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Summary. We discuss block matrices of the form A = [Aij], where Aij is a 
k • k symmetric matrix, Aii is positive definite and Aij is negative semidefinite. 
These matrices are natural block-generalizations of  Z-matrices and M-matrices. 
Matrices of  this type arise in the numerical solution of Euler equations in fluid 
flow computations. We discuss properties of  these matrices, in particular we 
prove convergence of block iterative methods for linear systems with such 
system matrices. 
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1. Introduction 

The theory of  M- and Z-matrices was developed in the last 50 years, starting 
with the paper of Ostrowski [O1] in 1937, followed by the work of Varga [V1] 
and Young [Y1] in the 50's and 60's, the papers of Fiedler and Ptak [F2], the 
book of Berman and Plemmons [B2] and the work of many others. 

It has been stressed in [V1] and [Y1] that at least some interest in this topic 
comes from its important applications in the studies of the convergence of  
iterative schemes for linear systems arising in the numerical solution of  partial 
differential equations. This led to many generalizations and modifications of  
this theory. 

Here we present a further generalization. Recall that a real n x n matrix 
A = [aij] is a Z-matrix if aij <_ 0 for i @ j. If  in addition A -1 exists and is 
elementwise nonnegative, it is called an M-matrix. 

In this paper we study block matrices A = [Aij] ~ C kin'kin, where the blocks 
Aij E C k'k are Hermitian matrices and the off diagonal blocks Aij, i ~ j are 
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negative semidefinite. As for blocksize k = 1 these matrices are Z-matrices, we 
denote this class by Z~. 

Matrices of  this type arise for example in the numerical solution of 2-D or 
3-D Euler equations in fluid dynamics [HI], [D1]. In Sect. 5 we discuss these 
matrices. In our study of the class Zm k we always have these examples in the 
background. In particular we study convergence results for iterative methods 
for the abovementioned linear systems. 

In the case k = 1, i.e., the classical case, there are many equivalent conditions, 
which are necessary and sufficient for a Z-matrix to be an M-matrix, e.g. [B2]. 
In our generalization it cannot be expected that these are equivalent, and 
hence it is not at all clear, which subclass of  Zm k is the right one to replace 
the class of  M-matrices. We opted for a diagonal dominance criterion. So we 
call a matrix A = [Aij] E Z m  k a generalized M-matrix,  if there exists a positive 

m vector U T = [U 1 . . . .  ,Urn] such that Ri(u ) : =  ~,j=l ujAij is positive definite for 

i = 1 . . . . .  m. The class of  these matrices is denoted by M~. 
After presenting the notat ion and some preliminaries in Sect. 2, we study 

some general properties of  the classes Zm k and Mkm in Sect. 3. In particular 
we give conditions when matrices in Z~ are in M~. We show that Hermitian 
matrices in Mkm are positive definite and exhibit a subclass of  Mkm which is 
invariant under Gaussian elimination (Theorem 3.24). 

In Sect. 4 we study the convergence of  the Jacobi iterative method and show 
that some of the other M-matr ix properties do not generalize to Mkm. 

2. Notation and preliminaries 

In this paper  we use the following notation: 
Let n be a natural number.  Then we denote by 

(n} - the set {1 . . . .  ,n}; 
~n,n -- the set of  complex n x n matrices, tE n,1 =:  ~n;  
~,~n,n -- the set of  real n x n matrices, IR n,l = :  ~ n ;  
I~_ - the set of  positive vectors in ~ n ;  
In - the n • n identity matrix, the n may be omitted; 
ei - the i-th unit vector. 

Let A E ~n,n. Then, we denote by 

A* - the conjugate transpose of A; 
A T - the transpose of  A; 
a(A) - the spectrum of  A; 
o(A) - the spectral radius of  A, i.e. o(A) = max{12l IRE a(A)} ; 
W(A) - the field of  values of  A, i.e. W(A) = {x*Axlx c C n, x*x = 1 } ; 
Jtr(A) - the right null space of A, i.e. JV(A) = {x E ~nlAx = 0}. 

Let A E C n'n be Hermit ian and let A = Q*DQ = Q*(D1-D2)Q be its spectral 
decomposit ion with Q unitary, where D is written as the difference of  two 
diagonal matrices DI,D2 with nonnegative diagonal elements and DID2 = O. 
Then we set A + := Q*D1Q, A -  := Q*D2Q and IAI := A + + A-.  

2.1 Definitions. i) Let A, B E ~n,n be Hermitian. A is positive definite if x*Ax > 0 
for all x E Cn\{0}, and A is positive semidefinite if x*Ax >__ 0 for all x E ~n. We 
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denote this by A > 0 and A > 0, respectively�9 Analogously we write A < 0 if 
- A  > 0 and A < 0 i f - A  > 0. 

ii) Let A E ~"~. We call A positive definite if A + A* > 0 and positive 
semidefinite if A + A* > 0. 

iii) ForA,  B c l ~  n ' n , w e w r i t e A > B , A - > B , A < B , A - <  B i f A - - B > 0 ,  
A - B >_ 0, A -- B < 0, A -- B < 0, respectively. 

If A = Q*DQ ~ IE "'n is Hermitian positive definite, then we denote by A 1/2 
the Hermitian positive definite matrix Q'DIQ, where for D = diag (dl . . . . .  dn), 
DI = diag (dl/2 . . . . .  d~/2). 

2.2 Definition. Let A = [aij] c ~n,n. Then, 
- A is a Z-matrix if aij <_ 0 for i ~p j, i, j = 1, . . . ,  n; 
- A is an M-matrix if A is a Z-matrix, B = [bij] = A - 1  exists and bij >- 0 for 
all i , j  = 1 . . . . .  n. 

2.3 Notation. By Zm k we denote the set of matrices {A E ff2mk'mklA = [Aij], 
Aij C (U k'k Hermitian for i , j  = 1 . . . . .  m and Aij < 0 for i , j  = 1 . . . .  m, i --/= j} and 

we set Z ,  k, :--- {h = [Aij] E zkmlAii > O, i =  1, . . . ,m}.  
^ k  We furthermore define Mkm = {A C Z,nl there exists u ~ R~_ such that 

~jm= 1 ujAij > 0 for all i = 1 . . . . .  m}. 

2.4 Definition. Let A = [aij] E I12 re'm, B = [bij] ~ ffck,k. Then the (right) Kro- 
necker product of  A and B, denoted by A | B, is defined to be the matrix 

[[altB ... almB]. 

A | B := / a21B ... E ~km.km . 

L amI B ... ammB -I 

2.5 Definition. Let A = [Aij] E l~ mk'nk with Aij E IE k'k. Then, we define the 
block graph GA of  A as the nondirected graph of  vertices 1 , . . . ,m and edges 
{i,j}, i @ j, where {i,j} is an edge of GA if Aij 4 = 0 or Aji 4: O. By E(GA) we 
denote the edge set of GA. A is called block acyclic if GA is a Jorest, i.e. GA 
is either a tree or a collection of  trees. A vertex of  GA that has less than two 
neighbors is called a leaf 

For properties of  acyclic matrices see [B1]. 
Besides this we consider also directed graphs DA, which are obtained from 

GA by introducing various different orientations on the edges of GA. 
The set of directed edges or arcs of  DA is again denoted by E(DA). Note 

that then an arc is an ordered pair (i, j). 
For the discussion of  block iterative methods we need the following defini- 

tions, e.g. [B2]. 

2.6 Definition. Let A = [Aij] E (~mk,mk with block Aij E l~ k'k and nonsingular 
diagonal blocks�9 Then, the block Jacobi matrix corresponding to A is the matrix 
Y = D -1 (L+U),  where - L ,  - U  are the block strictly lower and upper triangular 
part of  A. The Jacobi matrix d is called weakly cyclic of  index p > 2 if there 
exists a permutation matrix P such that P A P  T has the block form 
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0 ... 0 Blp 
B2~ 0 0 

(2.7) .. .. . 

0 Bp,p_ 1 0 

where all the null diagonal blocks are square. A is called p-cyclic if J is weakly 
cyclic of  index p. A is called consistently ordered p-cyclic if A p-cyclic and if all 
the eigenvalues of  the matrix J(e) = eL + el-PU are independent of  e for all 
e=pO. 

Note that this is a special case of  the usual definition of  weakly cyclic 
matrices, since here we have blocks Aij which are all of  size k • k. We conclude 
this section with some simple Lemmas. 

2.8 Lemma.  Let A c 1I; n'n be Hermitian, A >_ O. Then A 2 <_ A if  and only i f  
A < I .  

Proof The proof  is obvious, e.g. [H2, p. 470]. [] 

2.9 Lemma.  Let A = [All  AlE] ^ A21 A22 ] E Z~ be Hermitian. I f  A22 + A21 > O, 
L 

All + AIx > O, then A > O. 

Proof It is well known (cf. [H2, p.472]) that A > 0 if and only if Ali > 0 and 
"k 

A 2 2  - -  A21A~llA12 > 0. The first condition holds trivially, since A c Z 2 . For the 
second condition we get 

A22 -- A2~AllIAI2 = (A22 + A21) + (--A12 - -  A 2 1 A I l l A I 2 )  �9 

The first term is positive definite and the second is positive semidefinite by 

Lemma 2.8, since Alll/2(--A12)All 1/2 N I. 

3. Positive definiteness and invariance under Gaussian elimination 

In this section we list several results for Z~, which generalize some results for 
Z-matrices or M-matrices. We begin with a generalized diagonal dominance 
result. 

3.1 Proposition. i) Let A = [Aij] E Z k and suppose that 

1 m 
(3.2) A i i + ~  Z ( A i j +  Aji) >- O i =  l . . . .  ,m.  

j=l 
yr 

Then A is positive semidefinite. 
ii) Let A = [Aij] G Z k and suppose that 

1 m 
(3.3) Aii "-[- "~ Z ( A i j  + Aft) > 0 i : 1 , . . . , m .  

j=l 
jr 

Then A is positive definite. 
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P r o o f  Let B = [Bij] = A + A*. 
Then 

B = 

~ 

--Bij Bij 
0 

i'/ffJ! Bij --Bij 0 

BI1 + Z j ~ I  Bij 
[- "..  

Bmm -t- ~j~m Bmj 
Each s u m m a n d  in the first t e rm is o f  the form 

- ( e l  - ej)(ei  - ej) T | B 0 

and  hence is positive semidefinite since - - B  U > O. 
(3.2) or (3.3) imply that  

Bl l  + ~ j : p l  Bij  

Bmm n t- Zjsk m Bmj ] 

l . 

is posit ive definite or positive semidefinite, respectively and together  we get i) 
and  ii), respectively. ~ 

It  is well known in the case k = 1 that  (3.3) is not  a necessary condi t ion 
and  that  (3.2) is not  a sufficient condi t ion for A to be posit ive definite. 

In the following we discuss other condit ions for A E Z~  to be positive 
definite, which generalize condit ions for M-mat r ices  to matr ices  in M~. 

3.4 Theorem. L e t  A c t~ mk'mk and A + A* C M k.  Le t  A = D -  N wi th  D = 
diag(A11,.. .  ,Am,m). Define f o r  t E [ t  

(3.5) ~tt = D + D* -- (eitN + e - i tN  *) . 

Then,  ]4t > O. 

P r o o f  There  exists u c IR m such that  + 

m 
~_ , (A~j  + A j ~ ) u j  > O , i = l . . . .  , m  . 

i=1 

Replacing A by d iag (u l l k  . . . . .  umIk)A d iag(u l l k  . . . . .  Umlk), we see that  we m a y  
assume ui ---- 1, i = 1 . . . . .  m. But then 

1 

t<j 

(3.6) + ... > 0 .  [] 

zjml(Amj + Aim) 
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3.7 Corollary. Let A E Mkm be Hermitian. Then, A > 0 and for  D = 
diag(All  . . . . .  Atom) we have 2D - A > O. 

Proof  Apply  Theorem 3.4 with t = 0 and t = it. []  

We now discuss condit ions which are sufficient for a matrix to be in Mkm . 
As a prepara t ion  we prove:  

3.8 Lemma.  Let  A E Zkm and assume that the following condition holds: 

(3.9) For each J c (m) there exists i c J such that L Aij > O . 
jEJ 

Then, there exists a permutation ~ such that for  ~lij = An(i),n(j) 

Z ~ 4 i j > O ,  i = 1  . . . . .  m .  
j>_i 

Proof  Choose  ~(1) such that  ~jm= 1 A~(1),j > 0 and J l  = {~(1)}. Then choose 
successively re(2), ~(3) . . . .  ,7c(m) such that 

Z A~(s),j > O, re(s) ~ i s - l ,  

J~Ys-1 

where i s - 1  = {7r(1) . . . .  , z t ( s -  1)}. This construct ion is always possible by (3.9). 
[]  

Us ing  L e m m a  3.8 we can prove a character izat ion o f  Mkm . 

3.11 Theorem. Let A E Z~,  let u E IR m and let + 

m 

(3.12) Ri(u) := L Aijuj >_0 for  all i =  1 . . . . .  m .  
j= l  

Assume that there exists a permutation r~ o f  (m) such that 

m 
(3.13) ~_A~(i),~(j)u~(j) > 0 for  all i =  1 . . . . .  m .  

j=i 

Then, A ~ M~.  

Proo f  W.l.o.g. we m a y  assume tha t  u = [1 . . . . .  1] T and 7r(i) = i, i = 1 . . . . .  m. 
This we can always achieve by replacing A with A p T A P A ,  where P is the block 
permuta t ion  matrix defined by rc and  A = diag(ullk . . . . .  Umlk). 

We now construct  v ~ IR~_ such that Ri(v) > O, i = 1 . . . . .  m. Choose V (1) = U. 

Then  Rl(v (I)) > 0 and Ri(v (I)) >_ O, i = 2 . . . . .  m by (3.13). I f  we have constructed 
v (s-l) such tha t  Ri(v (s-l)) > O, i = 1 . . . . .  m and  Ri(v (s-l)) > 0, for i < s -  1, then 
we set 

J" (1 --  e~)v~ s-l) for i < s v} s) (3.14) 
1 V} s-l) for i _> s 
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with suitable es E (0, 1). By continuity it follows that Ri(v (s)) > 0 for i _< s -- 1. 
Then 

m 
X--" ~ , (s-l) . (s-l) Rs(v (s)) = ~s ~ ~,sjvj + (1 -- es) ~ Asjuj 
j>_s j = l  

= Asia}  + (1 - > 0 
j>_s 

by (3.13). For i > s we have 

Ri(v(S)) = Ri(l)(s-1)) -- I~s Z Aij@ s- l )  ~ Ri(1)(s-1)) ~ O, 

j<s 

since A E Z k. Setting v := v (m) we obtain Ri(v) > 0 for i = 1 . . . . .  m, and thus 
A ~ M k. [] 

In general the assumptions of Theorem 3.11 are difficult to check. But as 
in the M-matrix case, there are graph theoretical conditions that imply the 
assumptions of Theorem 3.11. We discuss such conditions now. 

3.15 Definition. Let A E Zm k with block graph GA. An orientation on the 
edges of GA, yielding a directed graph DA is called admissable if the following 
conditions hold: 

a) the vertex set of DA is (m); 
b) if {i,j} c E(Ga) then (i,j) c E(DA) or (j,i) E E(DA), and if (i,j) E E(DA) 

then { i , j }  E E(GA) and Aij --/= 0; 
c) for i =  1, . . . ,m 

Aii + 

d) DA has no cycles. 

Z Aij > O, 
j~i 

(i,j)EE(D A ) 

Note that condition d) implies also that DA has no 2-cycles, i.e. if (i, j) E 
E(DA) then (j,i) q~ E(DA). 

The assumptions of Theorem 3.11 with u = [1 . . . . .  1] T guarantee the exis- 
tence of an admissable directed graph DA as we show now" 

3.16 Theorem. Let A E Z~ satisfy the assumptions of  Theorem 3.11 with u = 
[1 . . . . .  1] T. Then, there exists an admissable graph OA. 

Proof If  {i,j} E E(GA), choose (i,j) in DA if and only if r~-l(j) > rt-l(i), i.e. 
(re(i), ~z(j)) E E(DA) if and only if i < j. It follows that DA has no cycles. But 
then for all i ~ (m) 

A~(i),~(0 + 2 A~(i),~(j) --- A~(0,~( 0 + Z A~(i),~(j) > 0 .  
(n(i),rc(j) )EE (D A) j> i 

by (3.13). Hence, Dn is admissable for A. [] 

For the next result we need the following Lemma, which is probably well- 
known. 
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3.17 Lemma. Let D be a directed graph with vertex set (m) that does not contain 
cycles. Then, the vertices o l D  can be ordered in such a way that i f  (i,j) E E(D), 
then i < j. 

Proof We proceed by induction. For m = 1 the assertion holds trivially. Let 
now v E E(D) and let 

P(v) = {w E (m)\{v}[ there exists a path D from w to v}, 
(3.18) 

S(v) = (m) \P(v) .  

By inductive assumption we can order the induced subgraph of  D given by 
the vertices in P(v) (if not empty) in the required way, with vertex numbers 
1 . . . . .  k. We label v by k + 1 and then by inductive assumption we can order the 
vertices in S(v) as k + 2 . . . . .  m. (Note that P(v) or S(v) may be empty in which 
case the ordering is trivial.) Since we have assumed that D does not contain 
cycles, it follows that there exists no edge from a vertex in S(v) to a vertex in 
P(v). Hence, we have the required ordering. 

With this we can prove: 

3.19 Theorem. Let A E Zkm and let Ri(e) > 0 for i = 1 . . . . .  m, where Rs is as in 
(3.12) and e = [1. . .  1] T. Assume that there exists an admissable directed graph 
DA for A. Then, we can order rows and columns of  A such that 

(3.20) ~ Aij > O, i =  l , . . . , m .  
j>~i 

In particular A C M~. 

Proof By Lemma 3.17 we can order the vertices Of DA such that if (i,j) E E(DA) 
then i < j.  Let i < j and Aij --/: O, then (i, j) E DA, since otherwise (j, i) E DA, 
which is impossible, since it would imply j < i. Hence, 

Aii § Z Aij = Aii + Z Aij > O 
j>i jE(m) 

(i,j)EE(D A) 

by Definition 3.15 c). Hence, (3.20) holds. A E Mkm then follows by Theorem 
3.11. [] 

It follows that in order to test whether a matrix is in Mkm, we have to test 
all possible graphs DA for admissability. In general this is an expensive test, 
but for some special cases it is quite useful. Here we discuss the case that A is 
block tridiagonal. 

3.21 Corollary. Let A E z k  m be block tridiagonal, 

A1 --B1 

A = --C1 "'. "'. 
".. ".. 

--Cm_ l 

with A i > O ,  Bi, Ci ~ O, i = l , . . . , m ,  Bm 

--Bin-1 
Am 

= Cm = O. Suppose that 



Convergence of block iterative methods for linear systems 549 

(3 .25)  

Then, 

(3.22) Ai > (Bi + Ci), (Bi-1 + Ci+I) i = 1 . . . . .  m -- 1 . 

I f  there exists an index j E {1 . . . . .  m -  1} such that 

Ai > (Bi + Ci) for  all i = 1 . . . .  j and Ai+l > (Bi + Ci) 
(3.23) 

then A + A* c Mkm and hence, A is positive definite. 

Proof. W.l.o.g. we may assume that GA+A* is strongly connected, since we may 
otherwise consider subproblems. Then, we have that the directed graph 

1 - ->2-- -*  . . .  ---~ ( j - - l )  ---~ j *-- ( j + l )  * - . . .  * - - m  

is admissable for A + A*. Hence, by Theorem 3.19 A + A* ~ Mkm and by 
Corollary 3.7 we obtain A § A* > 0. [] 

For other acyclic graphs we can obtain similar corollaries. 
Since the class M~ generalizes the class of M-matrices and since it is known 

that the class of  M-matrices is invariant under Gaussian elimination, e.g. Fan 
[F1], we may ask whether Mkm is invariant under block Gaussian elimination. 
In general this is not true but we have 

3.24 Theorem. Let MH,a ~ M~ be the subclass of  matrices in Mkm that are 
Hermitian and block acyclic. Let A E MH,a and let # be a leaf of  GA and let 
{s,:} E E(GA). Let L = [Lij] C ~mk,mk with 

I i = j  
Lq = --A:sA~s 1 i = l , j = s 

0 otherwise. 

for all i = j , . . . ,  m - 1, 

:= [~4ij ] := LAL* E Mu,a �9 

Proof. Multiplication with L from the left changes only elements in row : and 
multiplication with L* from the right changes only elements in column :. Thus, 
we obtain 

Aij = { Aij i, j (= : (3.27) 
Aij - AisA~sl Asj i = : , j @ f o r i s ~ d , j = : .  

Now suppose that for j @ (, s, {:, j} is an edge of  GA. Then {j, s} is not an edge 
of GA, since otherwise GA would contain the cycle {:, j}, {s, j}, {:, s}. Thus, the 
only blocks in .71 that are different from the corresponding blocks in A are 

(3.28) ~4:s = 74s: = O, ~4:: = A:: -- A:sA~I As: . 

It follows immediately that A is block acyclic and Hermitian. It remains to 
show that there exists a vector v E ]R~_ such that 

m 

~4ijvj>O, for a l l i E ( m ) .  
j= l  
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Now A E M~m implies tha t  there exists u c ~ _  such tha t  

m 

Aiju j>O,  for a l l i c ( m ) .  
j=!  

Setting v = u, we have 

m m 

(3.29) ~ Aijvj = ~_~ Aijvj + Aisvs , for all i E (m) .  
j = l  j = l  

j~s 

For i @ ~, s we obta in  
m m 

Z .74qvj = Z Aijvj > O, 
j=l j=l  

m m 

Z ~tzjvj = Z Ar + 74r162 + 74tsVs 
j = l  j = l  

j4.s/ 
m 

= Z Aouj + Atsus + (Act -- AtsA~slAst)Ue 
j = l  
j~t 
m 

= Z A l j u j  --  (Azsus + AtsA~slAsEul ') �9 
j= l  

Now the first t e rm  is posi t ive definite, since A e M~, which also implies tha t  

m 

Z Asjuj = Assus +Agur > O, (3.30) 
j= l  

since s has only one ne ighbor  in GA. But (3.30) implies tha t  

ug Ik > - - -  A~J/2AscA~ 1/2 
Us 

and f r o m  L e m m a  2.10 we obtain 

(U{ ']2  ( A - 1 / 2 A  A_l/2~ 2 Ut A~ l /ZAgA~s l /2  > - -  ~, ss s# ss J 
u~ \ u~ / 

= (u!']2A~sl/2AgA;1AgA~sl/2 " 
\us / 

For i = t' we ob ta in  

m 

Asjvj = Assvs > 0. 
j=l  

since Ais = 0. Fo r  i = s we trivially have  
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Therefore, 
-A<sus - AesAssl As<ur > 0 ,  

since Ats = As< = As<. [] 

Thus, the subclass of Hermitian, block acyclic matrices in Mkm is invari- 
ant under block Gaussian elimination. In general block Gaussian elimination 
destroys already the symmetry of the off-diagonal blocks. 

Another interesting property of Hermitian block acyclic matrices is the 
following. 

3.31 Lemma. Let  M = [Mij] E (~mk,mk be Hermitian with blocks Mij C (]~k,k. 
I f  M is block acyclic, then there exists a unitary block diagonal matrix U = 
diag(U1 . . . . .  Urn), with Ui C (E k'k, i =  1 , . . . ,m ,  such that A := [Aij] = UMU* c 
Z~. 
Proof  Since M is block acyclic, it is obvious that GM can have at most m -  1 
edges { i l , j l }  . . . . .  { im-l , jm-1},  e.g. [B1]. If GM has less than m -- 1 edges then 
M is the direct sum of smaller matrices, which can be treated separately. Thus, 
we may assume w.l.o.g, that GM has exactly m -- 1 edges. 

Let jl  be a vertex of GM. Choose Ujl = I, and for all edges {jl, j<} of GM 
let Mjl,j~ = A h,jE UJ E be the polar decomposition of Mjl,jr with U j< unitary and 
Ahj  < Hermitian negative semidefinite and rank(A jl,# ) = rank(Mh# ), e.g. [H2, 
p. 156]. (Note that usually the Hermitian factor is chosen positive semidefinite, 
but we may just choose the negative of  the unitary factor to obtain the required 

* U*. form.) It follows that for all edges {jr, jr} we have Ajl,j< = A jl,# = Uj1M h,# jr 
as required. 

For all the vertices j< @ jl we can now consider the edges {j<,js}, with 
L :P j<,jl and perform the polar decompositions Uj<Mjl,j s = Aj<,j~Uj~ with Uj.~ 
unitary and Aj<,j S Hermitian negative semidefinite. 

Proceeding like this with all the edges {js, jt} that were not considered 
before, we can exhaust the whole graph. Since M was acyclic, no previously 
considered vertex occurs again and this finite procedure completely determines 
U,A.  [] 

From Lemma 3.31 we can conclude that some of the previous results also 
hold for Hermitian matrices which have nonhermitian blocks. 

4. Convergence of  Jacobi's method and general results 

Another important characteristic of M-matrices in comparison to Z-matrices 
is the convergence of the Jacobi iterative method for a linear system Ax = b 
(e.g. [B2]). 

A natural generalization of this method for matrices A = [Au] E Zk m is the 
block Jacobi iteration for Ax = b defined by D ---- diag(All . . . .  , Atom), N = D - - A  
and 

(4.1) Xi+l = D - t N x i  + D - t b ,  i = 1,2, 3 . . . .  

It is wellknown [B2] that (4.1) converges for all initial x0 if and only if 
Q(D-1N) < 1. For  the proof of convergence of (4.1) we can employ the 
following Lemma: 
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4.2 Lemma. Let A = D -- N E I~ n'n be such that 

(4.3) D + D * > 0  

(4.4) A t = D + D* - (eitN -I- e-itN *) > 0 for all t E JR. 

Then o(D-1N) < 1. 1 fA t  > O for all t c IR, then o(D-I N) < 1. 

Proof  There exists r # 0 such that 2Dr = N4, with j21 = 2e i~ = o(D-1N). 
Then obviously 12qDr = eirNr and hence 

(4.5) 121r = elSe*N4. 

From (4.3), (4.4) for t = ~ and (4.5) we get 4*(D + D*)r > 0 and 

r + D*)r > ei~4*g 4 + e-i~4*g* r 

= 1214"D4 + 121r = 1214"(9 + D*)r 

which implies 12[ < 1. The second part follows analogously. [B 

We immediately have an analogue to Proposition 3.1. 

4.6 Proposition. Let A = [Aij] E 2kin and let D , N  be as in (4.1). I r A  satisfies 
(3.2), then o(D-IN)  < 1, and if A satisfies (3.3), then o(D-1N) < 1. 

Proof  Let .?'It = D eitN+e-itN* 1 @t A +e-irA 2 [~4ij ]. Then hii = Aii, ~4ij --" "~- --~ ~ ij jD 
for i 4= j and 

t ,  = - - 

[i ~ 
1 ~ 0 Aij 
2 2_. o 

i,j=l e-UAij 
i<j 0 

All -~- �89 E j # I  (Alj Jr- a j l  ) 

3f- . . .  

0 0 
0 eitAij 
0 0 
0 Aq 
0 0 

~ ~ ~ 
0 Aji 0 e-itAji 0 

+ 0 0 0 0 
eitAji 0 Aji 

0 0 0 
] 

Atom + �89 ~,j#m(Amj + Aim) ] " 

By (3.2), (3.3) we obtain ~lt > 0 or / I t  > 0 respectively; hence, the proof follows 
by Lemma 4.3. [] 

The analogous result to Theorem 3.4 is then 

4.7 Theorem. Let A = D - N ,  D , N  as in equation (4.1) and A +  A* E M~, then 
o(D-I N) < 1. 

Proof  Apply Theorem 3.4 and Lemma 4.2. [] 

As a corollary we then obtain convergence of (4.1) for all block tridiagonal 
matrices as in Corollary 3.21. We omit the statement of the Corollary here. 

The analysis of  convergence results for other iterative methods like the 
Gauss-Seidel method or the SOR is currently under investigation in the project 
of a PhD thesis and partial results have been obtained. 
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Theorems 3.4 and 4.7 generalize results for M-matrices, cf. [B2]. It is natural 
to ask: 

(4.8) Which of the equivalent conditions for M-matrices in [B2] still hold in 
M.k,? 

(4.9) Which of the equivalent condidions for M-matrices have a nontrivial 
block analogue? 

One of the conditions in the case k = 1, which is not satisfied for k > 1, 
even if A E Z~ is positive definite, is N3~ in [B2] stating 

(4.10) A 1 exists and A 1 is elementwise nonnegative. 

Consider the following example: 

4.11 Example. Let 

I 
660 
160 

A =  -1  
0 

160 -1  ] 
40 0 -01 
0 340 -80  

-1  -80  20 

A E Z 2 is positive definite, but a MATLAB experiment yields 

0.1301 -0.5309 -0.0997 -0.4252- 
A_I -0.5309 2 .1925 0.4120 1.7575 

= -0.0997 0.4120 0.1274 0.5302 
-0.4252 1.7575 0.5302 2.2588 

Neither is A -1 elementwise nonnegative nor are all the 2 • 2 blocks of A -1 
positive semidefinite. 

Also not satisfied is condition M36 in [B2], stating: 
A = [aij  ] has all positive diagonal elements and there exists a diagonal 

matrix D with positive diagonal elements such that AD = [ai jd j]  is strictly 
diagonally dominant, i.e. 

(4.12) aiidi > Z laijldj i = 1 . . . . .  n .  
j~ i  

Consider the following example: 

4.13 Example. 
I ~'~ ' -1  - '  ] 

1 1.5 --1 --1 
A =  --1 --1 1.5 1 ~Z~ 

- 1  - 1  1 1.5 

is positive definite. Suppose dl,d2,d3,d4 > 0 such that (4.12) holds, then 1.5dl > 
d2 + d3 + d4, 1.5d2 > dl + d3 4- de, 1.5d3 > dl + d2 + d4, 1.5d4 > dl + d2 + d3. 
This implies d2 > 2d3 4- 2d4, d3 > 2d2 4- 2d4, d4 > 2d2 4- 2d3, from which we get 
-3d3 > 6d4, -3d4 > 6d3 which is not possible if d3,d4 > 0. Thus, (4.12) does 
not hold and thus, A q~ M22. 

One obviously has to generalize the diagonal dominance in the block fashion 
described in Sect. 3. 
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Example 4.11 also serves to show that matrices in Zm k that are positive 
definite are not necessarily H-matrices. (A matrix A = [aij] E I~ n,n is an H- 

laijl j = i matrix i fd/(A) is an M-matrix, where JC/(A) = [bij] with bij :--- - la i j l  j :/= i 

i , j  = 1 . . . .  ,n). 
In Theorem 3.24 we have shown that the class of Hermitian, block acyclic 

matrices in Mkm is invariant under block Gaussian elimination, if it is applied 
to leafs. For general and even positive definite matrices in Z~ this is, however, 
not the case, since the symmetry of the off diagonal blocks is destroyed. This is 
another property of M-matrices [F1], which does not carry over to the block 
case. 

It is known that any principal submatrix of a Z-matrix has at least one real 
eigenvalue [Eli, [M1]. This is generally not true for Zm k, since A E Zm k can have 
all eigenvalues complex. 

4.14 Example.  We have that 

1.096 0.016 -1.000 0.000 ] 
0.016 1.034 0.000 0.000 

A = 0.000 0.000 1.064 --0.008 E Z 2 
[ 0.000 --0.100 -0.008 1.032 

is positive definite, but the eigenvalues rounded to 4 digits are 1.0097-I- 
i0.0388, 1.1043 + i0.0363. 

Observe that all the negative examples (4.11), (4.13), (4.14) have an acyclic 
block graph and hence these properties do not even hold in the acyclic case. 

5. Application to special case from fluid flow computations 

In this section we now discuss matrices arising in special cases in the numerical 
solution of  Euler equations [H1]. These matrices have the form 

(5.1) M := 

T1 S1 

$2 T1 

"'. S1 
$2 T1 

E ~p.r.k,p.r.k, 

where TI,  $1, $2 E ff?r.k,r.k are defined by 

(5.2) 

TI :=  

S1 :=  

C - - A  m 

- A  + C 

" D B - -  

- A  + 

- -B-  ] " 

--A- 
C 

B+ ] 

, $2 : =  " .  , 

--B + 
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Here A = A + - A -  E C k'k, B = B + - B -  E ~k,k are decompositions of 
symmetric (indefinite) matrices A, B in positive semidefinite parts A+,B + and 
negative semidefinite parts --A-, --B-,  and C = ]AI + IB[ = A + + A -  + B  + + B - .  

Other finite element approaches yield matrices with similar block structure 
but different matrices in each row. Also sometimes the matrices A,B are not 
Hermitian but only have real eigenvalues [D1]. Here we only discuss the case 
that the blocks are Hermitian. 

Consider first the following simple Lemma. 

5.3 Lemma. Let Ct, C2, Dr, D2 @ (l~ n'n be Hermitian positive definite and let A, B E 
ff~m,m be Hermitian with A, B >_ O, JV'(A) n JV'(B) = {0}. Let A = A + -- A- ,  B = 
B + - - B -  be the decompositions o f  A, B in its positive and negative semidefinite 
parts. Then T : = q |  + + C 2 | 1 7 4  + + D 2 |  + > 0 .  

Proof  Obviously T _> 0 and A + B > 0. If x E ~mn,mn satisfies T x  = 0, then 

(C1 | A+)x = (C2 | A - ) x  = (Ol | B+)x = (D2 | B - ) x  = O. 

Using q | A + = ( q  | I )(I  | A +) and the nonsingularity of C1 • I, we get 
(1 | A+)x = 0 and analogously 

(I | A - ) x  = (I | B+)x = (I | B - ) x  = O . 

Hence, [1 | (A + + A -  + B + + B- ) ]x  = 0. But, since A + B nonsingular implies 
]AI + IBI nonsingular, we obtain x = 0, and hence T > 0. [] 

Using this Lemma we obtain: 

5.4 Proposition. Let M be as in (5.1), (5.2). 
I f  JV(A) G JV(B) = {0} then 

(5.5) TI E Zr k , and 

(5.6) M E 2rkp. 

Furthermore T1 and M are positive definite. 

Proof  JV(A) = JV'(IAI) and JV(B) = JV(IBI), therefore C > 0. Thus, (5.5), (5.6) 
follow trivially. 

To show that TI is positive definite, observe that 

where 

(5.7) 

2tAI -IA[ ] 

�9 -IAI ' .  ' .  T1 + T 1 = . . + 2 

�9 . .. ilal - I A 1 2 1  
= H | ]AI +2 I r  | IB], 

2 - 1  ] 

H := --1 2 "'. 

"'. "'. 1 
- 1  2 

IBI .. Iel] 
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Applying Lemma 5.3 we obtain that T1 is positive definite. 
To prove that M is positive definite, observe that 

M + M" = diag(H . . . . .  H)| + 
k 

Y 
>0 

21 --I 
--I  21 

�9 . . |  

' .  � 9  - - I  

--I 21 
) 

Y 
>0 

M being positive definite then follows by Lemma 5.3. [] 
Observe that the matrices T1, M are not necessarily in M~, M~p respectively, 

as the following example shows: 

5.8 Example. Let 

~  o=0 =3 

[i 0-1000i] 0 1 0 0 0 0 
T1 = 0 0 1 0 --1 

0 --1 0 1 0 E Z  
0 0 0 1 
0 0 --1 0 

Then 

is positive definite by Proposition 5.4 but there exists no u ~ R3+ such that 

Z~=I Aijuj > O. 
We now prove that the obvious block Jacobi method converges for M. 

5.9 Proposition. Let M be as in (5.1), (5.2) and At(A) f~ JV'(B) = {0} and let 

[c] D = ".. E ~p.r.k N = D -- M 

C 

Then, Q(D-1N) < 1. 

Proof. In order to apply Lemma 4.2, we show that Mt = D 
for all t E JR. 

eitN+e-itN* > 0 
2 

D _ 
eit N + e - i t N  * 

2 
= ~(H1 ~ A  + -ff-H T |  + H 2  |  + + H 2  T |  

with 
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and 

H 1 -= 

2 e it 

e -it 2 

".. eit 

e -it 2 
"~ 

2 e it 

e - i t  2 

".. eit 
e - i t  2 

i 21 eirl 

e-itI 2I "'. 
H2 = ... . .. eit l 

e-lt I 2I 

The matrices HI, H2 are trivially positive definite and then Lemma 5.3 implies 
Mt > 0. Applying Lemma 4.2 finishes the proof. E-2 

Thus, having shown convergence of one of  the natural block-Jacobi meth- 
ods, we can now discuss the convergence of  the corresponding block SOR 
method: 

Let M = [Aij] E ~km,km, with Aij E ~k,k. Then, the block SOR iteration for 
Mx = b is defined by 

(5.10) Xi+l = Ho~xi + (D -- coL)-lb , i = 1, 2, 3 . . . .  , 

where H~o = (D -- coL) - I  ((1 -- co)D + coU), M = D -- L -- U, O = diag(C . . . . .  C) 
and L, U are the block lower and upper triangular parts of  M. 

The relationship between the spectral radius of  H~0 and D -1 (L + U) is given 
by the following well known result of  Varga, e.g. IV1], IV2], [Y1] or [B2]. 

5.11 Theorem. Let M,H~o be as in (5.10) and let M be consistently ordered 
p-cyclic. I f  co --fi 0 and 2 ~ 0 is an eigenvalue of the block SOR matrix H~ and 
i f  6 satisfies 

(5.12) (2 -Jr" co --" 1) p = ~p--lcop~)p 

then 6 C a(D-I(L + U)). Conversely i f  6 E c r ( D - l ( L +  U)) and )~ satisfies (5.12) 
then 2 c cr(H~). 

Another immediate consequence of Theorem 5.11 is the convergence result 
for the block Gauss-Seidel method, which is (5.10) with co = 1 and a block 
version of  the Stein-Rosenberg Theorem, e.g. [V2, p. 70]. 

5.13 Corollary. Let M , D , N ,  Ho~ be as in (5.10) and suppose M is consistently 
ordered 2-cyclic. Then one and only one of the following mutually exclusive rela- 
tions is valid: 

i) 0(D-1N) = e(H1) = 0 ,  
ii) 0 < o(H1) < Q(D-1N) < 1, 
iii) 1 = @(D-1N) : Q(HI),  
iv) 1 < ~(D-1N) < Q(HI) , 
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Proof The p r o o f  follows directly f rom Theo rem 5.11 by inserting co = 1 in 
5.12. [] 

Us ing  this result we can now determine  real pa ramete r s  co such that  the 
block S O R  me thod  converges  if  the b lock Jacobi  me thod  converges.  This result 
is p robab ly  well known,  but  we did not  find a reference. 

5.14 Theorem.  Let M , D , N , H ~  be as in (5.10) and suppose M is consistently 
ordered and 2-cyclic. Let ~ = o (D-1N)  < 1. I f  O < co < ~ then o(H~o) < 1. 

Proof a) Let 0 < co < 1 and 2 E cr(H~o), b2t = z. Then  

( z -  ( 1 -  CO))2 < 12 - ( 1 -  co)12 = I X + c o - 1 1 2  = 12lco216l 2 < I,~lco202 , 

where 6 E cr(D-1N). Hence  

(.7 - -  (1 - -  03))2 < ZCO202 

and by e lementary  considera t ions  we infer z < 1. This shows Q(H~) < 1. 
b) Let  co > 1. Then  if as above 2 E a(H~o), [2[ = z, we have  

( z - - co  + 1) 2 < [2--co  + 112 = 121co21612 < 121co202 , 

i.e. z lies be tween the two real roots  o f  q(z) = (z -- co + 1) 2 - 2co2t.o 2. 
As q(0) > 0, and  q'(0) < 0 it is obvious  that  we can infer z < 1 if and only 

if q( l)  > 0, i.e. if  and  only if 

2 - c o  2 
( 2 - c o ) 2 - c o 2 Q 2 > 0 ,  i.e. o < - -  or  co < - -  [] 

co 1 + ~  

We now apply  these results to the mat r ix  M in (5.1), (5.2). 

5.15 Theorem.  The matrix M in (5.1), (5.2) is a consistently ordered 2-cyclic 
matrix. 

Proof The  block g raph  GM of  M is the same as the s tandard  graph  o f  the finite 
difference app rox ima t ion  o f  the Laplace  opera tor ,  hence M is weakly  cyclic o f  
index 2, e.g. [V2]. Let  L, U be the lower and uppe r  t r iangular  par t  o f  D -- M 
and D = diag(C . . . . .  C), then J(~) = ~L + ~ - I U  = A-I j (1 )A  by a diagonal  
similari ty with A = diag(A1, ~AI . . . . .  ~P-ZA1), where 

[ O~Ik Cr (~rk,rk 
A � 9 2  ". E �9 

~rI k 
Thus,  M is consistent ly ordered.  [] 

Thus  we can summar ize  the results as follows: 

5.16 Corollary.  Let M be as in (5.1), (5.2) then we have 

i) the block Jacobi method converges; 2 ii) the block SOR method converges i f  0 < co < ~ .  
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6. Conclusion 

We have genera l ized  several  results  for Z-mat r ices  to b lock  matr ices  in Z~.  Pos- 
it ive definiteness,  invar iance  under  Gauss i an  e l iminat ion ,  d i agona l  d o m i n a n c e  
and convergence  o f  the block Jacob i  me thods  are  general ized to the b lock  case. 

For  the special  case ar is ing in the numer ica l  so lu t ion  o f  Euler  equat ions ,  we 
also have given convergence  results  for b lock  Jacobi  b lock  G a u s s - S e i d e l  and  
b lock  S O R  methods .  There  are  m a n y  open  p rob lems  for mat r ices  in Z~ and 
also for the app l i ca t ions  in numer ica l  so lu t ions  o f  par t ia l  differential  equat ions ,  
it  would  be i m p o r t a n t  to general ize  the descr ibed  results  to mat r ices  which have 
off d iagona l  b locks  with real nonpos i t ive  eigenvalues,  which are  not  necessar i ly  
Hermi t ian .  
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