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Summary.  ART algori thms with relaxation parameters  are studied for general 
(consistent or inconsistent) linear algebraic systems Rx = f, and a general conver- 
gence theorem is formulated. The advantage of severe underrelaxation is re- 
examined and clarified. The relationship to solutions obtained by applying SOR 
methods  to the equat ion RRXy = f is investigated. 
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1 Introduction 

In  this paper  we are concerned with iterative methods related to the ubiquitous 
equat ion Rx = f where R is a given m x n real matrix (i.e. is in IR "•  and f is 
a given real vector of length m (i.e. is in IRm). More  specifically, we are concerned 
with the cases when m and n are so large that  storing the coefficients of  R in 
a computer  can be a problem, but the matrix has the proper ty  that the entries are 
easily generated as required. The equat ion Rx = f may  be consistent or incon- 
sistent, and in the applications we have in mind is generally inconsistent. 

Problems of this kind arise in a variety of applications that  come under the 
broad  heading of computer ized t omography  with incomplete data  (see [DL] ,  
[He2],  and [Na] ,  for example), and have given rise to the development  of a great 
variety of iterative algori thms based on updates of  an approx imate  "solution" 
vector with a suitable linear combinat ion  of some of the rows (or just one row) of R. 
Prototypical  among  these algori thms is the Algebraic Reconstruct ion Technique 
(ART), which we briefly review together with some relaxation strategies. 
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Let r T . . . . .  r T (T denotes transposition) be the rows of R and 
fr = [ f l , f2  . . . . .  f,,]. With a given starting vector x(m~lR" we generate the se- 
quence {xtk)}~~ by the relation 

(1.1) X (k)=  x(k-1) ~ - COkHrkl I - 2 ( f  k - - r T x ( k -  1))rk , 

k = 1, 2 . . . . .  where, when k = j(mod m) and j = 1, 2 . . . . .  m, 

(1.2) r k = r j ,  fk = f j .  

Note the scalar fk -- rTx (~- 1) appearing in (1.1) is just the residual error in the kth 
equation. The norm used in (1.1) (and elsewhere) is euclidean, and the real numbers 
{COg}k% 0 are a sequence of relaxation parameters in the interval (0, 2). With OOk -- 1 
we obtain the classical ART algorithm (originating with Kaczmarz [K] in 1937). 
Algorithms of this kind can be obtained in several different ways, including 
minimization of residual vectors, filtering, gradient methods, or projection methods 
(see [He2] and [Trl] ,  for example). See also [EHL] for a treatment of these (and 
other) schemes. 

There are also several variations that can be played on the theme of equations 
(1.1) and (1.2), including Richardson or SIRT methods ([Gi], [He2], [I]) and 
constrained systems ( [He l l  and [He2]). We confine attention to processes of type 
(1.1) and (1.2) and also related Successive Overrelaxation (SOR) methods for the 
system 

(1.3) R R r y  = f 

(see [SB], and [Na], for example). 
Excessive under-relaxation has been found to be beneficial in practice (see 

[HLL]  and [He2]) and this has been explained to some extent by theory (see 
I-CEG], and [Na])  when {O~k} is a constant sequence. More general under- 
relaxation strategies have been investigated in [Trl] ,  [Tr2], and [B], in which 
(Ok depends only on the quotient obtained on division of k by m in (I.1). We are 
concerned with a cyclic choice of m parameters ~01 . . . . .  ~om. Thus, as in (1.2), 

(1.4) ~0k = (Oj when k = j(mod m), 

and in the special case of a fixed relaxation parameter. 
We first present a short and self-contained proof of the convergence of ART 

with our admissible relaxation strategy. The main new feature here is representa- 
tion of the limit point(s) in terms of the residual vector f - Rx I where x I = R~f, the 
"best-approximate" solution (in the/2-sense) and R 1 is the Moore-Penrose general- 
ized inverse of R. This argument admits immediate generalization to a problem 
posed in Hilbert-space (see the Appendix). It demonstrates the robustness of these 
algorithms in the sense of independence from consistency of the original equation 
and the choice of initial vector x (~ Our analysis also admits an improved explana- 
tion of the advantage to be gained by under-relaxation. 

Our second major topic is the connection of ART algorithms with solutions of 
Rx = f obtained by applying SOR methods to the equation (1.3). In ~ontrast with 
the algorithms of ART-type, it has been shown by O'Caroll [-O'C] that the SOR 
algorithms actually diverge if the system Rx = f is inconsistent (f~ Im R). This 
suggests a serious disadvantage of the SOR strategy in the form of potential error 
accumulation, and is discussed in our formalism in Section 5. 
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Consider the n x n matrices Q1 . . . . .  Qm defined by 

(1.5) Qj = I - ogj II rj I1-2rjriT 

and note that IIQ~II = 1 as long as coj~(O, 2). It is easily seen that the "iteration 
matrix" for algorithms using equations (1.1), (1.2) and (1.4) is 

(l.6) A(to) = Q,, . . . Q2Q~ 

where ca denotes the vector of relaxation parameters ~Oa,... ,co,,. Thus 
II A(to)ll < 1. Furthermore, if 

p~(span{rl . . . . .  r,,}) • = (Im(Rr)) l = Ker R , 

then A ( w ) p  = p, and we must generally admit that 1 ~a(A( t9)) ,  the spectrum of 
A(tg). It will be seen (and is well-known) that the speed of convergence depends on 
the quantity 

(1.7) 7(A) -- max{IAI; 2~ {0} w a(A),  ). 4= 1} 

(which is usually the magnitude of the sub-dominant eigenvalue of A). This 
quantity, 'y(A), will depend on t ,  as well as the ordering of the rows of R, and will 
also be investigated via the SOR connection. 

In the paper by Smith, Solmon and Wagner [SSW], a bound is given on the 
norm of A restricted to the orthogonal complement of its spectral subspace 
corresponding to eigenvalue 1, say c(A) (in the case ~Ok ---- 1). Since 7(A) < c(A) < 1, 
the minimization of this bound can be used for finding certain suboptimal order- 
ings of the rows of R (see [HS]). Here we wish to emphasize the importance of 
working with 7(A), rather than its upper bound c(A). A generalization of the bound 
c(A) for products of paracontracting matrices (which include the matrices Q j) is 
given by Nelson and Neumann INN], and the quantity c(A) is used by Natterer 
[Na] in a careful study of the effects of underrelaxation. 

2 ART algorithms 

We consider algorithms of the form (1.1), (1.2), (1.4) in which x ~~ is chosen 
arbitrarily. Three lines of argument can be found in the literature. One seems to 
originate with Tanabe [Ta], and we give a short self-contained proof in that style 
(see also [CEG]). Our proof also admits generalization to a Hilbert-space setting, 
and we discuss this briefly in an Appendix to this paper. Another line of argument 
depends on a general theorem of Halperin [Ha] concerning the powers of a prod- 
uct of projection operators. This is used by Natterer [Na-1, for example, for the 
consistent problem with xl~ ImR T. The third approach uses the SOR connection 
and will be discussed below (see also [BE], [Na], for example). 

For s = 0, 1, 2 . . . . .  write ~s)= x~Sm), the iterate obtained after s complete 
sweeps through the rows of R. It follows from (1.1)that 

(2.1) ~ +  1) = A(ta)~(~) + K(~)f  

for s = 0, 1, 2 . . . . .  where A(to) is defined by (1.5) and (1.6). Also 

T (2.2) K(ta) = ~ c o j l l r j l l - 2 Q m Q m _ l . . .  Q~+lr~e i 
j = l  
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and e~ denotes the j th  unit  coord ina te  vector  in 1R" (and when j = m we put  
Q,, . . .  Qj+I = I). It  is easily verified that  

(2.3) K(to)R = I - A(~o). 

Fur thermore ,  if ~ol = o2 . . . . .  ~o,, = r then as w ~ 0 

(2.4) K ( o )  = o R T O  + 0 ( o  2) 

where D = d i a g [  II r l  II-2 . . . . .  11 rr, I1-2]. 
N o w  let P be the or thogona l  pro jec tor  onto  Im R T along Ker  R. Thus, I - P is 

onto  Ker  R and a long Im R T. The results of the first two lemmas are familiar  (see 
[Ta] ,  or  [EHL]) .  The p roo f  of the first is included for completeness and because it 
is short. The p roof  of the second is new and, being more  technical, is relegated to 
the Appendix.  

L e m m a  1. Im R T and Ker  R are invariant under A(~o). 

Proof  Let P i  be the or thogona l  pro jec tor  onto  rj then in (1.5) we have 
Qj = I - oojP~,j = 1, 2 . . . . .  m and from (1.6) we deduce that  if x ~ Im(I  - A(o))), 

x e ~  I m P j = I m R  T. 
j = l  

Thus, Im(I  - A) c I m R  T and,  since I - P annihilates I m R  T, (I - P)(I  - A) = 0, 
o r  

( I -  P ) A ( o )  = I - P .  

But R(I  --  P) = 0 and so equat ion  (2.3) gives 

(2.5) A ( o ) ( I  - P) = I - -  P .  

Hence A(o))P = PA(o) ,  as required. [] 

L e m m a  2. l f o j e ( O ,  2 ) f o r j  = 1,2 . . . . .  m then [Ih(o,)ll _-< 1, and IIZ(,o)Ptl < 1. 

This lemma requires a short  technical  p roo f  that  will be presented in the 
Appendix  in a more  general  Hi lber t  space context.  I t  is clear from the lemmas and 
equat ion  (1.6) that  the spectrum of the restr ict ion of A(o)) to Im P = Im R T is inside 
the open unit  disc, while the restr ict ion to Im(I  - P) = Ker  R has spectrum only at  
2 = 1. In  fact, it is not  difficult to show that  Ker  R = Ker ( I  - A) (see Coro l l a ry  4 of 
[Ta]) .  

We  m a y  now prove the convergence theorem. Recall  that  R I denotes  the 
M o o r e - P e n r o s e  inverse of  R, and we write x I = R~f. The cor responding  residual  
vector  is 

def  
(2.6) g = f -  Rx  ~ = (I - RR~) f ,  

and  we note that ,  because R R  I is the o r thogona l  pro jec tor  onto  I m R ,  
g e (Ira R) • = Ker  R T, whatever  f may  be. 

Theorem 1. Let coje(O, 2) for  j = 1, 2 . . . . .  m and x (~ be an arbitrary vector in IR". 
Then the sequence {~(s)} defined by (1.1) is convergent and 

(2.7) l im ~(s) = X I _~ (I - P )x  (~ + (I --  PA(~o)) - IK(eOg 
s--* oo 
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where P is the orthogonal projector onto I m R  r and g is the residual vector, 
g = f -  Rx  I. 

Proof  It follows from (2.1) that 

~r = A~(e~)x(0) + (I + A(o~) + . . .  + A~-l(e0)K(eJ)f  

and from (1.3) and (1.6) 

~(~+ 1) = A~(w)x(O) + (I + A(~9) + . . .  + A~-l(og))g(aO(Rx I + g) 

= A~(e0x(~ + (I - A'(e~))x I + (I + A(w) + . . .  + A~- l(w))K(co)g. 

In this equation put A~(a0xr176 A~(w)(Px(~ ( I -  P)x ~~ and usng (2.5) we 
obtain 

A'(co)x (~ = (A(m)P)~x (~ + (I - P)x (~ . 

Also, Px I = x I since x I ~ I m  R T. Thus, AS(co)x I=  (A(~o)P)~x I and 

~ ( s + l )  = X 1 _~ (A(w)p),(x(O) _ x I) + (I - P)x (~ 

+ (I + A(to) + . . .  + A*- l(to))K(to)g. 

Then we see that, for j = 1, 2 . . . . .  m, PPj  = P j, so that PQ~ = QjP and hence 
PK(og) = K(to). It follows that 

~(~+ 1) = x I + (A(to)p)~(x(O) _ x l) + (I - P)x (~ 

+ (I -- PA(w))-~(I  - (PA(w))~K)(tu)g.  

N o w  use Lemma 2 and take the limit as s ~ ~ to obtain (2.7). [] 

3 Discussion of the theorem 

(a) In general, the algorithm of Theorem 1 is applied in order to find, or estimate x j. 
First observe that by choosing x(~ Im R T (a linear combinat ion of rl . . . . .  rm) we 
have (I - P)x (~ = 0 in equation (1.7) and the limit is therefore independent of x ~~ 
N o w  it is easily seen (and already well-known) that each subsequence of {x (j) };= o 
obtained by taking indices j that  are congruent  mod(m) will be convergent. Thus, 
the ART algorithm of equations (1.1), (1.2) and (1.4) converges cyclically from any 
initial x t~ ~ Im R T, and the limits will depend on the ordering of  the rows of R. Let 
H denote the set of all permutations of indices { l, 2 . . . . .  m} and for any zc e H let 

b,  = I[ (I - PA,(o9))- 1PK,(co)II, 

and {~)}  denote the sequence generated as in (2.1) after applying ~ to the rows of 
R. It follows from (2.7) that when x(~ Im R T all cyclic limits of the ART algorithm 
will lie in the sphere with the centre x ~ and the radius b II g II, where b = max b,: 

lim ~ )  - x 1 < b LI g 11, ~t ~ / 7 .  
S~OD 

Thus, if II g II is small (the measurement errors do not  drive f too far from Im R), then 
even though the iterations x ek) will not  converge in the usual sense, they will 
ultimately oscillate in a small sphere with centre x ~. 
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Recall  that  the vector  g is the residual  vector for the system Rx = y evaluated at  
x ~. Since R R  ~ is the o r thogona l  project ion onto Im R, it follows that  g = (I - RR~)f 
is o r thogona l  to Im R and so provides  a good  measure  of the depar ture  of f from 
Im R. It  can be argued that  this clustering of the limit points  is one of  the main  
reasons for the success of ART algori thms.  In computer ized tomography ,  even 
though measurement  errors make  the system inconsistent,  a recognizable image 
can  be p roduced  provided  the d iameter  of the cluster is not  too large. 

(b) It follows from the above discussion that  i f f~  Im R (the system is consistent) 
then for any rr e / 7  

l im ~ = x 1 , 

that  is {x~k)}ff=l converges to x ~ in the usual sense and independent ly  of the 
order ing of rows of  R. However ,  the speed of convergence will general ly depend on 
the order ing of the rows as well as to. 

(c) If Im R t = IR", then for any  rce/7 and for any ~ )  ~ IR", 

lim 4 ? ) =  x I + (K( to )R) -XK( to )g .  
$ ~ o 0  

Indeed,  in this case P = I and the result follows immedia te ly  from (2.3) and (2.7). 
(d) Let  to be a cons tant  sequence (and so replace to by o )  and let us investigate 

the efficacy of underre laxat ion.  We need a lemma: 

L e m m a  3. The rational matrix function (I - A(co)P)-1 has a simple pole at co = O. 

Proof  As 09 ~ 0 it is easily seen that  

A(co)P = P - coAl + O(co 2) 

where A1 = RTOR (with D as in equat ion  (2.4)). Thus, (I - A(to)P)- 1 certainly has 
a pole at  co = 0. Let  the order  be k > 1. Then there are matrices B j, 
j = - k ,  - k +  1 . . . . .  0 ,1 , .  . . such that  

(3.1) (B-kco -k + �9 �9 �9 + B-~o9 -1 + Bo + Baco + . . . ) ( I  -- P + coAl + .  �9 .) = I 

for sufficiently small  {ol # 0. If  k > 1 then B-k ( I  -- P) = 0 and 
B - k A I  + B - k + l ( I - -  P) = 0. As A I P  = A1 this implies B - k A 1  = 0. But 
I m A l  = I m P  and  so I m P  c Ke rB_k ,  or  B - k P  = 0. Then B - k  = B - k P  = 0. Thus 
k = 1 and,  in a deleted ne ighbourhood  of co = 0, we have an expans ion  

(3.2) ( I -  A(co)P) -~ = B_lco  - i  + B0 + B l o  + . . .  

with B_ 1 # O. [] 

Proposit ion.  Let  x t~ ~ Im R T. Then as co ~ 0 

(3.3) lim ~r = x ~ + B_~RXDg + O(co), 
s--* co 

and B_ 1R T Dg = 0 i f  and only i f  Dg ~ Ker  R T. 
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Proof. It is easily seen from (3.1) that - - B _ I A  1 = P = - A x B - , .  In particular, 

Ker B_ 1 ~ Ker P = Ker R = (Im RT) • . 

Thus, B _ I R T x  = 0 if and if x ~ K e r R  T. 
Using (3.2) and (2.4) in (2.7) we obtain (3.3). Furthermore, B_ 1RTDg = 0 if and 

only if Dg ~ Ker R v. [] 

Natterer considers this limiting case when Rx = fis consistent, i.e. f~ Im R v (see 
[Na]) .  With this hypothesis it follows from (2.6) that g = 0 and so B_ 1RTDg = 0 in 
(3.3). Now, in any case, g ~ K e r R  v so B-1 RTDg = 0 provided D = I. In other 
words, when the rows of R are normalized to have unit length. This is the case 
considered by Censor, Eggermont,  and Gordon  [CEG].  

Now it is easily seen that, if the starting vector x r176 is fixed, the sequence 
{x~J~}j= o, and hence the subsequence {~sj }, are invariant under row-scaling of  R. 
Thus the image produced is independent of the scaling and (3.3) implies that 

x' + B_IRTDg = x~ , 

the best approximate solution after row-normalization, which is approached in the 
limit, with or without normalization. Note that x~ = (D1/ZR)lD1/2g and, in general, 
x~ 4: x I because ( D 1 / Z R )  I ::[: RID -1/2. As one might expect, the best approximate 
solution of Rx = f depends on the relative sizes of the residuals r ~ x - f j ,  
j = 1, 2 . . . . .  m. (The effects of row normalization on SIRT algorithms have been 
discussed by van der Sluis and van der Vorst, [VV].)  

These results show that, when t] g ]] is small in an appropriate sense, the cluster 
of limit points described in item (a) above will have a diameter that decreases to 
zero as co ~ 0. Indeed, all limit points converge to x~ as ~o --* 0. 

(e) For  any given ordering of the rows of  R the speed of convergence of the 
ART algorithm will depend on the choice of the relaxation parameters coj ~ (0, 2). 
The optimal to minimizes the spectral radius of the restriction of A (to) to Im R T, 
y(A(to)). As we have noted, it is not sufficient to minimize the norm of this 
restriction, c(A(to)), which provides only an upper bound for v(A(to)). This will be 
demonstrated explicitly for the simplest nontrivial example in Section 6, i.e. when 
m = 2, a case that we introduce here. Using a single parameter, co, we show that in 
this case c(A(~o))> c(A(1)) when co~(0, 2); a property that is not  shared by the 
function 7(A (~o)). 

Example. Let m = 2 and 

A(co) = (I - cor2r~)(I - corl rT), 

where t] rl ]] = I] r2 [] = 1. It is known ( [GV] ,  w 12.4) that the singular values of A(1) 
are equal to 1 . . . . .  1, [r~r2],0. Since the spectrum of A(1) coincides with the 
spectra of 

( I  - rzr2T) (I -- rl rlT)(I -- r2r2 v) = (I -- rzr2T)(I -- r l r~)(I  -- r l r ] ' ) ( I  -- r2r~) = AA T , 

the eigenvalues of A are equal to 1 . . . . .  1, (r~rz) 2, 0. Thus c(A(1)) = [r~r2[, and 
v(A(1)) = (r~r2) z. 

Using the minimax characterization of singular values ( [GV] ,  w it can be 
shown that e(A(co)) > e(A(1)) for any ~o E (0, 2). In contrast, it will be seen in Section 
5 that, unless r~ = r2, 7(A(to)) is minimized when o~ :# 1. 
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4 An equivalent characterization of ?(A(ta)) 

In this section a second characterization for ?(A(co)) is derived, where A(co) is 
defined by equations (1.5) and (1.6) with co1 . . . . .  COrn = 09. Also, we assume that 
the rows of R are normalized, so that 

A(co) = (I - cormr~) . . .  (I - corlr~).  

Since 7(A(co)) = ?(AW(~o)) we consider for convenience AT(co). Clearly, there are 
(possibly non-unique) numbers fl~j, 1 < i , j  < m, such that 

(4.1) rTAX(co) = r T + f l i l r  T + . . .  + flimr T . 

It is straightforward to check that flij defined by the following recursive relation: 

l i l  = - - c o C i l  

~i2  = -co[ci2 + 13.c123 

f i lm : - - c o [ C i m  + f l i l  C l m  "q- " " " -~- f l i ,  m -  l C m -  l , m ]  

where cij = r~rj = cjl satisfy (4.1). Denote  ~(co) = [ flij]i~,j= 1 and write the Gram 
matrix R R  T = I L - L T, where 

I 0 0 . . .  0 0 1 
C12 0 . . . 0 0 

L = - . . . . . 

k C l m  C2m . . . C m - 1 ,  m 0 

Then it follows from the recursive relations for f lu that  

(4.2) ~(co) = -- c o ( R R  r - ~(co)LT).  

Hence 

(4.3) ~(co) = _ coRRT(I _ coL T)- 1 . 

Adding I to both sides we obtain the triangular factorization 

(4.4) I + ~(co) = {(1 - co)I + coL} (I -- coLX) -~ . 

Given the importance of  the function ?(A(co)), the significance of the matrix M(co) 
for our analysis is apparent  from the next theorem. 

Theorem 2. F o r  a n y  n u m b e r  2 4= 1, 2etr(A(co)) i f  and  o n l y / f 2 s t r ( I  + ~(co)). 

P r o o f  The relation (4.1) can be written in the form 

(4.5) RAT(co) = (I + ~(co) )R.  

Suppose ). 4 :1  and 2~ o-(A(co)). Then there is an x 4= 0 such that AT(CO)x = 2x. It 
follows that  Rx 4: 0, for otherwise rTx = 0 for each i, and hence A(co)x = x, 
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con t ra ry  to hypothesis .  Thus,  it follows f rom (4.5) that  

(I + ~(~o))(Rx) = 2(Rx) 

and  2 ~ a(I  + 2~(o9)). 
Conversely,  let 2 e a ( I  + ~(to)), 2 4= 1. Then  there is a y 4 : 0  such that  

(I + ~T(~o))y = 2y. Clearly 2U(to)y 4= 0 or  we cont radic t  2 4: 1. It follows f rom 
equa t ion  (4.3) tha t  also RTy 4: 0, and  f rom (4.5) we obta in  

A(RTy) = 2 (RTy) .  []  

Note ,  in part icular,  tha t  the theorem implies ?(A(~o)) = ?(I + ~(~o)). 

Remarks  
1. 1~ a( I  + ~(6o)) if and  only if r~ . . . . .  rm are linearly independent .  Indeed,  

(I + ~T(CO))X = X implies that  ~T(co)X = 0 and  by (4.3) R R T x  = O. Thus  RTx = 0. 
O n  the o ther  hand  if RTx = 0 then ~T(60)X = 0 and  (I + ~T(60)X = X. 

2. 1 ~ a(A(oJ)) if and  only if Im  R T = IR". This is obvious.  
3. In  case 6o = l, I + ~T(1) = (I -- L ) - I L  T. 

5 Relaxation with a sequence of parameters 

N o w  let us re turn to the possibility of  choos ing  m relaxation parameters  in cyclic 
order.  Thus,  with co t ~ (0, 2), j = 1, 2 . . . . .  m, 

AT(to) = (I -- ~olrlr~) . . . (I -- tomr,.rVm). 

Repeat ing  the a rgumen t  of Theo rem 2 it is easy to see that  except (possibly) for the 
n u m b e r  1, A(co~ . . . . .  to,,) and  I + M(to1 . . . . .  ~Om) have the same eigenvalues, and  
(cf. equa t ion  (4.4)), 

I + ~(0)  1 . . . . .  60") = ((I -- W) + L W ) ( I  - L T w )  - 1  

where W = diag[~ol . . . . .  ~o"]. 
In  case c o l =  1 and  ~oz . . . . .  to" are a rb i t ra ry  number s  in the interval (0, 2), the 

first row of the matr ix R A  T is zero. Indeed,  

r ~ ( I -  r l r ~ ) . . .  (I - COmr"r~) = 0 .  

Rewri t ing the equali ty (3.4) for submatr ices  with indices i , j = 2  . . . . .  m, 

~r  , COrn) = { fllj}i~j=2, W '  = diag[co2 . . . . .  COm'] and  

0 0 0 �9 �9 o 

L C2m C3m . . . 0 

we have 

I + ~"(co2 . . . . .  O)m) = (I -- W ' +  L ' W '  + c c T  W ' ) ( I  --  (L')T W')  -1 

where c T = [c12 . . . . .  c1"] .  It  follows now f rom (4.5), as in T h e o r e m  2, tha t  

i f ( A ( 1 ,  60  2 . . . .  , co"))\{1} = f f ( I " _  l ,  m _  1 + ~ ' ( o 1 2  . . . .  , corn))\{1} . 
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This reduction by one dimension can be useful for analyzing cases with small m. 
For  example for m = 2 

A(1, co) = (I - corzrT)(I -- rlrT) . 

Thus I + ~ ' ( c o ) =  1 - c o + c 2 2 c o  and therefore y(A(1, co))= 1 - o 9 + c 2 2 c o .  
Clearly for co = 1, ~(A) = c122 . In case the angle between rl and rz is larger than ~z/4, 
one can take co = 1/(1 - c22)6 (0, 2) such that ~(A (1, 1/(1 - c 22)) = 0. If the angle is 
less than or equal to 7z/4, then 7(A(1, co)) we decrease as co approaches 2. 

6 Relation to the SOR algorithm 

It follows from equation (4.4) that, in the case of a single relaxation parameter  and 
with row normalization, the matrix I + ~T(CO) is the iteration of the SOR algorithm 
for the equation R R T y  = f (see [SB], p. 546, for example). Therefore (see also 
equation (2.4) of Nicolaides, [Ni])  

(6.1) I + MT(CO) = (I -- coemrTRT). . .  (I -- coelr~RT). 

We observe that A(co) is expressed in terms of the or thogonal  projectors rkr~ and 
I + ~T(CO) is expressed in a similar way in terms of the (generally) non-or thogonal  
projectors ekrkVR x. For  brevity, let us denote I + MT(co) by T(co). We conclude from 
Theorem 2 that 

(6.2) a(A(co))\{1} = G(T(co))\{1}. 

Let us show that the matrix T(co) is in fact an iteration matrix for a certain 
iterative process of ART type in JR'. (This is also pointed out by Bj6rck and Elving 
[BE] ). If  x (~ 6 Im R T it follows from (1.1) that x (k) 6 Im R T for all k. Hence there exist 
y(k) 6 ]R" (in general not  unique), such that 

X (k) = R T y  k, k = O, 1, 2 . . . . .  

Suppose we start with some y(O) 6 ills and define iterations 

(6.3) y(k+ 1) = y(k) ..j_ ~kek+ 1 ' k = O, 1, 2 , . . .  

where e k denotes the k-th coordinate vector in IR" and 

(6.4) ~k = co(fk+ 1 -- rT+ X RTy(k)) �9 

Then clearly, for k = 0, 1, 2 . . . . .  

RTy(k) = RTy(k+ 1) d- co(fk+ 1 - -  rkT+ a RTy(k))rk+ 1 . 

Denot ing x (k) = RTy (k) we get 

x (k+l) = x (k) + cO(fk+l -- rkT+lx(k))rk+l 
o r  

X (k+l) = (I - c o r k + l r ~ + l ) x ( k ) +  COJk+lrk+ 1 

for k = 0, 1, 2 . . . . .  which is essentially the same as equation (1.1) with co fixed). 
Thus, the process (6.3)-(6.4) can be considered as an alternative method of 

solution of Rx = f. The extra work needed to compute  R T y  (k) can be justified when 
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R v is sparse, because the updates in (6.3) are in one position only. (Note that the 
vector x (k) = RTy (k) is computed in the process of finding ~k.) 

Denoting q~s) = y(S,), s = 0, 1, 2 , . . .  we get 

(6.5) q(~+ 1)= T(~o)q(~)+ K ( o ) f  

where/~(~o) is an m x m matrix dependent on o.  It is known from the SOR theory 
(p. 546 of [SB]) that (recalling []rill= 1), 

(6.6) /~(~o) = ~o(I - ~oL) -1 . 

In contrast  to the Kaczmarz  algorithm of Theorem l, the next result shows that 
the SOR procedure converges if and only if the original system Rx = f (or the 
system RRTy  = f) is consistent. The conclusion originates with O'Caroll  [O 'C] ,  
but it is re-formulated here to express the limiting vector in more explicit form 
consistent with the presentation of Theorem 1. 

Theorem 3. Le t  ~o~(0, 2) and tl (~ be any vector in IR m. Then the iteration (6.5) 
converges i f  and o n l y / f f G I m R ,  and in this case 

(6.7) lim t/(~) = (RRT)~f + Q ( o ) q  (~ . 

R emar ks  
(a) In casef#  Im(RR T) the iterations t/(S) will diverge. However their projections 

onto Im(I  - Q) will converge. Indeed, writing f = (RRT)y ~ + h, it is found that 

lim (I - Q)q~) = y ' +  (I - ( I  - Q)T(o) ) -  :(I - Q ) / ( ( o ) h .  
S ~  

This implies cyclic convergence for the sequence { Yt~)}~=l which depends on the 
ordering of the rows of R. Clearly 

R T lim q(~) = x ~ + (I - P A ( ~ ) - I P K ( o ) g  
s ~ 0 o  

where P and g are defined in Theorem 1. It is possible to show that if S is any other 
matrix satisfying the relations S(I - Q) = 0 and R T s  = R T, then Sq ~) will converge 
and 

lim Sq (~) = Sy' + S(I - ( I  - Q) T(~o))- 1(I - Q)/s 
s--+ oo 

(b) Since RT(I -- o e k r T R  T) = (I -- ~orkrT)R T it follows that 

R T T(o~) = A(co)R r . 

Hence RTtl (s+ l) = R T T(c~)q(~) + RT/~(r f, or 

~+1~ = A(o)~c~) + RT/~(c~) f .  

Compar ing  with (2.1) for any f~ IR" we get (with normalized rows), 

K(o)  = RT/s = oRT(I  - o L ) -  1 . 

(c) To illustrate the use of the connection between ART and SOR algorithms 
we shall find the o which minimizes 7(A(o)) when m = 2. Thus 

A(eo) = (I - or2 r T) (I - or1 r~).  
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It  follows Theorem 2 and Section 5 that  ~(A(CO)) coincides with ~(1 + N(CO)), which 
is the SOR iteration matrix for R R  T. Since 

..T [CI  
is consistently ordered (see [SB], pp. 549, 553) 

COopt = 2/(1 + x /1  - c22) 
C{z 

'y (A (coopt)) ---- 
(1 + , / f f -  

it follows that  for 

will be minimal  on (0, 2). It is clear that  for c12 4= 0 

y(A(COopt)) < y(A(1)) = c~2.  

Since CO = 1 minimizes c(A(CO)) (see Remark  (e) in Section 2) this example suggests 
that  in choosing the relaxation pa ramete r  CO in the ART algori thm it is impor tan t  
to minimize y(A(CO)) rather  than c(A(CO)). 

(d) It  is known from the SOR theory (see [SB], for example) that  for positive 
definite block tr idiagonal  matrices of the form 

F = 

m 

where I~ are identity 
J l + J 2  + . . . + J M = m ,  

m 

11 E~ 
0 

E1 Iz E T 

ET 
0 

EM IM 

m 

m 

matrices of sizes Jk, respectively, such that  

COopt = 2/(1 + x/1 - ?2(F - I)) 

is the opt imal  relaxation paramete r  for the SOR method.  
This result has a simple interpretat ion in the ART domain.  Let F = QDQ T 

where Q is or thogonal  and D-diagonal.  Write R QD 1/2 with rows rT , . .  T = �9 rm, as 
before, and part i t ion R in the form 

(6.8) R = 
Rz 

I 
u T ,  + 1 ] 

where Rk = " , k = 1 . . . . .  M ,  jo = O. Then it follows f rom the equality 

L , I  
R R  T = F that  the rows of Rk are o r thogona l  to each other  for all k = 1 . . . . .  M and 
that  all the rows of Rk are or thogonal  to all rows of Rk+2,  Rk+ 3 . . . . .  R M. 
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Let Pk = RkR~ denote the orthogonal projections onto Im Rg for k = 1 . . . . .  M. 
Then the ART iteration matrix A(co) for R can be written as follows: 

A(~o) = (I -- 6OPM). . .  (I -- ~oP1) 

where Pk have the property that 

(6.9) Pi  _l_ P3 . . . .  , PM , 

P2 _k P4 . . . .  , PM , 

PM- 2 "1 P ~  �9 

Thus if R has the block structure (6.8) such that (6.9) holds, we get 

(6.10) Ca)op t = 2/(1 - x/1 - y2(A(1))) 

This observation suggests a possible strategy of ordering and partially ortho- 
gonalizing rows of R in such a way that the optimal co could be determined via 
(6.10). Starting with some orthogonal rows R1 find all rows which are not ortho- 
gonal to R, and orthogonalize them. Then find all rows which are not orthogonal 
to all previously chosen rows and orthogonalize them. Continue until all rows of 
R are used. 

7 Appendix 

Convergence o f  the ART-algori thm in Hilbert space 

Let ~ ,  ~f~ . . . . .  ~ , ,  be Hilbert spaces and R~ be a bounded linear operator from 
to ~ for j = 1, 2 . . . . .  m. Assume that each Rj is a transformation with closed 

range. Define 

R = : ~ ---," . i f 1  x . i f 2  x . . .  x . X ~ , , , ,  

and R is seen to have closed range as well. Under these hypotheses, R1 . . . . .  R,~, 
and R each have a Moore-Penrose inverse (see [Gr]), denoted by R], R', etc.. 
Furthermore, if we define Pj = R}R~, Pj is the orthogonal projector onto 
Im R* = Im R} = (Ker R j) I. Given an 

f =  ( f a , f z  . . . . .  f , , ) e ~ l  x 9ff2 x . . .  x Jt~,,, 

the equation R x  = f  obviously generalizes the problem of the main text (where 
Rj corresponds to r~, etc.). Note that the problem considered here, with m fixed 
transformations R1 . . . . .  R,, is different from that considered in the Hilbert-space 
analysis of McCormick [M]. 

We remark that this problem is not posed just for the sake of generalization. 
The full Hilbert-space machinery is required for analysis of the tomography 
problem with m complete projections (see section V.4.3 of [Na]). 
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In  this  con tex t  the A R T  a l g o r i t h m  (1.1), (1.2), (1.4) t akes  the form: G i v e n  any  
x(~ ~ ,  genera te  {x (k)} b y  

x(~) = x(k-1) + ~okRIk(fk _ R~x~* 1)), 

= (I -- ~okPk)x (k -1 )+  cokR~f~ 

where,  for  k = j ( m o d  m), j = 0, 1 , . . .  , m - 1, 

Rk = R j + I ,  f k  = f j + l ,  ~ k  --= ~ j + l  �9 

W r i t i n g  ~(*) = x (*m), s = 0, 1, 2 . . . .  we o b t a i n  

(A.1) ~(~+ 1) = A(to)~r + K ( t o ) f  

(as in e q u a t i o n  (2.1)) where  now 

A(og) = (I --  ~ m P , , ) . . .  (I + o92Pz)(I  - e h P 1 )  

a n d  (as in (2.3)), 
K ( t o ) R  = I - A( to ) .  

N o w  the ana lys i s  p r o c e e d s  in m u c h  the same way  as the  f in i t e -d imens iona l  case. 
W e  p re sen t  the p r o o f  of one  l e m m a  tha t  t akes  s o m e  care  and  then  conc lude  the 
A p p e n d i x  with  a s t a t e m e n t  of  the genera l i zed  fo rm of  T h e o r e m  1. N o t e  first t ha t  we 
n o w  define P to be  the  o r t h o g o n a l  p r o j e c t o r  on to  I m  R*, a n d  tha t  the  conc lus ion  of  
L e m m a  1 of the m a i n  text  carr ies  over  i m m e d i a t e l y  to  this  sett ing.  

L e m m a  2A. l f~oie(O,  2 ) f o r j =  1 ,2  . . . . .  m then ]IA(~o)I[ < 1 and HA(to)P[[ < 1. 

Proof. F o r  any p r o j e c t o r  P ( that  is n o t  0 or  I), the  s p e c t r u m  is g iven by  
a ( P )  -- {0, 1}. It fo l lows t h a t  a ( I  - og~Pi) = {1 - e~j, 1} and ,  as I - ~ j P j  is no rma l ,  
[ I I - o g ~ P j [ ]  = 1 if ~oje(0,2) .  I t  fo l lows tha t  []A(to)[I __< 1. Consequen t ly ,  (see 
L e m m a  3.1 of  [ N a ] )  we have  the o r t h o g o n a l  d e c o m p o s i t i o n  
9f ~ = K e r ( I - A )  0 ) I m ( I - A ) ,  I - A  is o n e - t o - o n e  on  its image,  and  
K e r ( I  - A) = K e r ( I  - A*). Since K e r ( I  - A) = K e r R  it fol lows tha t  
I m ( I  - A) = I m R * .  

N o w  as sume  [I A(~o)P [I = 1 a n d  l ook  for  a con t r ad i c t i on .  Let  

k 2 - - - -  2 m a x  (2coj - ~ 2 ) - 1  
l <j<m 

Give  e > 0 there is an  a , ~ . f f  wi th  I[a~[I = 1 and  

I[APa~I[ = ][PAa~[[ > l - e  2 .  

Thus  for  any  j ,  1 < j __< m, 

(1 - e 2) < ]IPAa~[[ <= I[(I - ~%.Pj)a~[I __< 1 . 

2 But  II(I - o9~Pj)a,l[ z I[a~ ]l 2 - (2~0 i - co~ [IP~a~ll 2, so 

(1 - e2) 2 < 1 - (2coj - co2)[[Pja~[I 2 < 1 
a n d  

e2 > ea _ �89 > �89 - ~o2)llPja~[I 2 > O. 
Thus ,  

2 < ke 
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and  there is a sequence {a, } such that  l[ a ,  If : 1, IIPAa. II ~ 1 and  Pja,  ~ 0 as 
n ~ ~ .  Since 

PAa,  = P( I  - o3,,P,,) . . .  (I - ~ 2 P 2 ) ( I  - to I P1)a, 

it follows that  PAa,  = Pa, + ~j~=l K j P j a ,  for cer ta in  b o u n d e d  l inear  opera tors  
K1 . . . . .  Kin, and  hence 

l im (I - A)Pa,  = 0 .  
n ~ o o  

Since { P a , }  is in I m R *  = Im(I  - A), a n d  I - A is one - to -one  on  its image,  it 
follows tha t  Pa,  --* 0 with [1 a ,  ]t = 1 an d  APa,  t[ ~ 1 as n ~ ~ .  This  cont radic ts  the 
con t inu i ty  of A. [] 

Theorem 1A. Let  ~oje(O, 2) for j = 1, 2, . . m and x(~ ~ ~ .  Then the sequence {~(~)} 
(3 (0) = x (~ defined by (A.1) is convergent and 

l im ~(~) = R l f +  (I -- P ) x  (~ + (I - PA( ta ) ) - lK( ta )g  
S ~ o o  

where P is the orthogonal projector onto I m R *  and g is the residual vector: 
g = f - -  R(R ' f ) .  
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