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1. Definitions, formulation of problems and conjectures. We use
the following notations: Z denotes the set of all integers, N denotes the set
of positive integers, and P = {p1, p2, . . .} = {2, 3, 5, . . .} denotes the set of
all primes. We set

(1.1) Qk =
k∏

i=1

pi .

For two numbers u, v ∈ N we write (u, v) = 1 if u and v are coprimes.
We are particularly interested in the sets

(1.2) Ns = {u ∈ N : (u,Qs−1) = 1}
and

(1.3) Ns(n) = Ns ∩ [1, n],

where for i ≤ j, [i, j] equals {i, i+ 1, . . . , j}.
Erdős introduced in [6] (and also in [7], [8], [10]) f(n, k, s) as the largest

integer r for which an

(1.4) An ⊂ Ns(n), |An| = r ,

exists with no k + 1 numbers in An being coprimes.
Certainly the set

(1.5) E(n, k, s) = {u ∈ Ns(n) : u = ps+iv for some i = 0, 1, . . . , k−1}
does not have k + 1 coprimes.

The case s = 1, in which we have N1(n) = [1, n], is of particular interest.

Conjecture 1.

f(n, k, 1) = |E(n, k, 1)| for all n, k ∈ N .
It seems that this conjecture of Erdős appeared for the first time in print

in his paper [6] of 1962.
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The papers [10] and [11] by Erdős, Sárközy and Szemerédi and the recent
paper [9] by Erdős and Sárközy are centered around this problem. Whereas
it is easy to show that the conjecture is true for k = 1 and k = 2, it was
proved for k = 3 by Szabó and Tóth [14] only in 1985. Conjecture 1 can also
be found in Section 3 of the survey [7] of 1973. In the survey [8] of 1980 one
finds the

General Conjecture.

f(n, k, s) = |E(n, k, s)| for all n, k, s ∈ N .
Erdős mentions in [8] that he did not succeed in settling the case k = 1.

We focus on this special case by calling it

Conjecture 2.

f(n, 1, s) = |E(n, 1, s)| for all n, s ∈ N .
Notice that

E(n, 1, s) = {u ∈ N1(n) : ps |u; p1, . . . , ps−1 -u} .
We shall also study these extremal problems for the square-free natural

numbers N∗. Thus we are naturally led to the sets N∗s = Ns ∩ N∗, N∗s(n) =
Ns(n)∩N∗, E∗(n, k, s) = E(n, k, s)∩N∗ etc. and to the function f∗(n, k, s).

R e m a r k 1. Our interest in the conjectures stated above is motivated
by an attempt to search for new combinatorial principles in this number
theoretic environment. Consequently, we look for statements which do not
depend on the actual distribution of primes. Especially Theorem 3 below
has this flavour.

In another paper we shall make a systematic study of combinatorial
extremal theory for lattices which are abstractions of lattices such as N∗s(n),
N∗ etc.

2. Results

Theorem 1. For all s, n ∈ N,

f∗(n, 1, s) = |E∗(n, 1, s)| .

Theorem 2. For every s ∈ N and n ≥ Qs+1/(ps+1 − ps),
f(n, 1, s) = |E(n, 1, s)|

and the optimal configuration is unique.
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Example 1 (Conjecture 1 is false). The claim is verified in Section 5.
There we prove first the following result.

Proposition 1. For any t ∈ N with the properties

(H) pt+7pt+8 < ptpt+9, pt+9 < p2
t

and every n in the half-open interval In = [pt+7pt+8, ptpt+9) we have for
k = t+ 3,

f(n, k, 1) > |E(n, k, 1)| .
Then we show that (H) holds for t = 209.

We think that by known methods ([5], [13]) one can show that actually
(H) holds for infinitely many t, and that there are counterexamples for
arbitrarily large k.

R e m a r k 2. Erdős (oral communication) conjectures now that for every
k ∈ N, f(n, k, 1) 6= |E(n, k, 1)| occurs only for finitely many n.

Example 2. Even for square-free numbers “Erdős sets” are not always
optimal, that is, f∗(n, k, 1) 6= |E∗(n, k, 1)| can occur. We verify in Section 5
that the set N∗ ∩An(t+ 3) (defined in (5.1)) is an example.

Example 3. In the light of the facts that f(n, k, 1) = |E(n, k, 1)| holds
for k = 1, 2, 3 for all n and that f∗(n, 1, s) = |E∗(n, 1, s)| for all s, it is
perhaps surprising that we can have

f∗(n, 2, s) 6= |E∗(n, 2, s)| .
We show this in Section 5 for ps = 101 and n ∈ [109 · 113, 101 · 127).

Finally, we generalize Theorem 2 by considering instead of Ns the set NP ′
of those natural numbers which do not have any prime of the finite set of
primes P′ in their prime number decomposition. We put NP ′(n) = NP ′∩[1, n]
and consider sets A ⊂ NP ′(n) of non-coprimes. We are again interested in
cardinalities and therefore introduce

f(n, 1,P′) = max{|A| : A ⊂ NP ′(n) has no coprimes} .
In analogy to the set E(n, 1, s) in the case P′ = {p1, . . . , ps−1}, we now
introduce

E(n, 1,P′) = {u ∈ NP ′(n) : q1 |u} ,
where {q1, q2, . . .} = {p1, p2, . . .} \ P′ and q1 < q2 < . . . and QP ′ =

∏
p∈P ′ p.

Theorem 3. For any finite set of primes P′, for n ≥ q1q2
q2−q1QP ′ we have

f(n, 1,P′) = |E(n, 1,P′)| .
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3. Proof of Theorem 1. Let Ã ⊂ N∗s(n) be without coprimes. Every
a ∈ Ã has a presentation

(3.1) a =
n∏
t=s

pαtt with αt ∈ {0, 1} .

We can identify a with α = (αs, . . . , αn) and thus Ã with A. For Ã to have
no coprimes means that for any α, α′ ∈ A,

(3.2) α ∧ α′ 6= (o, . . . , o) = o, say .

Now we write

(3.3) A = A1
.∪ A0 ,

where

(3.4) Aε = {α = (αs, . . . , αn) ∈ A : αs = ε} for ε = 0, 1 ,

and make three observations:

(a) The set B1 = {β1 = (1, 0, . . . , 0) ∨ β : β = αα′ ∈ A0A0}, where
A0A0 = {αα′ : α, α′ ∈ A0}, is disjoint from A1, because otherwise
β1 ∧ α′ = o in contradiction to (3.2).

(b) B̃1 ⊂ N∗s(n), because
n∏
t=s

pβ1t
t =

n∏
t=s+1

psp
(αα′)t
t <

n∏
t=s

pαtt = α

by (3.2).

(c) By an inequality of Marica–Schönheim [12], which is (as explained in
[3], [4]) a very special case of the Ahlswede–Daykin inequality [1],

(3.5) |B1| = |A0A0| ≥ |A0| .
By these observations the set C̃1 = Ã1

.∪ B̃1 is contained in N∗s(n),
contains no coprimes, and has a cardinality |C̃1| = |Ã1|+ |B̃1| ≥ |Ã1|+ |Ã0|
= |Ã|.

This shows that f∗(n, 1, s) ≤ |E∗(n, 1, s)| and the reverse inequality is
obvious.

4. Proof of Theorem 2. We need auxiliary results. A key tool are the
congruence classes of N,

(4.1) C(r, s) = {r + lQs−1 ∈ N : l ∈ N ∪ {0}} for r = 1, . . . , Qs−1 .

They partition Ns into the sets

(4.2) G(r, s) = Ns ∩ C(r, s) .

We can say more.
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Lemma 1. (i) For any r ∈ Ns,
C(r, s) ⊂ Ns, that is, G(r, s) = C(r, s) .

(ii) There exist r1, . . . , rRs−1 ∈ Ns(Qs−1) such that Rs−1 =
∏s−1
i=1 (pi−1)

and Ns =
⋃Rs−1
i=1 G(ri, s). Actually , {r1, . . . , rRs−1} = Ns(Qs−1).

P r o o f. (i) For any c ∈ C(r, s), r ∈ Ns, we have for some l, c = r+lQs−1.
However, if c 6∈ Ns, then (c,Qs−1) > 1 and this implies (r,Qs−1) > 1 in
contradiction to r ∈ Ns.

(ii) We consider Ns(Qs−1) = Ns(
∏s−1
i=1 pi) and observe that for Euler’s

ϕ-function

|Ns(Qs−1)| = ϕ
( s−1∏

i=1

pi

)
=
s−1∏

i=1

(pi − 1) = Rs−1 .

Next we realize that no two elements from Ns(Qs−1) belong to the same
class, because they differ by less than Qs−1. Finally, if u ∈ Ns and u > Qs−1,
then u = r + lQs−1 for some l ∈ N and r ∈ Ns(Qs−1). Hence u ∈ G(r, s).

So, we can take for r1, r2, . . . , rRs−1 all the elements of Ns(Qs−1) and
G(ri, s) = {ri + lQs−1 : l ∈ N ∪ {0}}.

We need a few definitions. For A ⊂ Ns and 1 ≤ n1 < n2 set

(4.3) A[n1, n2] = A ∩ [n1, n2]

and

(4.4) Aj [n1, n2] = A[n1, n2] ∩G(rj , s) for j = 1, . . . , Rs−1 .

Thus Aj [n1, n2] ∩Aj′ [n1, n2] = ∅ (j 6= j′) and A[n1, n2] =
⋃Rs−1
j=1 Aj [n1, n2].

We also introduce

(4.5) Ej [n1, n2] = {u : u = psv, (v,Qs−1) = 1} ∩ [n1, n2] ∩G(rj , s) .

Clearly,

(4.6)
Rs−1⋃

j=1

Ej [1, n] = E(n, s) .

Lemma 2. Let mj be the smallest and Mj the largest integer in G(rj , s)∩
[n1, n2]. Then for A ⊂ Ns without coprimes,

(i) |Aj [n1, n2]| ≤
⌈ |[n1, n2] ∩G(rj , s)|

ps

⌉
=
⌈

(Mj −mj)Q−1
s−1 + 1

ps

⌉
,

(ii) |Ej [n1, n2]| =
⌈ |[n1, n2] ∩G(rj , s)|

ps

⌉
if ps |mjMj , and

(iii) if both ps |mj and ps |Mj , then |Aj [n1, n2]| = |Ej [n1, n2]| exactly if
Aj [n1, n2] = Ej [n1, n2].
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P r o o f. (i) Write mj = rj + lQs−1 and Mj = rj + LQs−1. Then clearly

(4.7) Mj = mj + (L− l)Qs−1

and

(4.8) L− l = psx+ y, 0 ≤ y < ps .

Also by the definitions of mj and Mj ,

(4.9) |[n1, n2] ∩G(rj , s)| = (L− l) + 1

and therefore the equality in (i) holds.
For two elements a1 and a2 of Aj [n1, n2] ⊂ Ns clearly (a1, a2) ≥ ps and

by the definition (4.4) we know that a1 = rj + l1Qs−1, a2 = rj + l2Qs−1.
Since (a1, a2) | (a1 − a2) and ((a1, a2), Qs−1) = 1 we also have (a1, a2) |

(l1 − l2) and hence

(4.10) |l1 − l2| ≥ ps .
This gives (i) by (4.7) and (4.8).

Actually, we can also write

(4.11) |Aj [n1, n2]| ≤
⌈
L− l + 1

ps

⌉
=
⌈
psx+ y + 1

ps

⌉
= x+ 1 .

(ii) As ps |mj (or ps |Mj), by (4.7) and (4.8) we have

Ej [n1, n2] = {mj ,mj + psQs−1, . . . ,mj + psxQs−1}
(or Ej [n1, n2] = {mj + yQs−1, . . . ,mj + (psx + y)Qs−1}. In any case
|Ej [n1, n2]| = x+ 1 and we complete the proof with (4.11).

(iii) Since ps |mj and ps |Mj , (ii) applies and yields, together with (i),

|Ej [n1, n2]| =
⌈

(Mj −mj)Q−1
s−1 + 1

ps

⌉
=

(Mj −mj)Q−1
s−1

ps
+ 1 .

Furthermore, we know that

Aj [n1, n2] = {a1, a1 + l1Qs−1, a2 + l2Qs−1, . . . , a1 + l|Aj |−1Qs−1} ,
where a1 ≥ m1 and a1 + l|Aj |−1Qs−1 ≤Mj .

If now |Ej [n1, n2]| = |Aj [n1, n2]|, then by (4.10) necessarily Ej [n1, n2] =
Aj [n1, n2].

Proposition 2. For all s, n ∈ N,

|E(n, s)| ≥ f(n, s)−Rs−1 .

P r o o f. Let A ⊂ Ns(n) satisfy |A| = f(n, s).
Specify Lemma 2 to the case [n1, n2] = [1, n] and recall (4.6). By (i) of

the lemma,

|Aj [1, n]| ≤
⌈ |[1, n] ∩G(rj , s)|

ps

⌉
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and

(4.12) |A| =
Rs−1∑

j=1

|Aj [1, n]| ≤
Rs−1∑

j=1

⌈ |[1, n] ∩G(rj , s)|
ps

⌉
.

On the other hand, since (ps, Qs−1) = 1, for all r ∈ Ns and all l ∈ N one of
the integers r + lQs−1, r + (l + 1)Qs−1, . . . , r + (l + ps − 1)Qs−1 is divisible
by ps. Therefore by the definition (4.5),

|Ej [1, n]| ≥
⌊ |[1, n] ∩G(rj , s)|

ps

⌋
,(4.13)

|E(n, s)| =
Rs−1∑

j=1

|Ej [1, n]| ≥
Rs−1∑

j=1

⌊
[1, n] ∩G(rj , s)

ps

⌋
.(4.14)

The result follows from (4.12) and (4.14).

P r o o f o f T h e o r e m 2. We try to show that for large n,

(4.15) |Aj [1, n]| ≤ |Ej [1, n]| for j = 1, . . . , Rs−1 .

The condition on n arises naturally this way. A is assumed to be optimal,
that is, |A| = f(n, 1, s). We make here a space saving convention

(4.16) Aj = Aj [1, n], Ej = Ej [1, n] .

Two cases are distinguished.

C a s e 1. Aj ∩ Ej 6= ∅. Let r be any element of Aj ∩ Ej . We partition
Aj into A1

j = [1, r] ∩Aj and A2
j = [r + psQs−1, n] ∩Aj . Indeed,

(4.17) Aj = A1
j

.∪ A2
j ,

because r+lQs−1 ∈ Aj for 0 < l < ps would imply that for some ps′ (s′ ≥ s),
ps′ | r and ps′ | r + lQs−1, which is impossible since ps′ - lQs−1.

The same argument applies to Ej . We can thus also write

(4.18) Ej = E1
j ∪ E2

j , E1
j = [1, r] ∩ Ej , E2

j = [r + psQs−1, n] ∩ Ej .
Since r ∈ Ej , we have ps | r and ps | (r + psQs−1).

Now, by Lemma 2, |A1
j | ≤ |E1

j | and |A2
j | ≤ |E2

j | and therefore |Aj | =
|A1
j |+ |A2

j | ≤ |E1
j |+ |E2

j | = |Ej |.
C a s e 2. Aj ∩ Ej = ∅. This means that no member of Aj has ps as a

factor. Write

Aj = {rj + l1Qs−1, rj + l2Qs−1, . . . , rj + l|Aj |Qs−1}
with 0 ≤ l1 < l2 < . . . < l|Aj |. By the assumption on Aj in this case, for some
s′ ≥ s+1, ps′ | rj + lkQs−1 and ps′ | rj + lk+1Qs−1 and hence ps′ | (lk+1− lk).
This implies

(4.19) lk+1 − lk ≥ ps+1 for k = 1, . . . , |Aj | − 1
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and therefore

(4.20) |Aj | ≤
⌈ |[1, n] ∩G(rj , s)|

ps+1

⌉
.

Now we write [1, n] ∩ G(rj , s) = {rj , rj + Qs−1, . . . , rj + (z − 1)Qs−1} and
conclude from (4.20) that

(4.21) |Aj | ≤
⌈

z

ps+1

⌉
.

On the other hand, by (4.13) we have

|Ej | ≥
⌊
z

ps

⌋
.

The inequality bz/psc ≥ dz/ps+1e would be insured if z/ps and z/ps+1 are
separated by an integer. Sufficient for this is

(4.22)
z

ps
− z

ps+1
≥ 1

or (equivalently)

(4.23) z ≥ psps+1

ps+1 − ps .

By the definition of z,

(4.24) (z − 1)Qs−1 < n < zQs−1

and hence z > n/Qs−1. Requiring n ≥ psps+1
ps+1−psQs−1 guarantees (4.23).

For these n, |Ej | ≥ |Aj | in both cases and hence |A| ≤ |E(n, 1, s)|.
Finally, we show uniqueness. For this we consider [1, n]∩G(rj , s), which

contains ps. By Lemma 2(ii) one has |Ej | = dz/pse. Now, if Aj ∩ Ej = ∅,
then |Aj | ≤ dz/ps+1e and for z ≥ psps+1/(ps+1 − ps) one has |Ej | > |Aj |.

On the other hand, if Aj ∩ Ej 6= ∅ and if ps ∈ Aj , then all members of
A must have ps as a factor and so A ⊂ E(n, s). We are left with the case
ps 6∈ Aj and r ∈ Aj ∩ Ej for some r 6= ps. Here we consider the partitions
Aj = A1

j ∪A2
j and Ej = E1

j ∪ E2
j , which are described in (4.17) and (4.18).

Now by Lemma 2(i), (ii) one has

|A1
j | ≤ |E1

j | and |A2
j | ≤ |E2

j | .
However, since ps 6∈ Aj , by Lemma 2(iii) we have |A1

j | < |E1
j |. In any case

an optimal A has to equal E(n, 1, s).

R e m a r k 3. Actually, we proved a more general result. Replacing [1, n]
by [n1, n2] the maximal cardinality of sets A ⊂ Ns∩[n1, n2] without coprimes
is assumed by E[n1, n2], if n2 − n1 is sufficiently large.
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5. The examples. We now present the three examples mentioned in
Section 2.

1. We first prove Proposition 1. The set proposed by Erdős is

E(n, t+ 3, 1) =
{
u ∈ N1(n) :

(
u,

t+3∏

i=1

pi

)
> 1
}
.

As a competitor we suggest An(t+ 3) = B ∪ C, where

B =
{
u ∈ N1(n) :

(
u,
t−1∏

i=1

pi

)
> 1
}

and

(5.1) C = {pt+ipt+j : 0 ≤ i < j ≤ 8} .
Notice that by (H), C ⊂ N1(n) for n ∈ In, that B ∩ C = ∅, and that
|C| = (92

)
= 36. Therefore

(5.2) |An(t+ 3)| = |B|+ 36 .

Furthermore, no k + 1 = t+ 4 numbers of An(t+ 3) are coprimes, because
we can take in B at most t− 1 and in C at most 4 pairwise relatively prime
integers.

For comparison we write E(n, t+3, 1) in the form E(n, t+3, 1) = B
.∪ D,

where

D = {pt, pt+1, pt+2, pt+3} ∪ {p2
t , p

2
t+1, p

2
t+2, p

2
t+3}

∪{pt+ipt+j : 0 ≤ i ≤ 3, 1 ≤ j ≤ 8, i < j} .
Notice that by (H), for n ∈ In, p3

t (and a fortiori p3
t+1, . . .) exceeds n and so

does ptpt+9 (and a fortiori pt+1pt+9 . . .).
Since |D| = 4 + 4 + 8 + 7 + 6 + 5 = 34 we conclude with (5.2) that

|An(t+ 3)| − |E(n, t+ 3, 1)| = |B|+ 36− (|B|+ 34) = 2 > 0 .

The hypothesis (H) remains to be verified. It is perhaps interesting to
know that among the prime numbers less than 5000 there is only one t which
satisfies (H), namely t = 209. The relevant primes pt, . . . , pt+9 are

p209 p210 p211 p212 p213 p214 p215 p216 p217 p218

1289 1291 1297 1301 1303 1307 1319 1321 1327 1361

We calculate (in our heads of course) that

p209 · p218 = 1289 · 1361 = 1754329 > p216 · p217 = 1321 · 1327 = 1752967

and that

p2
209 = 12892 > 1361 = p218 .
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Hence for k = 212 and for all n with p209 · p218 = 1754329 > n ≥
1752967 = p216 ·p217 one has f(n, k, 1) ≥ |E(n, k, 1)|+2. Curiously, p209 ·p218

−p216 ·p217 = 1362 = p218 +1. Also, if p209 were smaller by 2 these 4 primes
would not suffice for the construction.

2. Notice that in the previous notation, by (5.1), C ∩ N∗ = C and that
|D ∩ N∗| = |D| − 4. Since |C| − |D| = 2, we conclude that

|An(t+ 3) ∩ N∗| − |E∗(n, t+ 3, 1)|
= |(B ∩ N∗) .∪ C| − |(B ∩ N∗) .∪ (D ∩ N∗)| = 6 > 0 .

3. Choose s = 25 and consider p25 = 101, p26 = 103, p27 = 107, p28 =
109, p29 = 113, p30 = 127. Verify that 109 · 113 < 101 · 127 and choose
n ∈ [109 · 113, 101 · 127). For these parameters

E∗(n, 2, 25) = {101 ·m : m ∈ N} ∪ {103 ·m : m ∈ N}

∩
{
u ∈ N∗1(n) :

(
u,

24∏

i=1

pi

)
= 1
}

= {101; 101 · 103, 101 · 107, 101 · 109, 101 · 113}
∪ {103; 103 · 107, 103 · 109, 103 · 113}

and |E∗(n, 25)| = 9.
As a competitor we choose

A∗n(2, 25) = {p25+ip25+j : 0 ≤ i < j ≤ 4} .
Its largest element 109 · 113 does not exceed n and since only 5 primes are
involved as factors, no 3 products with 2 factors can be relatively prime.
However,

|A∗n(2, 25)| =
(

5
2

)
= 10 > 9 .

6. Proof of Theorem 3. Let us define now

(6.1) QP ′ =
∏

p∈P′
p

and replace Qs−1 by QP ′ in the earlier definitions. Thus we replace G(r, s)
by G(r,P′) = {u ∈ N : u ≡ r mod QP ′} ∩ NP ′ in Section 4 and establish the
generalizations of Lemmas 1, 2 and also of Theorem 2.

Just keep in mind that P′ takes the role of {p1, . . . , ps−1}, q1 takes the
role of ps, and q2 takes the role of ps+1.

Thus the sufficient condition n ≥ psps+1
ps+1−psQs−1 is to be replaced by

(6.2) n ≥ q1q2

q2 − q1
QP ′ .



Extremal sets without coprimes 99

References

[1] R. Ahlswede and D. E. Daykin, An inequality for the weights of two families of
sets, their unions and intersections, Z. Wahrsch. Verw. Gebiete 43 (1978), 183–185.

[2] —, —, The number of values of combinatorial functions, Bull. London Math. Soc.
11 (1979), 49–51.

[3] —, —, Inequalities for a pair of maps S × S → S with S a finite set , Math. Z. 165
(1979), 267–289.

[4] B. Bol lob á s, Combinatorics, Cambridge University Press, 1986.
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