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Summary. We discuss block matrices of the form 4 = [4;;], where 4;; is a
k x k symmetric matrix, A; is positive definite and A4;; is negative semidefinite.
These matrices are natural block-generalizations of Z-matrices and M-matrices.
Matrices of this type arise in the numerical solution of Euler equations in fluid
flow computations. We discuss properties of these matrices, in particular we
prove convergence of block iterative methods for linear systems with such
system matrices.
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1. Introduction

The theory of M- and Z-matrices was developed in the last 50 years, starting
with the paper of Ostrowski [O1] in 1937, followed by the work of Varga [V1]
and Young [Y1] in the 50’s and 60’s, the papers of Fiedler and Ptak [F2], the
book of Berman and Plemmons [B2] and the work of many others.

It has been stressed in [V1] and [Y1] that at least some interest in this topic
comes from its important applications in the studies of the convergence of
iterative schemes for linear systems arising in the numerical solution of partial
differential equations. This led to many generalizations and modifications of
this theory.

Here we present a further generalization. Recall that a real n x n matrix
A = [a;] is a Z-matrix if a;; < 0 for i # j. If in addition A™! exists and is
elementwise nonnegative, it is called an M-matrix.

In this paper we study block matrices 4 = [4;;] € Clmkm where the blocks

Ajj € Ck* are Hermitian matrices and the off diagonal blocks Aij, 1 # j are
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negative semidefinite. As for blocksize k = 1 these matrices are Z-matrices, we
denote this class by Zk.

Matrices of this type arise for example in the numerical solution of 2-D or
3-D Euler equations in fluid dynamics [H1], [D1]. In Sect.5 we discuss these
matrices. In our study of the class ZX we always have these examples in the
background. In particular we study convergence results for iterative methods
for the abovementioned linear systems.

In the case k = 1, i.e., the classical case, there are many equivalent conditions,
which are necessary and sufficient for a Z-matrix to be an M-matrix, e.g. [B2].
In our generalization it cannot be expected that these are equivalent, and
hence it is not at all clear, which subclass of Z£ is the right one to replace
the class of M-matrices. We opted for a diagonal dominance criterion. So we
call a matrix 4 = [A4;;] € Zk a generalized M-matrix, if there exists a positive
vector ul = [uy,...,uy] such that Riu) = Z;’;l ujA;; is positive definite for
i=1,...,m. The class of these matrices is denoted by M,’;,.

After presenting the notation and some preliminaries in Sect.2, we study
some general properties of the classes ZX and MY in Sect.3. In particular
we give conditions when matrices in Z) are in MX. We show that Hermitian
matrices in M¥X are positive definite and exhibit a subclass of M¥ which is
invariant under Gaussian elimination (Theorem 3.24).

In Sect. 4 we study the convergence of the Jacobi iterative method and show
that some of the other M-matrix properties do not generalize to MX.

2. Notation and preliminaries

In this paper we use the following notation:
Let n be a natural number. Then we denote by

(n) — theset {1,...,n};

"™ - the set of complex n x n matrices, C*! =: C";

R™  —  the set of real n x n matrices, R™! =: R”;

R% — the set of positive vectors in R";

I, — the n x n identity matrix, the n may be omitted;

e —  the i-th unit vector.

Let A € C*". Then, we denote by

A —~  the conjugate transpose of A;

AT - the transpose of A4;

a(4) — the spectrum of A;

o(4) ~ the spectral radius of 4, ie. g(4) = max{|| |1 € a(4)} ;
W(4) - the field of values of 4, i.e. W(A4) = {x"Ax|x € C", x"x = 1};
N(A) ~— the right null space of 4, ie. #'(4) = {x € C"|Ax = 0}.

Let A € €*" be Hermitian and let A = Q" DQ = Q" (D1 —D»)Q be its spectral
decomposition with Q unitary, where D is written as the difference of two
diagonal matrices Dy, D, with nonnegative diagonal elements and D;D, = 0.
Then we set AT := Q*D1Q, A~ :=Q*D,Q and |A| .= AT + 4",

2.1 Definitions. i) Let 4, B € €*" be Hermitian. A is positive definite if x> Ax > 0
for all x € €*\{0}, and A is positive semidefinite if x*Ax > 0 for all x € €". We
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denote this by 4 > 0 and A4 > 0, respectively. Analogously we write 4 < 0 if
~A>0and A <0if —4=0.

ii) Let 4 € ©*. We call A positive definite if A+ A" > 0 and positive
semidefinite if A+ A® > 0.

iii) For A,B € €™, we write A > B, A>B, A<B,A<Bif A—B>0,
A—B>0,4—B <0, A— B <0, respectively.
If 4= Q°DQ € € is Hermitian positive definite, then we denote by A'/2
the Hermitian positive definite matrix Q"D;Q, where for D = diag (dy,...,dn)s

D; = diag (d,"%,...,d"?).
2.2 Definition. Let 4 = {a;;] € R™". Then,
~Aisa Z-matrix if a;; <Ofori# j,i,j=1...,n;
~ Ais an M-matrix if A is a Z-matrix, B = [b;;] = A~! exists and b;; > 0 for
alli,j=1,....n
2.3 Notation. By Z¥ we denote the set of matrices {4 € €™ k4 = [4;],
Ajj € C** Hermitian for i,j=1,...,mand A;; <O fori,j=1,...m i+ j} and
we set ZK == {4 =[4;] € ZK|4a >0, i=1,...,m}.

We furthermore define MY = {4 € ZX| there exists u € R such that
27;1 ujd>0foralli=1,...,m}.

2.4 Definition. Let A = [a;;] € €™, B = [b;;] € Ck*. Then the (right) Kro-
necker product of 4 and B, denoted by A ® B, is defined to be the matrix

anB ... awB
A®B = az'lB € Clmkm
amB ... ammB

2.5 Definition. Let A4 = [4;;] € €™ with A4;; € €. Then, we define the
block graph G4 of A4 as the nondirected graph of vertices 1,...,m and edges
{i,j}, i # j, where {i,j} is an edge of G4 if 4;; # 0 or 4ji # 0. By E(G4) we
denote the edge set of G4 A is called block acyclic if G4 is a forest, ie. Gy
is either a tree or a collection of trees. A vertex of G4 that has less than two
neighbors is called a leaf.

For properties of acyclic matrices see [B1].

Besides this we consider also directed graphs D4, which are obtained from
G 4 by introducing various different orientations on the edges of G 4.

The set of directed edges or arcs of D4 is again denoted by E(D,4). Note
that then an arc is an ordered pair (i, j).

For the discussion of block iterative methods we need the following defini-
tions, e.g. [B2].

2.6 Definition. Let A = [A4;] € Cmkmk with block Ajj € C** and nonsingular
diagonal blocks. Then, the block Jacobi matrix corresponding to A is the matrix
J = D~YL+U), where —L, —U are the block strictly lower and upper triangular
part of A. The Jacobi matrix J is called weakly cyclic of index p > 2 if there
exists a permutation matrix P such that PAPT has the block form
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0 .. 0 By,
By 0 0
2.7) o .
0 By,i 0

where all the null diagonal blocks are square. 4 is called p-cyclic if J is weakly
cyclic of index p. A4 is called consistently ordered p-cyclic if A p-cyclic and if all
the eigenvalues of the matrix J(«) = aL + a!~PU are independent of « for all
o # 0.
Note that this is a special case of the usual definition of weakly cyclic
matrices, since here we have blocks 4;; which are all of size k x k. We conclude
this section with some simple Lemmas.

2.8 Lemma. Let A € €™ be Hermitian, A > 0. Then A> < A if and only if
A<LI.

Proof. The proof is obvious, e.g. [H2, p.470]. O

_ | Aun A
29 Lemma. Let A = [ Ay Ay

Ay + A >0, then 4> 0.

Proof. 1t is well known (cf. [H2, p.472]) that 4 > 0 if and only if A;; > 0 and
Ay — A21A1“11A12 > 0. The first condition holds trivially, since 4 € Zé‘. For the
second condition we get

] € Zé‘ be Hermitian. If Ay + Ay > 0,

Axp — A AT A1z = (Aza + A1) + (A1 — An AT An) .

The first term is positive definite and the second is positive semidefinite by
Lemma 2.8, since Aﬁl/z(—Alz)Aal/z <I. O

3. Positive definiteness and invariance under Gaussian elimination

In this section we list several results for ZX, which generalize some results for
Z-matrices or M-matrices. We begin with a generalized diagonal dominance
result.

3.1 Proposition. i) Let A = [A;] € ZX and suppose that

T

(3.2) Aii+§ E (Aij-i-Aji)ZO i=1,...,m.
j=1
J#

Then A is positive semidefinite.
ii) Let A= [A;j] € ZX and suppose that

1 m

(3.3) A,~,-+§Z(A,-j+Aﬁ)>O i=1,...,m.
=1
J#i

Then A is positive definite.
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Proof. Let B = [B;j] = A+ A"

Then
0
n —B;j Bjj
B=|Y, 0
ij=1 B;; —B;j
i>j 0

Bll + Zj%l Bij
+
Bum + Zj:;ém Buj
Each summand in the first term is of the form
—(ei —ej)(e; — ¢))" ® Byj

and hence is positive semidefinite since —B;; > 0.
(3.2) or (3.3) imply that

Bii + 241 Bij

By + Zj#m Byj

is positive definite or positive semidefinite, respectively and together we get 1)
and ii), respectively. [

It is well known in the case k = 1 that (3.3) is not a necessary condition
and that (3.2) is not a sufficient condition for A4 to be positive definite.
In the following we discuss other conditions for A € ZJ to be positive

definite, which generalize conditions for M-matrices to matrices in MX,

3.4 Theorem. Let A € €™ and A+ A" € M%. Let A= D — N with D =
diag(Ai1, ..., Amm). Define for t € R

(3.5) A =D+D" —('N+e"NY).

Then, ;1, > 0.

Proof. There exists u € IRY such that

m

Z(Aij+Aji)uj>0, i=1,...,m.

i=1
Replacing 4 by diag(uily,...,unl)A diag(uiIy, ..., unl;), we see that we may
assume y; = 1, i = 1,...,m. But then

m ) )

N 1 it 1 et

Atz—Z[[e_it CI:I®A/j+[eit 1 ]@Aj/:l
<

Z}n=1(A1j + A4j1)
(3.6) + >0. O
2 j=1(Amj + Ajm)
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3.7 Corollary. Let A € MY be Hermitian. Then, A > 0 and for D =
diag(A4i1,..., Amm) we have 2D — A > 0.

Proof. Apply Theorem 3.4 witht=0and t=n. []

We now discuss conditions which are sufficient for a matrix to be in MX.
As a preparation we prove:

3.8 Lemma. Let A € ZX and assume that the following condition holds:

(3.9) For each J < (m) there exists i € J such that Z Aij > 0.
jed

Then, there exists a permutation m such that for A;; = Aniyn(j)

Z.:l,‘j>0, i = 1,...,m.

=i

Proof. Choose n(1) such that 377! | Azq); > 0 and #; = {n(1)}. Then choose
successively 7(2), z(3),...,n(m) such that

Z An(s),j >0, n(s) & Is1,
j¢js—1

where #;_; = {n(l),...,n(s —1)}. This construction is always possible by (3.9).
O

Using Lemma 3.8 we can prove a characterization of M¥.

3.11 Theorem. Let A € ZX, let u € R™ and let

m
(3.12) Ri(w) ==Y Ayjuj 20 forall i=1,..,m.
j=1

Assume that there exists a permutation n of (m) such that

(3.13) Z ArGya(tin) > 0 foral i=1,....m.
Jj=i
Then, A € M".
Proof. Wlo.g. we may assume that u = [1,...,1]T and #n(i)) = i, i = 1,...,m.

This we can always achieve by replacing A w1th AP TAP A, where P is the block
permutation matrix defined by = and 4 = diag(u;/y,.. umIk)

We now construct v € IR such that Ri(v) >0, i = 1,...,m. Choose v = u.
Then R;(vY) > 0 and R; (v(l)) >0,i=2,...,mby (3.13). If we have constructed
v5=1 such that R;(v"~ 1)) >0,i=1,...,mand R(v* V) >0, for i <s— 1, then
we set

(1 —g)o® D fori<s
oD fori>s

(3.14) o = {
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with suitable ¢; € (0,1). By continuity it follows that R;(»®) > 0 for i < s — 1.
Then

m
RS(U(S)) = & z Asjvj('s—l) + (1 — &) Z Asjvj's—l)
Jzs j=1

=5y Api " + (1 — )R Y) > 0

Jj=s
by (3.13). For i > s we have

Ri(0Y) = R ™) =&y Y Ao 2 Ri@*™Y) 2 0,

Jj<s

since 4 € ZK. Setting v := v™ we obtain Ri(v) > 0 for i = 1,...,m, and thus
Ae M. O

In general the assumptions of Theorem 3.11 are difficult to check. But as
in the M-matrix case, there are graph theoretical conditions that imply the
assumptions of Theorem 3.11. We discuss such conditions now.

3.15 Definition. Let A € Z* with block graph G4. An orientation on the
edges of G4, yielding a directed graph D4 is called admissable if the following
conditions hold:

a) the vertex set of Dy is (m);

b) if {i, j} € E(G4) then (i, j) € E(D4) or (j,i) € E(D4), and if (i, j) € E(D 4)
then {i, j} € E(G4) and 4;; # 0;

¢ fori=1,....m

Ai+ ), Ay>0,
i#i
(L))EE(D 4)

d) D4 has no cycles.

Note that condition d) implies also that D, has no 2-cycles, ie. if (i, /) €
E(D4) then (j,i) ¢ E(D 4).

The assumptions of Theorem 3.11 with u = [1,...,1]T guarantee the exis-
tence of an admissable directed graph D4 as we show now:

3.16 Theorem. Let A € ZX satisfy the assumptions of Theorem 3.11 with u =
[1,...,1)Y. Then, there exists an admissable graph D 4.

Proof. If {i,j} € E(Gy), choose (i, j) in D4 if and only if z~!(j) > n~!(j), ie.
(n(i), n(j)) € E(Dy) if and only if i < j. It follows that D, has no cycles. But
then for all i € (m)

An@ng) + Z Anyr(y = An(yne) + Z Anyny > 0.
(m();n(/))€E(D 4) j>i
by (3.13). Hence, D4 is admissable for 4. [

For the next result we need the following Lemma, which is probably well-
known.
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3.17 Lemma. Let D be a directed graph with vertex set {m) that does not contain
cycles. Then, the vertices of D can be ordered in such a way that if (i, j) € E(D),
then i < j.

Proof. We proceed by induction. For m = 1 the assertion holds trivially. Let
now v € E(D) and let

P(v) = {w € (m)\{v}| there exists a path D from w to v},
S(v) = (m)\P(v) .

By inductive assumption we can order the induced subgraph of D given by
the vertices in P(v) (if not empty) in the required way, with vertex numbers
1,...,k. We label v by k+ 1 and then by inductive assumption we can order the
vertices in S(v) as k+ 2,...,m. (Note that P(v) or S(v) may be empty in which
case the ordering is trivial.) Since we have assumed that D does not contain
cycles, it follows that there exists no edge from a vertex in S(v) to a vertex in
P(v). Hence, we have the required ordering. [

(3.18)

With this we can prove:

3.19 Theorem. Let A € ZX and let Ri(e) = 0 for i = 1,...,m, where R; is as in
(3.12) and e = [1...1]Y. Assume that there exists an admissable directed graph
D, for A. Then, we can order rows and columns of A such that

(3.20) > 4;>0, i=1...m.
j=i
In particular A € M,’ﬁ,

Proof. By Lemma 3.17 we can order the vertices of D 4 such that if (i, j) € E(D,)
then i < j. Let i < j and 4;; # 0, then (i, j) € D4, since otherwise (j,i) € Dy,
which is impossible, since it would imply j < i. Hence,

Ai+ Y Aij=Ai+ Y, A4;>0
j>i jeim)
(.)EED 4)
by Definition 3.15 ¢). Hence, (3.20) holds. 4 € M¥ then follows by Theorem
3L O

It follows that in order to test whether a matrix is in M¥, we have to test
all possible graphs D, for admissability. In general this is an expensive test,
but for some special cases it is quite useful. Here we discuss the case that A is
block tridiagonal.

3.21 Corollary. Let A € Zk be block tridiagonal,
Ay —B
a= |0
. —Bp-1
_Cm—l Am
with 4; >0, B;,C; >0,i=1,...,m, B,, = C,, = 0. Suppose that
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(3.22) A= Bi+C), (B +Ciy1) i=1..,m—1.
If there exists an index j € {1,...,m — 1} such that

A > (B,+C,) for alli = 1,...jand Aiyy > (B,+C,) fOT alll=1,,m—- 1,
(3.23)

then A+ A* € M¥ and hence, A is positive definite.

Proof. W.l.o.g. we may assume that G, 4+ is strongly connected, since we may
otherwise consider subproblems. Then, we have that the directed graph

-2 .. >{(-1)>j<({(+)e...m

is admissable for 4 + A*. Hence, by Theorem 3.19 4 + A" € M,’,‘, and by
Corollary 3.7 we obtain 4+ A* > 0. []

For other acyclic graphs we can obtain similar corollaries.

Since the class M generalizes the class of M-matrices and since it is known
that the class of M-matrices is invariant under Gaussian elimination, e.g. Fan
[F1], we may ask whether M¥ is invariant under block Gaussian elimination.
In general this is not true but we have

3.24 Theorem. Let My, < MX be the subclass of matrices in MY that are
Hermitian and block acyclic. Let A € My, and let £ be a leaf of G4 and let

{5,£} € E(Ga). Let L = [Lyj] € C"™"* with

1 i=j
(3.25) Lij= {—A,SA;SI i=1,j=s
0 otherwise.
Then, . _
A= [Aij] = LAL® € MH,a .

Proof. Multiplication with L from the left changes only elements in row ¢ and
multiplication with L* from the right changes only elements in column ¢. Thus,
we obtain

- A LjFL
Gay =l MR o
Aij — AisAgg Asj i=CjFLoriFELlj=1.

Now suppose that for j # ¢,s, {£, j} is an edge of G 4. Then {j, s} is not an edge
of G4, since otherwise G4 would contain the cycle {7, j}, {s, j}, {¢,s}. Thus, the
only blocks in 4 that are different from the corresponding blocks in A4 are

(3.28) Apg=Ay =0, Ay = A — AssA Ay .
It follows immediately that 4 is block acyclic and Hermitian. It remains to

show that there exists a vector v € R} such that

m
Z;l,-jvj >0, forallie (m).
j=1
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Now A € M implies that there exists u € R such that

m
ZAijuj >0, forallie (m).
j=t

Setting v = u, we have

Ms

m
(3.29) Z}x ;= Ajjvj + Aivs, for alli € (m) .

e
]
o —

For i # £,s we obtain
m m
z A,-jvj = ZA,-jvj >0 s
j=1 j=1

since A;s = 0. For i = s we trivially have

m
Z Asjl)j = Agvs > 0.
j=1

For i = £ we obtain

Z A/]U] Z Agjvj + A//v( + A/svs

j=1
J#st

m

=Y Agjuj + Arsus + (Aer — A AZ Ast)ug
j=1
J#e

m
=D Asju; — (Agstis + Ars A Asrur)
Now the first term is positive definite, since 4 € M,’:,, which also implies that

m
(3.30) Z Asjuj = Assus + Aseug >0,
=1

since s has only one neighbor in G 4. But (3.30) implies that

I > ___A—l/z AT

and from Lemma 2.10 we obtain

2
--—A‘WAS;A‘”2 (1‘1) ( s‘sl/zAszA‘l/z)
Us

2
= (‘f) S P A AT A AG
S
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Therefore,
—Agsths — A[sAs_slAs{u( >0,
since Ags = Ay, = Age. [

Thus, the subclass of Hermitian, block acyclic matrices in M,’:, is invari-
ant under block Gaussian elimination. In general block Gaussian elimination
destroys already the symmetry of the off-diagonal blocks.

Another interesting property of Hermitian block acyclic matrices is the
following.

331 Lemma. Let M = [M;;] € €™ be Hermitian with blocks M;; € C*.
If M is block acyclic, then there exists a unitary block diagonal matrix U =
diag(Uy,...,Uy), with U; € €%, i =1,...,m, such that A = [4;] =UMU"
zk.

Proof. Since M is block acyclic, it is obvious that Gy can have at most m — 1
edges {i1, ji}s---» {im—t1, jm—1}, €& [B1]. If Gps has less than m — 1 edges then
M is the direct sum of smaller matrices, which can be treated separately. Thus,
we may assume w.l.o.g. that Gas has exactly m — 1 edges.

Let j; be a vertex of Gy. Choose Uj =1, and for all edges {ji, j¢} of Gy
let Mj, ;, = Aj, j, Uje be the polar decomposition of M;, ;, with Uj, unitary and

, Hermitian negative semidefinite and rank(A]1 J,) = rank(M; ; ), e.g. [H2,
p 156] (Note that usually the Hermitian factor is chosen positive semidefinite,
but we may just choose the negative of the unitary factor to obtain the required
form.) It follows that for all edges {ji, j,} we have 4;, ;, = 11 g =UpMj U”
as required.

For all the vertices j, # j; we can now consider the edges {j,js}, with
Js # Je» j1 and perform the polar decompositions U;, M, ;. = A;,; U;, with U
unitary and 4, ;, Hermitian negative semidefinite.

Proceeding like this with all the edges {js,j;} that were not considered
before, we can exhaust the whole graph. Since M was acyclic, no previously
considered vertex occurs again and this finite procedure completely determines
U, A O

From Lemma 3.31 we can conclude that some of the previous results also
hold for Hermitian matrices which have nonhermitian blocks.

4. Convergence of Jacobi’s method and general results

Another important characteristic of M-matrices in comparison to Z-matrices
is the convergence of the Jacobi iterative method for a linear system Ax = b
(e.g. [B2]). .

A natural generalization of this method for matrices 4 = [4;j] € Z,’,‘, is the
block Jacobi iteration for Ax = b defined by D = diag(A1,..., Amm), N=D—A
and

(4.1) xiy1 =D 'Nx;+ Db, i=123,...

It is wellknown [B2] that (4.1) converges for all initial xy if and only if
o(D™'N) < 1. For the proof of convergence of (4.1) we can employ the
following Lemma:
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4.2 Lemma. Let A= D — N € C"" be such that
4.3) D+D">0

(4.4) A=D+D" —(E'N+eN")>0 forallteR.
Then o(D~'N) < 1. If A, > 0 for all t € R, then ¢(D"!N) < 1.

Proof. There exists { # 0 such that AD{ = N¢, with [4] = le'" = o(D7IN).
Then obviously [A|D& = e"N¢ and hence

(4.5) AIE"DE = e"E"NE .
From (4.3), (4.4) for t = 7 and (4.5) we get (D + D*)¢é > 0 and
E'(D+DY)E > eTENE 4 e TENTE
= |AIE"DE + |AETDTE = |AEN (D + D7),
which implies |4| < 1. The second part follows analogously. []
We immediately have an analogue to Proposition 3.1.
4.6 Proposition. Let A = [A4;;] € Z,’,‘, and let D,N be as in (4.1). If A satisfies
(3.2), then o(D™'N) < 1, and if A satisfies (3.3), then o(D~'N) < 1.
Proof. Let 4, = D—SN+N" —: (7] Then A; = Ay, Ay = —(e" Ay+e )
for i # j and

0 0 0 0 0 0 0 O 0 0

. 1 & 0 Aij 0 e”A,-j 0 0 Aj,' 0 ehltAﬁ 0
A =-3 l1|lo o o 0|+]0 0 0 0
i,j=1 0 e““Aij 0 Aij 0 0 e”Aj,- 0 Aji 0

= 0 0 0 0 0 0 0

0
A+ 52041 + Ap)
+
Amm + % Zj%m(Amj + Ajm)

By (3.2), (3.3) we obtain A, >00r 4 >0 respectively; hence, the proof follows
by Lemma 4.3. []

The analogous result to Theorem 3.4 is then
4.7 Theorem. Let A= D — N, D, N as in equation (4.1) and A+ A* € MK, then
o(D7IN) < 1.
Proof. Apply Theorem 3.4 and Lemma 4.2. []
As a corollary we then obtain convergence of (4.1) for all block tridiagonal
matrices as in Corollary 3.21. We omit the statement of the Corollary here.
The analysis of convergence results for other iterative methods like the

Gauss—Seidel method or the SOR is currently under investigation in the project
of a PhD thesis and partial results have been obtained.
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Theorems 3.4 and 4.7 generalize results for M-matrices, cf. [B2). It is natural
to ask:

4.8) WEich of the equivalent conditions for M-matrices in [B2] still hold in
M3?

(4.9) Which of the equivalent condidions for M-matrices have a nontrivial
block analogue?
One of the conditions in the case k = 1, which is not satisfied for k > 1,
even if A € ZX is positive definite, is N3g in [B2] stating

4.10) A Dexists and A~ is elementwise nonnegative.

Consider the following example:

4.11 Example. Let
660 160 —1 0

160 40 O -1
-1 0 340 -—80
60 -1 -80 20

A € Z2 is positive definite, but a MATLAB experiment yields

0.1301 —0.5309 —0.0997 —0.4252
—0.5309 21925 04120  1.7575
—0.0997 04120 0.1274  0.5302
—0.4252 17575 05302  2.2588

A=

A=

Neither is A~! elementwise nonnegative nor are all the 2 x 2 blocks of 4~
positive semidefinite.

Also not satisfied is condition M3¢ in [B2], stating:

A = [a;] has all positive diagonal elements and there exists a diagonal
matrix D with positive diagonal elements such that AD = [a;;d;] is strictly
diagonally dominant, i.e.

(4.12) aiidi>2laij|dj i=1,...,n.
J#i
Consider the following example:

4.13 Example.

5 1 -1 —1
1 15 -1 -1
-1 -1 15 1
-1 -1 1 15

is positive definite. Suppose dy, d»,ds, d4 > 0 such that (4.12) holds, then 1.5d; >
dy+dy+dy, 1.5dy > dy +ds +dy, 1.5d3 > dy +do +ds, 1.5d4 > di + dy + ds.
This implies dy > 2d3 + 2d4, d3 > 2d3 + 2d4, dg > 2dy + 2d3, from which we get
—3d; > 6d4, —3dy > 6d; which is not possible if d3,d4 > 0. Thus, (4.12) does
not hold and thus, 4 ¢ M3.

One obviously has to generalize the diagonal dominance in the block fashion
described in Sect. 3.

A= € z?



554 Ludwig Elsner and Volker Mehrmann

Example 4.11 also serves to show that matrices in ZX that are positive
definite are not necessarily H-matrices. (A matrix 4 = [g;;] € C*" is an H-
matrix if .#(4) is an M-matrix, where .#(d4) = [b;;] with b;; := { '“iﬁ' | j 2 ;

—[a;;
i,j=1,...,n).

In Theorem 3.24 we have shown that the class of Hermitian, block acyclic
matrices in MX is invariant under block Gaussian elimination, if it is applied
to leafs. For general and even positive definite matrices in ZX this is, however,
not the case, since the symmetry of the off diagonal blocks is destroyed. This is
another property of M-matrices [F1], which does not carry over to the block
case.

It is known that any principal submatrix of a Z-matrix has at least one real
eigenvalue [E1], [M1]. This is generally not true for Z,’,‘,, since 4 € Z) can have
all eigenvalues complex.

4.14 Example. We have that

1.096 0016 —1.000 0.000
4= 0.016 1034 0.000 0.000 c 72
~ 10000 0.000 1064 —0.008 2

0.000 —0.100 -—0.008 1.032

is positive definite, but the eigenvalues rounded to 4 digits are 1.0097 +
10.0388,1.1043 +10.0363.

Observe that all the negative examples (4.11), (4.13), (4.14) have an acyclic
block graph and hence these properties do not even hold in the acyclic case.

5. Application to special case from fluid flow computations

In this section we now discuss matrices arising in special cases in the numerical
solution of Euler equations [H1]. These matrices have the form

T S
(5.1) M=% Tt e Qrrkerk,
S T

where Ti,S;, 5, € € %* are defined by

C —A

At C —B*

TI - - b3 SZ - )
AT _B+

(5.2) -4t C
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Here A = At — 4~ € €, B = BT — B~ € C* are decompositions of
symmetric (indefinite) matrices A4, B in positive semidefinite parts A*, B™ and
negative semidefinite parts —4~, —B~, and C = |4|+|B| = AT +A4~+ Bt +B™~.

Other finite element approaches yield matrices with similar block structure
but different matrices in each row. Also sometimes the matrices 4, B are not
Hermitian but only have real eigenvalues [D1]. Here we only discuss the case
that the blocks are Hermitian.

Consider first the following simple Lemma.

5.3 Lemma. Let C{,Cy, D, D, € €™ be Hermitian positive definite and let A, B €
C™™ be Hermitian with A,B >0, /(A)N A (B) ={0}. Let A=A*— A", B =
Bt — B~ be the decompositions of A, B in its positive and negative semidefinite
parts. Then T :=C;® A+ C;, ® A~ +D; ® Bt + D, @ BT > 0.

Proof. Obviously T > 0 and 4 + B > 0. If x € €™™" satisfies Tx = 0, then
(C1®ANXx=(C @A )x=D1®BT)x=D,®B )x=0.

Using C; ® AT = (C; ® I)(I ® A%) and the nonsingularity of C; x I, we get
(I ® AT)x = 0 and analogously
IeA)x=(l®B)x=(I®B )x=0.

Hence, [I ® (At + A~ + B* 4 B7)]x = 0. But, since 4 + B nonsingular implies
|A| + |B| nonsingular, we obtain x =0, and hence T > 0. [
Using this Lemma we obtain:

5.4 Proposition. Let M be as in (5.1), (5.2).
If A (4A) N A (B) = {0} then

(5.5) T, €ZF, and

(5.6) MeZzl.
Furthermore T1 and M are positive definite.

Proof. /' (4) = A" (JA]) and A"(B) = A(|B|), therefore C > 0. Thus, (5.5), (5.6)
follow trivially.
To show that Ty is positive definite, observe that

214 A
PR 1B]
roeTr= |7 +2
e =4 |B|
—|A4l  2|4]
=H®|4 +2I, ®|B|,
where
2 1
(5.7) H=|"1 2
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Applying Lemma 5.3 we obtain that T is positive definite.
To prove that M is positive definite, observe that

20 ~I
-1 2 -
M+ M"* = diag(H, ..., H) ®|4| + ®|B|.
——— . .
=0 ‘. T “I
~I 21
(.
Y
>0

M being positive definite then follows by Lemma 5.3. [
Observe that the matrices Ty, M are not necessarily in Mf

, MF, respectively,
as the following example shows:

5.8 Example. Let

0 —1
Then
1 0 -1 0 0 0
01 0 0 0 0
oo 1 0 =1 o] s
Ti=1lg -1t 0 1 o o|l€%
00 0 0 1 0
0 0 0 —1 0 1

is positive definite by Proposition 5.4 but there exists no u € ]Ri such that
z;=1 A,-juj > 0.
We now prove that the obvious block Jacobi method converges for M.

5.9 Proposition. Let M be as in (5.1), (5.2) and A (A) N A (B) = {0} and let

C
C

Then, o(D~'N) < 1.

e, N=D-—M.

Proof. In order to apply Lemma 4.2, we show that M; = D — elN+eTINT *g—"N >0
forallt e R.
itN ——itN* 1 ~
D—?—jze—— = §(H1®A++H1T®A‘+H2®B++H2T®B ),

with
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-2 el -
et 2
: .. it
et 2
H, =
2 et
et 2
oif
s e 2]
and A e
= | A
: . eitl
el 21

The matrices Hy, H, are trivially positive definite and then Lemma 5.3 implies
M, > 0. Applying Lemma 4.2 finishes the proof. [

Thus, having shown convergence of one of the natural block-Jacobi meth-
ods, we can now discuss the convergence of the corresponding block SOR
method:

Let M = [A4;;] € Ckmkm  yith Aij € €%k, Then, the block SOR iteration for
Mx = b is defined by

(5.10) xip1 =Hpxi+(D—owLl)7'b, i=1,2,3,...,

where H, = (D — wL)"'(1 —w)D + wU), M = D — L — U, D = diag(C,...,C)
and L, U are the block lower and upper triangular parts of M.

The relationship between the spectral radius of H,, and D~!(L+U) is given
by the following well known result of Varga, e.g. [V1], [V2], [Y1] or [B2].

5.11 Theorem. Let M,H, be as in (5.10) and let M be consistently ordered
p-cyclic. If @ #+ 0 and A # 0 is an eigenvalue of the block SOR matrix H,, and
if 0 satisfies

(5.12) A+w—1)P =P lwPs?

then & € o(D~Y(L 4 U)). Conversely if § € a(D~1(L+ U)) and A satisfies (5.12)
then 4 € o(Hy).

Another immediate consequence of Theorem 5.11 is the convergence result
for the block Gauss-Seidel method, which is (5.10) with @ = 1 and a block
version of the Stein—Rosenberg Theorem, e.g. [V2, p.70].

5.13 Corollary. Let M,D,N,H,, be as in (5.10) and suppose M is consistently
ordered 2-cyclic. Then one and only one of the following mutually exclusive rela-
tions is valid:

i) o(D7IN) = o(H1) =

i) 0< Q(Hl) < o(D™ 1N) <1,

iii) 1 =o(D~'N) = o(H1)

iv) 1 <o(D7'N) <o(H),
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Proof. The proof follows directly from Theorem 5.11 by inserting @ = 1 in
512. [

Using this result we can now determine real parameters w such that the
block SOR method converges if the block Jacobi method converges. This result
is probably well known, but we did not find a reference.

5.14 Theorem. Let M,D,N,H,, be as in (5.10) and suppose M is consistently
ordered and 2-cyclic. Let ¢ = o(D™'N) < 1. If 0 < w <15 then ¢(Hy) < 1.

Proof. a) Let 0 < w <1 and A € 6(Hy), {4} = z. Then
C—(l-0)?<i-(1-0)f =i+o—1=lo?s]’ <o’
where 6 € o(D~!N). Hence
(z — (1 — w))? < zw’g?
and by elementary considerations we infer z < 1. This shows ¢(H,,) < 1.
b) Let w > 1. Then if as above A € o(H,), |4| = z, we have
z—w+1)?<|i—o+1P = |o?d? < | w??

i.e. z lies between the two real roots of q(z) = (z — w + 1)* — zw?e?.
As ¢q(0) > 0, and ¢'(0) < 0 it is obvious that we can infer z < 1 if and only
if g(1) > 0, i.e. if and only if

2
orw < —-.

2
2—w)?—wl?>0, ieg<
( ) 0 0 TTe

We now apply these results to the matrix M in (5.1), (5.2).

5.15 Theorem. The matrix M in (5.1), (5.2) is a consistently ordered 2-cyclic
matrix.

Proof. The block graph Gy of M is the same as the standard graph of the finite
difference approximation of the Laplace operator, hence M is weakly cyclic of
index 2, e.g. [V2]. Let L, U be the lower and u1pper triangular part of D — M
and D = diag(C,...,C), then J(@) = aL +a~'U = 471J(1)4 by a diagonal
similarity with 4 = diag(4(,a41,...,a"~14;), where
ol ,
oIy
Ay = ) c q:rk,rk .

o'l k
Thus, M is consistently ordered. [

Thus we can summarize the results as follows:

5.16 Corollary. Let M be as in (5.1), (5.2) then we have

i) the block Jacobi method converges;
ii) the block SOR method converges if 0 < @ < m
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6. Conclusion

We have generalized several results for Z-matrices to block matrices in Z[. Pos-
itive definiteness, invariance under Gaussian elimination, diagonal dominance
and convergence of the block Jacobi methods are generalized to the block case.

For the special case arising in the numerical solution of Euler equations, we
also have given convergence results for block Jacobi block Gauss—Seidel and
block SOR methods. There are many open problems for matrices in ZX and
also for the applications in numerical solutions of partial differential equations,
it would be important to generalize the described results to matrices which have
off diagonal blocks with real nonpositive eigenvalues, which are not necessarily
Hermitian.
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in the solution of Euler equations and J. Linden for showing us further possible generalizations.
Furthermore we thank R. Nabben and R.S. Varga for pointing out errors in a previous version
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