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A subset C of a finite dimensional real vector space V is called a cone if it 
is closed topologically, additively and under multiplication with nonnegative 
scalars. In this note we shall consider cones C in (solvable) Lie algebras .q which 
are invariant under all inner automorphisms of g. Such cones are simply called 
invariant. A whole chapter in the monumental  book [1] is devoted to the subject 
of invariant cones. So, I am not going to repeat the whole story, but rather 
restrict myself to recall some basic facts needed in the sequel or at least useful 
for a better understanding. In particular, I will say nothing on the classification 
of invariant cones in simple Lie algebras. To get an overview over the possible 
invariant cones it is justified to restrict first the attention to pointed generating 
cones. Pointed means that C contains no lines. Generating means that C -  C = g 
or, equivalently, that C has a non-empty interior. The justification is that for 
any invariant cone C in g the generated vector space C - C  and the largest 
vector subspace C c ~ ( - C )  of C are ideals in ,q. And C defines an invariant 
pointed generating cone in the subquotient C - - C / C ~ ( - C ) .  By the results 
described in Ell the structure of the solvable Lie algebras accommodat ing an 
invariant pointed generating cone is known as well as a construction principle 
for those cones. The results are as follows. 

Theorem A (see [1, III.2.14/15] or [-4]) I f  the Lie algebra g permits an invariant 
pointed generating cone then g contains a "compactly  embedded"  Cartan subalge- 
bra I), i.e., b is a Caftan subaIgebra such that Exp ad I) is a relatively compact 
subgroup o f  Aut(g). Such an [ is necessarily abelian. I f  C is an invariant pointed 
generating cone in g then C c~ b is a pointed generating cone in l). 

For a fixed b one may decompose the complexification ,q~ into root spaces: 
g ~ = b c |  ( ~ g ~  where f2 is a subset of b * = H o m ( b ,  lR) such that f2= - f 2  and 

WU~2 

0r This decomposition yields a decomposit ion of the real algebra g along 
the set 0. .=(2/{+1} of equivalence classes of f2: g = b @ ( ~ g ~ ,  where ~c~ 

6 ~  

=(g~,| ~ _ ~ ) ~  if ~={-~o ,~o} .  Each w~o5 defines a complex structure Jc~, 
on the real vector space ~t~, by I-h, x] =co(h) Jo, x for heb, xeg~.  Clearly, J_~,= 
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Theorem B (see [1, III.6.5, III.6.18./19. and III.6.22./23./24] or [3]) Let 9 be 
solvable Lie algebra permitting an invariant pointed generating cone, n its nitradica[ 
and 3 its center. Then ,~ is the center of n, and n/~ is abelian. For a f ixed compactly 
embedded Caftan subalgebra I? and associated sets Q and (2 the following assertions 
hold true. 

(i) go, o n  for ~ 2 .  
(ii) n = 3 @ @ g~,. 

tYoE~ 

(iii) . q = b + n ,  b~n=~3. 

:4=0 if o5 = &' for &,c5'~2. 
(iv) r.q,,,, g~,.] = = o i f  c~ 4= 07 

The non-degeneracy stated in (iv) can be sharpened using the complex structures 
J~. Each J~, defines a map gco ~ 8 by x~-~ Ix, J~ x] for xe.q~,. 

(v) / f  Ix, & x] is zero for an x~9,i, then x is zero. 

Moreover, since ad(h) is a derivation for all h~b and since all the commutators 
Ix, y], x, y~g~, are central the complex structures J~, satisfy 

(vi) Ix, Jo, Y] + [J,~ x, y] = 0  jor  all x, ye,qa,. 

The invariant cones in algebras as above are obtained in the following manner.  

Theorem C (see [1, III.5.11/15. and III.7.10./11] or [3]) Let 9 be a solvable 
Lie algebra with the structural properties stated in Theorem B, in particular 19 
is a chosen compactly embedded Cartan algebra. Let a pointed generating cone 
K in the abelian algebra 19 be given. There exists an invariant pointed generating 
cone C in ,q such that Cc~19=K if'and only if a d ( x ) 2 ( K ) ~ K  Jot all xE,q~,, Foe(2. 
In this case C is uniquely determined by K and can be reconstructed as 

C = ~ {p(K | ( ~  .%)lpe Inn(,q)} 

where Inn(g) denotes the group of inner automorphisms of g. 

These results look conclusive and they are. But when I tried to use these three 
theorems as a device to construct examples I observed that still I had to do 
some work. Some of this work can be done quite general. And that 's what 
I am going to present in this note. More precisely, I want to write down an 
explicit procedure for constructing (all) irlvariant pointed generating cones in 
solvable Lie algebras. The concepts will be, I hope, adequate for this constructive 
attitude. Normally,  I don't  like coordinates: in almost all cases one looses ele- 
gance, sometimes one gets lost completely. But in constructing examples of 
cones in finite dimensional spaces it seems to be the most efficient way to realize 
the space as ~ "  and to describe the cone therein by a set of inequalities. If 
a cone is invariant under a group, preferably the inequalities should be invariant 
under the group, i.e., the functions entering in the inequalities are invariant. 
This will turn out to be the case for invariant pointed generating cones in 
solvable Lie algebras. 

The organization of this note is as follows. First we introduce the data 
from which an invariant pointed generating cone can be constructed and carry 
out the construction. Secondly, we show that our "list" is completc and givc 
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some remarks on the uniqueness of the data attached to a given cone. The 
article is finished by considering the case of two dimensional Cartan algebras. 

The data. a) On a finite dimensional real vector space ~ there is given a finite 
collection A of  non-zero real linear Junctionals such that L~(A)=~* and 
{seslc~(s)>0 for all ~ A }  4=0. In other words, A generates a pointed generating 
cone in ~*. 
b) There is a natural number d such that Jor each a~A there is given a complex 
vector space V~ endowed with d positive semidefinite hermitean scalar products 

d 

D~, 1 < k < d, such ~hat the sum ~ D~ is positive definite. 
k - 1  

c) In (~ @Re) * =~* @IR d there is given a compact subset F such that: 

cO) oct. 
c 1) The cone C(F) generated by F is pointed and generating. 
c2) The set A is contained in C(F). 
c3) For each ) '=('/o, 71 . . . . .  7a)~ F ~ ~* @IRe 

cl d 

and each wV~, c~eA, the inequality 2 7kD~(v,v)>=O holds true, i.e., ~, 7kD~ is 

positive semidefinite, too. ~= t k = 1 

The following remarks contain comments  on the data. Some of them are a 
little premature in the sense that they can be understood much better after 
the construction. 

Remark I To construct "concrete"  examples one can always arrange that s 
= I R " =  ~* and that A is contained in the "oc tan t"  N ~ .  

Remark 2 If property c 3) holds as stated, then it is clearly satisfied by all elements 
7 in C(F). As we will see later the cone constructed out of the data does not 
really depend on F, but merely on C(F). The only reason to introduce F is 
that in constructing examples (that is our point of view) one wants to describe 
the cones in question by a minimal set of inequalities. So, one should imagine 
F as the extremal points of a base of the cone C(F). 

Remark 3 If the data of a) and b) are given there always exists at least one 
subset F satisfying cO), cl) ,  c2), c3), namely the union of A and the standard 
basis vectors of IRa. 

Remark 4 The case ~=0 ,  A = 0  is not formally excluded even though this is, 
of course, not the situation we have in mind. It corresponds to (invariant) cones 
in abelian Lie algebras. More precisely, the cone we are going to construct 
out of the data is simply the dual cone of C(F) in the abelian Lie algebra 
IR a, see below. Also if ~ is different from zero - which implies that the correspond- 
ing Lie algebra is non-abelian it may happen that this algebra has an abelian 
factor. This could be excluded, if wanted, by requiring that 
{(O~ (v~, v~), .. . ,  D~ e (v~, v~))l c~ e A, v~ E V~} spans IR d. 

Given the data one constructs a Lie algebra g. As a (real) vector space 
g equals 

g = ~ |  @V~| ~ . 
c~ffA 
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The bracket  is given by 

[ ( t ,  2 L 'a '  Z1 . . . .  , Zd) , (S, Z him, W 1 . . . . .  Wd) ] 
aEA o~A 

(0, ~, (io:(t) u~--io~(s)v,), ~ Im 1 , = D,  (v,, u~) . . . . .  ~ Im D~(v~, u~)) 
a~A :~eA r 

where s, tea ,  v,, u~V~ and Zk, Wk~IR. 
It  is not  ha rd  to see that  g is a Lie algebra.  Observe  that  Im  D~(v,, v~)=0 

as D~= is hermitean.  To  cons t ruc t  the associated cone C one first considers the 
subset ~ of  .g consist ing of all e lements  (t, ~ v~, z 1 . . . . .  zd) which satisfy the 

SEA 
d 

inequalities a (t) > 0 for all ~ e A, and 70 (t) + ~ )'k {Zk -- 1 ~ C~(t)-~ Dk, (V~, V~)} > 0 
for all (70, 71 . . . . .  )'d) E F C ~ *  ( ~  I R  d. k :  1 cteA 

As abbrev ia t ion  we write occasionaliy g~(t, ~ v~, z~, ..., za) for the left hand  
seA 

side of  the second inequality. 

Theorem 1 Let C be the closure of C. Then C is an invariant pointed generating 
cone in ,q. The cone C depends only on C(F) rather than on the generating set 
F. The cones C n ( s  @N, J) and C(F) are dual to each other. 

Proof Clearly, ~ is invar iant  under  mult ipl icat ion with positive numbers .  Hence  
C is stable under  mult ipl icat ion with nonnegat ive  numbers .  To  see that  ~ (and 
hence C) is closed addit ively one takes two elements (t, ~ v , , z  1 . . . . .  za) and 

sffA 

(s, ~ us, wl . . . . .  w~) in C. Clearly, c~(s+ t ) > 0  for all g~A.  So, our  claim is proved  
affA 

if we can show that  

d 

70(s+t)+ E ~'k{z~+wk--k Z ~(s+t)-'  D~(u,+~,,u,+vs)} 
k = 1 a~A 

d 

~ O ( S ) " ~  Z ~k{ W k - 1  Z ~ ( S ) - I  u a k ( u a '  H~)} 

k = 1 a~A 

d 

+ ~o(t) + ~ ~ {z~ - ~ y ~(t)-' D~(vs, ~)} 
k = l  aeA 

for a fixed ? =(70, 71 ... .  7a)~F. 
The  lat ter  inequal i ty  follows if for each c~eA the inequali ty 

d 
Y, 7~ ~(s+ t) -~ D~(u~+v~, ~+~) 

k=l 

d d 
Z ~k~(S)-I  D~(U~,U,)+ ~ 7t~(t) -~ D~(v~,v~) 

k = l  k = l  
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d 

holds true. By c3), D.-= ~, 7kD~ is a positive semidefinite hermitean form on 
k = l  

V~. And with x:=~(s)>0,  y , = e ( t ) > 0  the claim reduces to 

l~D(u+v,u+v)<=l--D(u, u )+ l  D(v, v) 
x+y  x y 

for all u, veV,. But this inequality follows from D(2u-#v,  2 u - # v ) > O  if one 

chooses 2 =  x ( x + y ) J  and #=L)~J " 

Next we claim that ~ (and hence C) is invariant under inner automorphisms. 
As I wrote already in the introduction even a sharper result is true, namely 
the functions defining d are invariant under inner automorphisms. Clearly, the 
linear forms e (extended to g) are invariant because the ~-component (not s 
itself) is left pointwise fixed by all inner automorphisms, even by all members 
of the connected component Auto(g). To investigate the gT, 7eF,  let 
(s, ~ u=,wi .. . . .  Wd) be any element in g such that ~(s)+0 for all ~, otherwise 

gy is not defined. The automorphisms Exp ad(t, 0, z 1, ..., za) applied to this ele- 
ment only multiply the u~ by complex numbers of modulus one. So, the values 
of g~ are not changed. 

It remains to consider for any v~e V~ the element 

Exp ad(O, ~ v~,O)(s, ~ u~,w~,...,we) 
~ A  a ~ A  

=(s. Z (u:-i~(s)~0. Wl+ Z ImD~(v,.~-�89 ..... ~', 
a ~ A  a e A  

+ Z Im D~(v~, us-�89 v~)). 
u E A  

Evaluating g,~ at this point gives 

d 

"~'o(s)+ ~, 7k{Wk+ ~ ImD~(v~,u~--�89 
k = 1 ~ E A  

- 1  ~ :z(s) -1 Di(u~-i:(s) v:, u~-ia(s) v~)}. 

But 

= Im k D~(v~, u~)+�89 Im iDk~(v~, v:)--�89 - ~ Dk(u~, U~) 

t "  k ~_. k ~D~(u~, v~)+ 2 ID~(v~, u~)--�89 D~(v~, v~) 
= - � 8 9  D~(<,, uO 

for all :~eA, k = 1 . . . . .  d. We see that the v~ drop out. Hence the g~ are invariant 
functions. 

From the assumption that the cone C(F) generated by F is pointed it follows 
immediately that C is non-empty (one may even choose the u= to be zero). 
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Using the compactness o f F  one sees that ~ is open. In particular, C is generating. 
The question whether C is pointed is a little more delicate. One first has to 
derive a more direct description of C which is a productive exercise anyway. 

We claim that C consists of those (t, ~ u~, z 1 . . . . .  zd) which satisfy: 
0tEA 

(1) ~(t)__>0 for all ~ A ,  
(2) u~=0 for ~Ao=Ao( t ) :={ f l~Al f l ( t )=O},  and 

d 

(3) 7o(t)+ ~ 7k{zk - 1  ~ a(t) -~ D](u~,u~)}~O for all (70,7, . . . . .  yd)~F where 
k = 1 ~ A +  

A + = A \ A  o. 

To this end, one first observes that there exists a finite collection of vectors 
7 ', 1 < l < m ,  in F, Y'=(Y~, 7] . . . .  ,7~), such that 

m d 

D=.-=E E 7k D~ 
l = l k = l  

is positive definite for all aEA. Indeed, since F generates ~*| a, for each 
p, 1 <=p<d, there are elements 7 j'p in F and real coefficients 2~, 1 <j<Ip ,  such 
that 

l a  

y. )~TJ '~  for l<_k<_d. 
j = l  

d 

For each :~eA the positive definite form ~ D~ can be written as 
k = l  

d d lp  

y ,~j rk D,. 
k = l  k , p = l j = l  

d 

Let M..=max {2~[p = 1, ..., d, j= 1, ..., lp}. Since ~ ~k~'J'P ,--=n~ is positive semidefin- 
k = l  

ite for each pair (j,p), one finds for all ~ A  and ueV~ 

d d lp  d d I a d 

7k D~(u, u). y Z Y 
k = l  p = l  j = l  k = l  p = l j = l k = t  

Hence the collection of vectors {7 j'~ does the job. 

Now, let (t, ~ u~, zl . . . .  , za) be an element of C, i.e., there exists a sequence 

(t(,), ~ -,"c"',-1"("), ..., z~")), n e N ,  of elements in d converging to this element. We 

claim that (t, ~ u~ ,z l , . . . ,  zd) has the properties (1), (2), (3). Clearly, c~(W))>0 
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for all ~, all n implies ~(t)>0. For  each l, l < l < m ,  and each n one has the 
inequality 

1 a 
1D~(u~ ,u~ ) 

= o:~Ao 
d 

k=  1 ~EA 

Summing over t and taking the supremum over n of the right side (which is 
finite) one finds a constant M such that 

c((t (")) 1D,(u~"),u~"')< M 
a~Ao 

for all n. Hence I~) (,) < D:(u~ ,u~ )=c~(r for all n and all ~EA0. As ~(t (")) tends 
to zero and D: is non-degenerate, (u~ ")) converges to 0, i.e., u~ = 0. The inequality 

d 

7o(t)+ Z 7k{Zk--�89 Z ~(t)-~D:(u,' u~)} > 0  is an immediate consequence of the 
k = l  aEA+ 

d 

fact that all the ~ 7k D~ are positive semidefinite. 
k = l  

On the other hand, let x e g  satisfy (1), (2), (3). Take an arbitrary cE(~. The 
above proof that C is closed additively can be used with only a slight modifica- 
tion to see that x+e,c is in (~ for all e>0.  But x=limx+~c.  

e ~ 0  

Now it is very easy to see that C is pointed. If x=(t, ~ u~,z~ .. . . .  Zd)eC 
aEA 

has the property that all real multiples ).x are in C, then t = 0  by (1) and a), 
d 

u , = 0  for all :~ by (2), and ~ 7kZk=0 for all (70,~2~, ...,Td)~F by (3). As F 
k ~ l  

generates ~* | ]Ra the latter equation gives Zk = 0 for all k. 

Next, we show that C only depends on C(F), cf. also the above Remark 2. 
More precisely, C consists of those (t, ~ u,, zl . . . . .  Zd)~g which satisfy (1), (2) 
and ~eA 

d 

(3 t )  7 0([)-~ Z ];k{ Z k - 1  2 ~ ( D  - 1 D k ( I A a '  U~)} ~ 0  

k = 1 ~ A  + (t) 

for all (Vo, 71 . . . . .  Va)~ C(F). 

One only has to prove that if a given element x = (t, ~ u~, z l, ... Zd) e g satisfies 
a~A 

(3) then it satisfies (3'), too. But the subset C(x) of all 7--(70,7~, --., 7a)~* @ N  ~ 
which satisfy the inequality (3) for x, is a cone containing F, hence C(F) is 
contained in C(x). 

The latter description of C shows that C c~(~| e) consists of all x 
=(t, zl, ...za) such that c~(t)>0 for all ~eA and V(x)>0 for all 7~C(F). But 
as A is contained in C(F) by c2) it is evident that Cc~(~| ~) and C(F) are 
dual to each other. This finishes the proof of Theorem 1. 
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U p  to now our  considerat ions  were quite elementary,  we didn' t  use any 
advanced theory, in par t icular  not  the Theo rems  A, B, C. Of  course, we were 
guided by this ABC. These theorems  are used explicitly in order  to show that  
the const ructed cones exhaust  all possible invar iant  pointed generat ing cones 
in solvable Lie algebras.  We will use the nota t ions  in t roduced in the beginning. 

Theorem 2 Let C be an invariant pointed generating cone in a solvable Lie algebra 
9. Then there are "'data "s,  A, F etc. such that there exists a Lie algebra isomorph- 
ism from .q onto the Lie algebra constructed from the data transforming the cone 
C onto the cone corresponding to the data. 

Proof We fix a compac t ly  embedded  Caf t an  algebra b in g whose existence 
is guaran teed  by Theorem A. As C c~) is a generat ing cone, C r~ b contains  
a point  c in the complemen t  of ~ kerco where O denotes  the set of  (real) 

COE~ 
roots  associated to b- Let O+.-={coEQIco(c)>0}.  Then  O+ is just one half  of 
O, Q is the disjoint union of g2+ and - O + .  Actually,  O+ does not  depend 
on the par t icular  choice of  c as we shall see soon. The mos t  impor t an t  p roper ty  
of O+,  used at several places in the sequel, is the following. 

(*) Fo r  each co ,Q+ and each non-zero  x in ,% the bracket  [J~o x, x]  is a non- 
zero element  of C, even of C c~ 3, where J~, is the complex  structure associated 
with m and 3 is the center of  g. 

To  prove  (,) one first observes that  Theo rem B implies that  [J~o x, x] is a non-zero  
element  of 3 for all coe(2. T h e o r e m  C gives that  ad(x) 2 (c), c as above,  is an 
element of C. But 

ad(x) 2 (c)=  [x, - co(c) J~, x]  = ~o(c) [J~, x, x]. 

As co(x) is positive, [J~, x, x] has to be in C. 
Since C is pointed  the p rope r ty  stated in (*) characterizes the roots  in D+,  

in par t icular  O+ does not  depend on the choice of  c. 
The center  ~ of  9 is just 3 = (~ ker co. We choose an a rb i t ra ry  vector  space 

complemen t  s to 3 in [), b = ~  @~3. The  set A in ~* is nothing but  A = {col~[co~(2+}. 
Clearly, ~ and  A have  the proper t ies  stated in a). The spaces V~, ~EA, are 
the g~,, c~=coI~, endowed with the complex  structure Jo,, o)~f2+. Occasionally,  
we will write J~ instead of J,o. 

The  cone C c~ 3 in 3 is pointed,  possibly not generating. But anyway,  there 

{ _~1 )'k fk [ } exists a basis f~ . . . . .  fa of  3 such that  C c ~  is conta ined  in 2 k > 0  . 
k 

Such a basis is used to identify 3 with ire, 17 = ~ �9 g = 5 e IR e. Next ,  the forms 
D] on V~ = g~ are defined. F o r  u~, v, in V~ the c o m m u t a t o r  [u~, v~] is in 3 and 
it can be developed in the chosen basis, 

d 
[a~, v j  = ~ t~(u~, v~)f~. 

k=l 
Then  D~ is defined by 

O~(u~, v~)= #~ (J~ u~, v=) + i #k~(u~, v~). 
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It is easy to check that D] is hermitean using the skew-symmetry of the Lie 
bracket and Theorem B(vi): [u, J~ v] + [J~ u, v] =0. Concerning the (semi) positi- 
vity of Dk~ we first observe that k D~(u~, us)= I~(J, u~, u~). By (,), [J~ u~, u j  is con- 

ta ined in  C ~ { ~  2kfkl2k>O} Hence the coefficients k �9 #:(J~ u,, u~) are non- 
k = l  

d 

negative. Since [J~ u~, us] + 0  for u : + 0  the sum ~" D~ is non-degenerate. 
k = l  

We defined already all the data demanded in a) and b) starting from g 
and C. It is easy to see using Theorem B that the obvious isomorphism from 
g onto 5 |  @ V : @ N  d is a Lie algebra isomorphism, where the latter space 

~EA 

is endowed with the bracket constructed in front of Theorem 1. 
The compact set F can be chosen to be any base of the dual cone (C~  

b )*={~eb* l~(c )>0  for all c~Cc~b} , F={de(Ccab)*l~(Co)=l } for a fixed ele- 
ment c o in the interior of C c~ b (in b)- Since C c~ b is pointed and generating, 
C(F)=(C~I?)* is pointed and generating as well. Next we check property c2), 
i.e., f2+ c(Cc~[))* or, equivalently, co(c)>0 for all c ~ O + ,  c~Cc~ b. Again we 
use Theorem C. Take any non-zero x in g~. Then ad(x)Z(c)=co(c)[J~,x,x] is 
contained in C. Since [Jo~x,x] is a non-zero vector in C and C is pointed 
c9(c) has to be non-negative. 

Clearly, F and (Cc~b)* are identified with subsets of 5" |  e. Concerning 
d 

F it remains to show that ~ , k ?kD~(u~,u~)>O for any ~=e )LeA  , u~eq~, and 
k = l  

--(70, 7~ . . . . .  7d)e F ~ (C c~ [)*. By (*) and by definition of (C c~ b)* one gets 

k 1 

d d 

k = l  k = l  

Now, all the data are introduced. The proof of Theorem 2 is finished if we 
can show that the given cone C coincides (under the obvious identification) 
with the cone, say C(% A, F) to distinguish it from C(F), corresponding in the 
sense of Theorem 1 to the just established data % A etc. Since both cones are 
invariant, by the uniqueness part of Theorem C it is sufficient to prove that 
C~I?=bc~C(~,A,F).  But this is evident using that C ~ b  is the dual cone of 
(C ~ b)* and that, by Theorem 1, b c~ C (5, A, F) is the dual of C(F). 

Concerning uniqueness of the data attached to a given cone the proof of 
Theorem 2 shows that one should not expect too much. The vector space com- 
plement ~ to 3 in l? was completely arbitrary, and also the chosen basis f t  . . . . .  fd 
is far from being unique. 

Theorem 3 Suppose that an invariant pointed generating cone C in a solvable 
Lie algebra g is realized by two collections of data ~, A, V~, d, D~, F and t, 
B, W~, d', E~, A (I hope that the notation is self-explanatory). Then d=d'  and 
there exist a bijection fl~-~fl from B onto A, a linear isomorphism ~ :  t * ~ 5 * ,  
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a collection aJ, ] <j<=d, of vectors in ~*, (E-linear isomorphisms ~ :  W~--* V~, 
fleB, and ~eGLa(1R) such that 

(i) ~ ( ~ ) = p f o r  ~ s .  
d 

(if) The forms D~ and E~ are related by E~(v, u)= ~ ~0j~ D~(q~(v), ~ ( u ) )  for 
k = l  

fl~B, 1 <j<=d, and v, ue Wr 
(iii) The linear isomosphism I * |  a, given by (~o ,~  . . . . .  ~-a) ~--~ 

~(~o)+ ~ja~, ~ ~Oj~ . . . .  , ~ ~Oia , transforms C(A)onto C(F). 
j = l  j = l  j = l  

Remark 5 The appearance of the a ~ reflects the arbitrary choice of the comple- 
ment ~ to 3 in b- The appearance of the matrix 4' instead of the unit matrix 
reflects the choice of the bases j'~ . . . .  ,fa in proving Theorem 2. 

Proof. Clearly, d = d i m  3(9)= d'. By assumption, there is a Lie algebra isomorph- 
ism q~: z ~ ( ~  V~ ~ IR a ~ t | ( ~  W~ | IR a transforming the cones corresponding 

to the data onto each other. The proof consists of inspecting what that means. 
The isomorphism ~ has to t ransform the center IR a onto IR a, hence there is 

a matrix 0 =(4'~)~GLa(IR) such that ~o(x~ . . . .  , xa)= 4'1~x~, .. 4'aj x~ for 
j 1 " ' j  ! 

(x ~ . . . . .  x~) ~ IR e. 
The compactly embedded Caftan algebra ~ | IR ~ is transformed via ~o onto 

a subalgebra of the same type. Since compactly embedded Cartan algebras are 
conjugate under inner automorphisms we may assume that ~0(~ |  |  a. 
Note that the potential change of ~ by an inner automorphism does not disturb 
the invariant cones. The restriction of ~ to ~ is given by 

~(s )=(~ods ) ,~ ( s ) )  for s ~  

where ~Pw: ~ t  is a linear isomorphism and q~z: ~--+IR~ is a linear map. The 
vectors aJ of the theorem are the components of q~, ~p~(s)=(a~(s) . . . . .  aa(s)); 

is the transpose ~o* of ~p~. 
So far, we have "computed"  q~I~R,. Since cp respects the Cartan algebras 

~ I R  a and t |  a, it has to respect the root spaces (V,) and (We) as well. Hence 
there is a bijective map ~ - - ~  from A onto B such that ~o induces an IR-linear 
isomorphism q~, from V~ onto W~. A closer inspection of the formula 

[(s, 0, 0), (0, u, 0)] -- [~o (s, 0, 0), (0, ~,(u), 0)] 

for s ~ ,  u~ V~ shows that there is a sign ~ {  + 1} such that 

i.e. 

q~(iu)=e,,i~p,(u) and :~(s)=e~(~pw(s)), 

~=e ,  q,(~). 

Using that ~0 transforms the cones, one concludes that all the signs e~ have 
to be + 1. As a consequence all the (p, are (E-linear. The map fl-~/~ from B 
onto A is defined as the inverse of ~--*~, and (i) is clear. 
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Next, we evaluate the equation 

[(0, v, 0), (0, u, 0)1 = [(0, c;Av ), 0), (0, ~o~(u), 0)] 

for ~eA and u, r~V~. One obtains 

d 

2 I/IJk Im Dk~(u, u ) = I m  E~(q)~(v), q):(u)) 
k = l  

for 1 <j__< d and a ~ A. Since the q~ are C-linear the latter equation implies 

d 

Y~ ~jk D~(v, u)= e,;(~(~), ~0~(u)). 
k = l  

If for fi~B we define ~a:  W~V~ to be the inverse of qo~ the equation takes 
the form stated in (ii). 

It is easily checked that the transpose co of the linear isomorphism ~0l~| 
from ~| onto I@IR a is given by 

(r162 . . . . .  r ~(r CjaJ, r  Y~ r e~*| IR" 
j = l  j = l  j = l  

for (~o, ~1, ..-, ~a)st* |  a. 
Since ~ transforms the cones intersected with ~ | IR a and t | IR n, respectively, 

its transpose o has to transform their duals which are C(A) and C(F) by Theo- 
rem 1. But that is precisely (iii). Obviously, the quantities described in the theo- 
rem can be used to reconstruct a Lie algebra isomorphism ~ which transforms 
the cones corresponding to the data. 

As an illustration of the above construction let's consider invariant pointed 
generating cones in solvable Lie algebras g with one-dimensional centers 3 and 
two-dimensional (compactly embedded) Cartan algebras b. In terms of the data 
this means the following. For  a suitable "or ientat ion" of the one-dimensional 
space ~, in ~=IR is given a finite collection A of positive numbers. As d =  1 
each V~ is simply an ordinary complex Hilbert space with scalar product D,. 
Also the orthogonal sum V= @ V~ is a complex Hilbert space with scalar prod- 

uct D, say. In IR2= ~ | IR there don't  exist too many pointed generating cones 
C(F), in particular as we know by c3) that C(F) has to be contained in 
{(x, y)~iRZ]y >0} and that by c2) the positive x-axis is contained in C(F). This 
means that we may choose F to be 

F = {(1, 0), (~, 1)} with some ~eiR. 

The corresponding algebra 9 is g =IR | V| IR with the bracket 

[(t, F v~, z), (~, y~ u~, w)] 
,~A a~A 

=(0, ~ i~(tu~--sv~), I m D ( ~  v,, ~ u~)). 
a~A a~A a~A 
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The corresponding (~ consists of all (t, ~ v~, z) satisfying t > 0 and 
aEV 

0 < ~ t + z - �89 ~ ~- i t- 1D~(v,, c,) or, equivalently, 
~EA 

0 < ~ t  2 +zt--�89 ~ a-l  D~(v~, v~) 
aeA 

= ~ t 2 - L z t - - I D ( E  ~ -  1/2/)ct' E ~ - I / 2 u a ) "  

ct~ A ~ ~ A 

Clearly, to obtain the closure C one only has to allow equality in these inequali- 
ties. As we have shown above our construction yields invariant inequalities. 
This means that the quadratic form ~ t 2 + z t - � 8 9  ~-1/2v~, ~ ~-l/Zv~) on 

�9 ~A a~A 
the real vector space ,q is invariant. Evidently the form is Lorentzian. So, we 
have met old friends, invariant Lorentzian forms and their associated cones! 
All Lie algebras permitting an invariant Lorentzian form are already classified, 
see [-2, 5, 6]. Our results may be used to provide another  proof  for this classifica- 
tion in the solvable case: If the solvable Lie algebra L carries an invariant 
Lorentzian form q then q defines an invariant pointed generating cone C = Cq. 
Hence (L, C) must be in our "list". A small consideration shows that for the 
associated data one has to have d =  1 = d i m  ~. - But 1 think this is the wrong 
way to look at our results. One had better view the cones we constructed as 
genuine generalizations of the Lorentzian cones. By the way, even further gener- 
alizations are possible. One may  allow A to be infinite, even uncountable if 
one has a measure on A and uses direct integrals of Hilbert spaces. 

In [4], the authors ask whether it is possible that the group Inn (9) of inner 
automorphisms is not closed in GL(,q) in case that  9 allows an invariant pointed 
generating cone. The potential non-closedness causes some trouble in the consid- 
erations of [4]. Our results show in particular that for solvable algebras g the 
group Inn(fl) is almost never closed whatever that means. Anyway, to see 
such an algebra and to produce a really concrete example what is in the spirit 
of this note we specialize the data even further. In addition to d =  1 = d i m  
we assume that # A = 2  and dime V~=I, i.e., V~=C. The bracket on 9 
= I R O  ~2 O]R is given by 

[(t, vl ,  v2, z), (s, ul ,  u2, w)] 

=(0, ial(tu 1 -svl) , /a2 (tu2 --SU2), [m(vl ut '~-u 2 /'/2) ) 

where cq, ~2 are positive numbers. This is an one-dimensional extension of 
the five-dimensional Heisenberg algebra I/~20 IR. An invariant Lorentzian form 
on g is given by (corresponding to ~ = 0) 

q(t, v l ,v2,z)=2zt  - l  lvtl 2 1 1 v 2 1 2 .  
~1 ~2 

The group Inn (g) is closed if and only if the numbers a l, ~2 are linearly dependent 
over the rationals - which is almost never the case. 
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By the way, a nice matrix representation of g is 

0 vl v2 iI~] ] 

0 i2~1 0 t?~/ vie(12,2,/~e]R/' 
g = 0 0 i;~7 2 

o 1 0 0 0 

This algebra and its corresponding group in GL4(C) leave invariant a particular 
hermitean form on 112 4. I don't  know whether that is a special case of a general 
(and noteworthy) phenomenon. I didn't consider this question. 

Let me finish this paper with three remarks. First, we have seen in this 
paper that the Theorems A, B, C are indeed conclusive. Only using them we 
could establish a constructive procedure to obtain all invariant cones in solvable 
Lie algebras. Secondly, I want to emphasize once more (cf. Remark 3 above) 
that one only needs the data given in a) and b) in order to construct a solvable 
Lie algebra which admits at least one invariant pointed generating cone. So, 
all those algebras are known. The final remark could be used to write this 
paper all over again in a different light. The above invariant functions gr 
clearly have an origin which has nothing to do with a particular linear functional 
?. Suppose that the Lie algebra g possesses a compactly embedded Cartan alge- 
bra b. Let g = b �9 @ g~, be the decomposition into root spaces, cf. the introduc- 

tion for notations. Suppose further that [g~,, g~,] = 0 for 05' 4= 05 and that [g~, gel 
is contained in the center 3 of g. These assumption imply, of course, that g 
is solvable (of length _<_3). Let A be any representative set for the set O of 
equivalence classes, i.e., ~ 2 = A ~ ) - A .  Each coeA defines a complex structure 
Jo, on g~, such that [h,x]=co(h) J~x for coeA, xeg~,. Given A we define a 
function f on a subset of g with values in b. Decompose x e g into x = h + ~ u~,, 
het), uo, eg~,. If co(h)4=0 for all co, i.e., i fh is regular, then ~,~A 

f ( x ) = h - � 8 9  ~ co(h)-' [J~uo,,uoJ. 
f . lEA 

In [1] and [3], the authors study a similar function, but with co(h)-~ replaced 
by co(h). The above function has the advantage that it is homogeneous under 
multiplication by scalars - which is crucial when considering cones. The function 
is independent of A because the transition from co to - co  changes the signs 
of co(h)-1 and of J,o- Even better, one can write down a more "closed form" 
o f f  For regular h, ad(h) induces a linear automorphism of b • @ g,~. It follows 
from the assumptions that f may be written as ~'~ 

f(x) = h + �89 [ad (h)-i  (x'), x'] 

if 
x=h+x' ,  heb, x 'eb  • 

One can show using the first description of f that f is invariant under inner 
automorphisms of g that's what we have done in the proof of Theorem 1 
when showing that (~ is invariant, only in another terminology. There are also 
invariance properties under arbitrary automorphisms ~0 of g. Let's first assume 
that q~(b)=[. Then using the second description of f one can show that 
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f(rp(x)) = o ( f ( x ) )  for all x e g  where f is defined. Since all compac t ly  e m b e d d e d  
Ca r t an  suba lgebras  are con juga te  under  inner  a u t o m o r p h i s m s  an a rb i t r a ry  
a u t o m o r p h i s m  qt o f  g m a y  be wri t ten  as 0 =  t~p where t e Inn(g) ,  and  ~oeAut(.q) 
satisfies ~0 (b)= [- Pu t t ing  toge ther  these two pieces of i n fc rma t ions  one ob ta ins  

f (O(x ) )  = f 0  ~0 (x) )=  f (q)(x))-- q~(f(x)). 

The la t te r  obse rva t ion  might  be useful when cons ider ing  invar ian t  cones in 
general  Lie a lgebras .  

The  connec t ion  between f and  the above  funct ions  g / i s  that  g~(x)= ( 7 , f ( x ) )  
for all x in the d o m a i n  o f f  

Addendum. When I circulated this article as a preprint l was kindly informed by K.-H. Neeb 
that V.M. Gichev in his paper "Invariant Orderings in Solvable Lie Groups", Sib. Math. 
J. 30, 44 53 (1989), has determined explicitly the semigroups corresponding to the invariant 
cones in solvable Lie algebras. 
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