial-and temporal frequencies of
the stimulus pattern are confounded to some
extent. This problem has an analogue in color
vision where the :output of a photoreceptor de-
pends on both the spectral wavelength and the
light intensity. In color vision this ambiguity can
be circumvented by combining the output of
photoreceptors with different spectral sensitiv-
ities. ‘Hence, the ambiguities are resolved by a
sufficient number of independent measurements.
There are two ways to accomplish this in motion
vision: (i) By combining the output of different
types of movement detectors and (ii) by deter-
mining particular features of the pattern structure
and by combining these measurements with the
movement detector output.

The first of these methods is similar to the
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strategy used in color vision. Here motion is which respond best to a particular pattern veloc-
detected in parallel by a population of motion ity. This basic idea has been proposed with slight
detectors with different spatial and temporal fre- modifications in a number of publications (e.g.
quency optima (Fig. 11B). By appropriately wir- Heeger, 1987; Grzywacz and Yuille, 1990; Gliin-
ing up these detectors, units can be constructed der, 1990). It is related to approaches which have
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Fig. 11. Various ways to process the output signals of local correlation detectors. Each correlation detector is symbolized in the
space-time domain as in Fig. 3A with two black squares indicating points of measurement and an open circle indicating the nonlinear
interaction. The image has to be thought to be covered by a dense array of detectors. Only three detectors are shown in the scheme. A,
The output signals of spatially distributed local motion detectors of a given type are pooled across space. If this is done over an area
covering integer multiples of one period of the largest spatial wavelength of the pattern, the temporal modulations of the output signals
of single detectors disappear. The advantage of pooling has to be paid for by a concomitant loss of spatial resolution of the motion
detection system. B, If populations of detectors with different preferred velocities, i.e. different orientations in the space-time domain,
are used, the ambiguities in the output signal of a single detector with respect to velocity and other pattern parameters can be reduced.
The local velocity may then be determined by a simple winner-takes-all method (“MAX”). C, A combination of A and B where the
output of detectors with the same filter characteristic are spatially pooled before their responses are compared and the maximum is
determined. As in A spatial resolution is lost by spatial pooling. D, The inherent ambiguity of the detector response can also be resolved
When the relevant pattern parameters are determined by independent measurements (symbolized by an additional black square). From
an appropriate combination of the detector output signal with the local pattern parameters (e.g. the spatial derivatives of the local image
brightness) the local image velocity can be calculated.
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been put forward in the context of computer
vision. However, in contrast to biological vision,
motion information is extracted here from a se-
quence of frames taken in discrete time steps. In
one algorithm patches of the image in a given
frame are shifted with respect to the preceding
frame in all directions over various distances, and
for each shift the cross-correlation of the intensity
values in the corresponding patches is calculated.
The shift at which a maximum correlation is
obtained is taken as the local displacement and
the resulting vector is interpreted as the corre-
sponding image velocity (Fig. 11B) (Biilthoff et
al,, 1989). If the whole image is shifted and
cross-correlated in this way, the method is called
a “global correlation algorithm” and has been
successfully applied, for instance, to automatical-
ly track moving clouds (Fig. 11C) (Smith and
Phillips, 1972).

The other strategy to recover pattern velocity is
based on measuring the relevant properties of the
stimulus pattern at the same location of the retinal
image where the velocity has to be determined
(Fig. 11D). This pattern information can then be
used to derive the pattern velocity from the ambi-
guous motion detector response. Eor the Rei-
chardt model this possibility has been worked out
in formal terms. When the temporal filter is
approximated by a constant delay &, the output
signal of a detector r(x,t) is related, at a first
approximation, to the pattern speed along the
x-axis vx through the first and second spatial
derivatives (dF/dx and J?F/ok?, respectively) of
the local brightness distribution F (Reichardt,
1987):

r(x.f) = —¢ - [(dF/ox)? — F-RF/&?] - v, (3)

If the spatial derivatives are known from separate
measurements, the equation can be solved and the
pattern speed can be recovered from the detector
output signal. This method will be dealt with in
more detail below when the problem of motion
detection in two spatial dimensions is treated.

5. Motion in two dimensions

So far, the computation of motion information has
been considered only for one spatial dimension.
However, for the visual system any motion in
three-dimensional space is reflected in the time-
dependent brightness changes of the projected
two-dimensional retinal image. Therefore, we
now extend our analysis to motion in two spatial
dimensions, thereby considering two major ques-
tions. (i) How is the two-dimensional motion
information represented at the output of arrays of
motion detectors such as were discussed in the
previous sections? (ii) To what extent is it pos-
sible to recover from these output signals the
correct two-dimensional retinal velocity field as
given by the geometrical projection of the three-
dimensional motion vectors onto the retina?

5.1. Output of a pair of motion detectors

It may be intuitively clear that there is no way for
a single movement detector to represent the two
components of a two-dimensional retinal velocity
vector. At best, a single motion measurement can
encode one of its components. Hence, two inde-
pendent measurements are required. These can be
combined in a response vector which may then be
regarded as a two-dimensional representation of
the retinal velocity vector.

In general, the response vector determined in
this way does not coincide with the corresponding
velocity vector. The following considerations will
show us why. Assume a .hon'zbntally oriented
movement detector.. If a stimulus pattern, say
some sort of curved obliquely oriented edge,
moves horizontally, brightness changes are in-
duced along the detector axis; these lead to re-
sponses of the detector (Fig. 12A). Motion of the
same pattern orthogonally to the detector axis also
leads to time-dependent brightness changes along
the detector axis and thus to responses (Fig. 12B).
This means that the response of a movement
detector to translatory motion in an arbitrary
direction of the image plane, apart from special
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Fig. 12. A motion detector oriented along the horizontal axis of the image is shown to respond to pattern motion in both the x-direction
and the y-direction. A, A pattern moving horizontally is shown at three instants of time (to — 12). Both input channels of the motion
detector are activated in sequence. B, The same sequence of activation is obtained if the pattern is moving vertically. Thus, a motion
detector will confound in its output signal, depending on the structure of the pattern, both velocity components v, and Vy.

stimulus patterns, does not depend exclusively on
the velocity component aligned with its axis but
also on the local structure of the pattern as well as
on the velocity component orthogonal to the

Fig.13. A, When the image is moving in a given direction (top),
its two-dimensional motion vector cannot be calculated on the
basis of the output signal of a single motion detector. The output
of a single movement detector depends on both the x- and the
y-component of the image velocity in the general form of r,(f) =
@V, + b-v, with a and b being functions of the local brightness
distribution. This equation can be pictured as the so-called line
of constraint (bottom) showing that an infinite number of
vectors v (v,,v)) satisfy this equation. B, However, if motion is
detected in parallel by a pair of differently oriented motion
detectors, an additional equation can be obtained: r),(t) =y +
d-v,. If these two equations are linearly independent and if the
pattemn-dependent terms a,b,c and d are known from independ-
ent measurements, the equations can be solved and a unique
motion vector can be calculated locally. The solution can be
pictured as the intersection point of both lines of constraint
obtained from the output signals of both detectors. Note that the
crucial requirement here is that both measurements are linearly
independent.
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detector axis. This may be expressed by the
following equation:

ri(t) = a-vy + b-vy “4)

with v, and v, corresponding to the horizontal and
vertical velocity components; ¢ and b are func-
tions of the local pattern structure. In accordance
with the intuitive notion that a single motion
measurement is not sufficient for a two-dimen-
sional representation of the retinal velocity vec-
tors, this equation with two unknown variables, v,
and Vys is compatible with an infinite number of
velocity vectors and cannot be solved. Geo-
metrically, the tips of these vectors coincide with
a straight line in a v,, v, diagram, the so-called
line of constraint (Horm and Schunck, 1981;
Adelson and Movshon, 1982) (Fig. 13A). The
slope of the constraint line depends on both the
motion detection mechanism under consideration
as well as on the local structure of the stimulus
pattern.

A second motion measurement provided by a
vertically oriented detector leads to an equivalent
equation

ry(t) = c-vx + dvy, (5)

with ¢ and d again representing functions of the
structure of the stimulus pattern. Since r, and Ty
in general, depend on both the components of the
retinal velocity vector and the structure of the
stimulus pattern, the response vector which is
obtained by combining 7, and r, is expected not to
encode the retinal velocity vector correctly in
terms of direction and magnitude.

For a pair of orthogonally oriented, mathemati-
cally ideal gradient detectors the responses are
given, as in the one-dimensional case (see Eqn.
2), by the relation between the temporal change of
the pattern brightness at a given location and the
corresponding spatial change either along the x-
or y-axis

rt) = = (GF/I0) / (9F/dx) 6)

ry() = — (JF/dr) | (JF/dy) @)

Equation 1 can now be extended for the two-
dimensional case to the so-called oprical flow
constraint equation (Hom and Schunck, 1981).

~ JF/0t = dF[dx-vy + OF/dy-v, %)

which describes the relation between the pattern
velocity, spatial gradient and temporal brightness
change. Using Eqns. 68, the pattern dependent
coefficients in Eqns. 4 and 5 can be specified
leading to the following pair of equations for the
responses of a pair of gradient detectors

rt) = vy + (IF/y)/(F/0x)-v, 9)
ry(t) = (IF/OX(OF/dy)vy + vy (10)

The resulting response vector, with -, and Ty
representing its x- and y-component, respectively,
depends on the brightness change of the retinal
image along both the x- and y-axis. Hence, in
general, it does not coincide with the correspond-
ing retinal velocity vector.

In contrast to the gradient scheme the response
vectors obtained from a pair of Reichardt detec-
tors depend not only on the first spatial deriva-
tives of the pattern brightness but also on the
second spatial derivatives (Reichardt, 1987; Rei-
chardt et al., 1988; Reichardt and Schlogl, 1988):

r(t) = —€ - [((OF/0x)% — F-PF[dx?) - v, +
(OF/dx-dF[dy — F-o-'ZF/ax&y)-vy] (11)

ry(t) =—¢€ - [(dF/dy - IF/dx — F-PF/dyox)v, +
((9F[0y)* — F-3?F/oy?)- v,] (12)

The pattern dependence of the response vectors of
Reichardt detectors is illustrated by the computer
simulation of Fig. 14. Although the pattern moves
with a constant velocity along the x-axis of the
detector array, the response vectors shown here at
a particular instant of time point into different
directions depending on the local structure of the



stimulus pattern. Thus, the local instantaneous
response vectors may not coincide with the direc-
tion of pattern motion.

From all this we can conclude that local motion
measurements by the various types of movement
detectors discussed here do not directly yield
reliable information on the speed and direction in
which the different pattern segments of the two-
dimensional retinal image are moving.
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5.2. Methods for recovering the 2D velocity field

Is it possible to compute the correct retinal veloc-
ity field from the response profiles of an array of
movement detectors? In analogy to motion in one
spatial dimension (Section 4.2), there are various
ways in which this can be done. It is beyond the
scope of this article to review this field extensive-
ly (see also Heeger, 1987; Ogata and Sato, 1989;
Grzywacz and Yuille, 1990). Instead, we just
concentrate on one important aspect.

The correct retinal velocity field can be recov-
ered, at least for translatory motion in the image
plane, on the basis of local mechanisms alone,
without global constraints (Reichardt et al., 1988;
Uras et al., 1988). If the pattern-dependent coeffi-
cients of Eqns. 4 and S are known from other
measurements, we are confronted with two equa-
tions of the two unknown variables v, and vy If
these equations can be solved for v, and vy, the
retinal velocity vector can be recovered. In geo-
metrical terms, this means that the two corre-
sponding lines of constraint are not colinear but
intersect. The coordinates of the intersection point
then represent the x- and y-components of the
retinal velocity vector (Fig. 13B).

However, such an intersection point and, thus,
an unambiguous velocity vector does not exist
under all circumstances. Two conditions have to
be met. (i) The brightness distribution of the
pattern has to be truly two-dimensional. This

Fig. 14. Representation of the two-dimensional image velocity
at the output of an array of correlation detectors of the Reichardt
type. A, An elongated Gaussian-shaped brightness distribution
moving along the x-axis with constant velocity represents the
input pattern, B, This stimulus is fed through a two-dimensional
array of pairs of orthogonally oriented Reichardt detectors. C, If
the output signal of each member of such a pair is interpreted as
the velocity component along the x and y-axis, respectively, a
response vector field is obtained at each instant of time. An
instantaneous snapshot of this vector field is shown here, De-
pending on the local structure of the pattern, the local response
vectors all point into different directions, although the entire
pattern moves along the x-axis. Consequently, most of the
response vectors deviate significantly from the input vector.
(Model simulation courtesy W. Reichardt.)
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condition refers to a property of the stimulus
pattern: If the pattern brightness varies only along
one axis, it is impossible to detect its direction and
speed in two dimensions. Assume, for instance, a
pattern consisting of parallel stripes moving in a
given direction. The motion vector can be decom-
posed formally into two components, one being
orthogonal and the other parallel to the stripes.
The orthogonal component is accompanied by a
brightness change in this direction, whereas the
parallel component is not. Hence, the latter com-
ponent cannot be detected by any mechanism
whatsoever. Thus, the pattern brightness has to
vary along two orthogonal directions. Only then
can the two-dimensional velocity be recovered.
(ii) The two motion measurements have to depend
on the local pattern structure in such a way that
the corresponding Eqns. 4 and 5 are, in general
(i.e. apart from the types of patterns just men-
tioned), linearly independent. As will be shown
below, this condition is not met by all motion
detection mechanisms.

Movement detectors of the correlation type
satisfy this requirement. Equations 11 and 12
which describe the output of a pair of orthogonal-
ly oriented detectors are in general linearly inde-
pendent. Thus, the correct two-dimensional mo-
tion vector can, at least in principle, be recovered
from them, if the pattern-dependent coefficients
in the equations are determined by independent
measurements (Reichardt et al., 1988). The
movement detectors to be combined need not be
oriented orthogonally. In principle, any orienta-
tions will do as long as they are different. Of
course, it is not necessary to use a pair of equiv-
alent detectors; two linearly independent equa-
tions may also be obtained if the detectors to be
combined have temporal and/or two-dimensional
spatial filters in their input channels which differ
in an appropriate way.

In the case of a pair of gradient detectors the
correct retinal velocity vector cannot be recov-
ered by local mechanisms alone. This is because
Eqgns. 9 and 10 are not linearly independent and,
therefore, do not have a unique solution. Hence,

the correct retinal velocity vector cannot be de-
rived from two independent measurements by
differently oriented gradient detectors at a given
location. However, it is possible to derive the
retinal velocity vector, for instance, by combining
measurements of gradient detectors at different
parts of the retinal image (see below).

Different types of approaches are used in com-
puter vision to estimate velocity fields. These
algorithms are based on the formal description of
the relation between the pattern velocity, the
spatial brightness gradient and the temporal
brightness change as given by the optical flow
constraint equation (Eqn. 8) (Horn and Schunck,
1981). From the infinite number of vectors solv-
ing this equation a particular one, i.e. the vector
directed along the brightness gradient, is selected
deliberately. Some methods take into account
global constraints, i.e. assumptions about proper-
ties of the velocity field, to obtain the information
which is necessary in addition to Eqn. 8 for
calculating unique velocity vectors. For instance,
one might assume that the velocity vectors should
vary smoothly across the image (Hom and
Schunck, 1981) or along the contour line of an
object (Hildreth, 1984). The rationale behind
these smoothness assumptions is that nearby
points tend to move with similar velocities. This
sort of algorithm is not restricted to translatory
motion of rigid objects but allows also for general
motion of nonrigid objects (Hildreth, 1984).
However, it does not compute the image velocity
by a local mechanism but resorts to global con-
straints imposed by the physical nature of the
two-dimensional retinal velocity field.

However, the optical flow constraint equation
(Eqn. 8) can be the basis for algorithms which
allow the retinal velocity to be computed locally.
There are various ways to derive two linearly
independent equations from it. One such possibil-
ity has been proposed in a recent study (Uras et
al., 1988). By differentiating Eqn. 8 with respect
to the spatial coordinates x and y, respectively,
two linearly independent equations are obtained
which contain second derivatives of the local



image brightness (Uras et al., 1988):

— PF|HIx = FF[Ix? - v + RF[xdy - vy
13)

— PF[otdy = PF[dyox - vy + IPF/dy? - vy
(14)

If all spatial and temporal derivatives are known
the equations can be solved for the two unknowns
v, and vy and the local image velocity can be
calculated. Recently, this approach has been gen-
eralized (Srinivasan, 1990). Instead of differen-
tiating the optical flow constraint equation, it can
alternatively give rise to two linearly independent
equations if it is filtered by different linearly
independent spatio-temporal filters.

All these considerations only show under what
conditions the correct retinal velocity vectors can
be recovered. They do not indicate how well the
different algorithms perform, if they are imple-
mented in technical or biological systems. How-
ever, it has been realized only recently that it is
possible to compute the correct retinal velocity on
a local basis (Reichardt et al., 1988; Uras et al.,
1988). Before, it was assumed that it is impossible
to measure locally velocity components other
than that parallel to the brightness gradient, a
problem often referred to as the aperture problem
(e.g. Hildreth and Koch, 1987; Grzywacz and
Yuille, 1990). However, as explained above there
is no such aperture problem apart from the trivial
fact that the correct image velocity cannot be
detected if the stimulus pattern does not provide
sufficient information, i.e. in the case of patterns
with brightness variations along only one of its
axes (Reichardt et al., 1988; Uras et al., 1981).

6. Conclusion: The use and usefulness of models

In general, models are of twofold advantage: (i)
In a purely synthetic, engineer-like approach
models help to realize the problems. (Think about
the difficulties in machine vision of accomplish-
ing even apparently simple tasks.) (ii) In conjunc-
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tion with an analytical approach, models help to
make explicit what has been assumed only impli-
citly before. (Everybody has a model in mind!)
Models force the experimenter to formulate pre-
cisely the explanation of a particular experimental
result. Because even simple mechanisms, such as
some of the motion detection mechanisms dis-
cussed here, provide serious pitfalls to intuition it
is often necessary to calculate the responses either
by analytical methods or by use of a computer
simulation.

Interestingly, only a small number of models of
motion detection have been proposed so far in the
literature. These different models can be grouped,
according to the computational principle they are
built on, into two classes, the so-called corre-
lation- and gradient-detectors. Despite the appar-
ent overall difference in the structure of the
various model versions, some of them show a
similar performance, for instance, with respect to
their velocity tuning and their dependence on
pattern structure. Thus, the dichotomy between,
at least, some of the models starts to fade away,
and this is all the more true when the “sloppy
workmanship” of the neuronal hardware is taken
into account. In order to decide between different
model variants it becomes most important to
derive predictions that are robust against these
neuronal imperfections. In addition, a closer look
at the internal structure of the models is neces-
sary, because predictions may differ significantly
depending on the processing level which is con-
sidered. For instance, since unambiguous velocity
information can be recovered from various types
of motion detectors by further processing steps,
the finding of neurons exhibiting a strict velocity
tuning (i.e. responses which depend exclusively
on the velocity of the pattern irrespective of its
structure) does not speak against or in favor of
any primary mechanism of local motion detec-
tion. Here, the problem for the experimenter will
always be to decide at which processing level the
investigated neuron is located. Hence, it is often
not as easy as one might expect at first glance to
find out what mechanism underlies motion detec-
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tion in a particular biological system. Therefore,
modelling is an indispensable tool for designing
more specific experiments which may eventually
allow us to distinguish between different mecha-
nisms. Thus, in research on motion vision models
help to guide the experimenter to a better under-
standing of the system under investigation.
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