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ABSTRACT. An overview on some vecent vesults concerning perturbations of
ergenvalues of matrices is given.

1. It is well known that the eigenvalues of a matrix depend con-
tinuously on the entries of the matrix. For numerical considerations
more quantitative statements are required. There are quite a few of
them available in the literature, we refer to the books of Householder [13]
and Marcus-Minc [14].

In this overview we restrict our attention to some aspects of this
topic and present recent results on

— comparisons between certain measures of the distance between
spectra

— global bounds for perturbations of spectra

— inclusion theorems for the generalized eigenvalue problem.

2. Let A, B, (, ... denote complex nxXn matrices.
For A, B with spectra 6 (A) = {}, ..., An} and 6 (B) = {uy, ..., tn}
we define as
Sa (B) = max min |} —- p; |
i j
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the spectral variation of B with respect to A and

v (A, B) = min max | 4 — prq |
kg i

the eigenvalue variation of A and B. Here = runs through all permu-
tations of {1, ..., n}.
Besides this the following functions turn out to be useful

hy (B) =max {Sy tA+ (1—t)B): 0<t <1}
g (A, B) — max {hy (B), hp (A)}.

While v (A, B) is the most natural measure of the distance between
the spectra the other concepts are introduced because they can be
bounded easily and can be related to v (A, B).

We observe that the Hausdorff-distance between the sets o (A)
and o (B), i. e. max (S5 (B), Sg (A)) does not compare with v (A, B),
because for n > 2 it can be zero while v (A, B) = 0.

The following inequalities hold:

(21) v(A, B)<(2n—1)hy (B)

(22) v(A, B)<a,g (A, B) %Zthﬁﬁﬁi

We note that (2.1) is essentially due to Ostrowski, but the for-
mulation here has the advantage to be sharp, as can be seen from the
example A =diag (0,2, ..., 2n—2), B=(2n— 1) I, (I, = identity
matrix), hy (B) =1, v(A, B) =2n— 1. (see [6], [7]). The second ine-
quality seems to be new. It is proved in [7], using the marriage-theorem.
Also (2.2) is sharp.

This is shown by the examples A = diag (2,4, ..., 2k, 0, ..., 0),
B=2k+1)IL,—A n=2k+1 or n=2k where hy (B) =hp (A) =
=g(A,B)=1 and v(A,B) =2k + 1=n in the case of n odd
and v(A,B) =2k —1=n —1 in the even case.

The importance of (2.1) and (2.2) lies in the fact that most bounds
for Sp (B) available in the literature are also bounds on hyu (B) and
g (A, B), hence provide bounds for v (A, B). While those obtained
by (2.1) are mostly in the literature (as (2.1) is «folklore»), the bounds
via (2.2) are new and improve the known results by a factor of about 1/2.
An example is given in the next chapter.
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3. Let us call a bound of Ss (B) or v (A, B) global if it depends
only on [JA]], || B{| and || A-B ||, where || || is some matrix-norm.

Historically the first (though not completely fitting into this defi-
nition) is Ostrowski’s result ([16])

(3.1) Sa(B) < (n+42) [max (Jay |, |by )1 (In 3] Jay;— by )
1,3

ij

where aj;, by are the elements of A and B respectively. Obviously the
righthand side is an upper bound for g (A, B), too. The same holds
for the bound given in [5]

(32) Sa(B) < (I +n72)ntm M IA — B

where [[A|lz= Y |aj [?is the Euclidean matrix norm and Mg =
i, k=1

=max (|| Allg, || Bllg). (3.2) is the version of [8], in [5] the leading

factor is slightly larger.

An analogous result for the spectral norm || ||, can be found in [4],
(see also [6]).

(33) Sa (B) <nlm (2My)'~1in [[A—BI", My=Max (|| Al ||Bl),

and in [10], S. Friedland showed that (3.3) holds for any operator norm.
The sharpest result, however, is the following ([9])

(3.4) Sa (B) < ([[A Tl + [ Bll=tm [[A — B}"
which implies
(35) g (A B) < (2M)'n [[ A — B "

Let us give a proof of (3.4):
If 5, < ... <o, are the singular values of A, we know that
f A — B ||y > o, for any singular B and o, = || A |J,, Hence

(36) |det Al—=oy.con<||A—Bl,llA "

and upon replacing in (3.6) A by A — ul, B by B— I, where p is
an eigenvalue of B, we get

fdet (A —p D) [<||A = Blly (] Al + [ Bllg™™
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and noting that (5S4 (B))* < |1 (Aj—w) | =|det (A—uI)| for some
eigenvalue p of B, (3.4) follows.

This proof is much shorter and simpler than the proofs in [6] and
has the additional advantage of being sharp. In fact, it is shown in [9],
that equality holds in (3.4) iff A = ¢ || A ||;- I and B has an eigenvalue
— e || Bl for some c¢eC,|e|=1. This is done there by giving a
slightly longer proof of (3.4) using the Hadamard-inequality for det
(A—pI) and exploiting the additional information in the case of equality.

A similar sharpness result holds for (3.5).

From (3.5) and (2.2) we infer

(37) v (L‘X, B) < an (2 i\/[z)l—l/n H A-—B H»?“/n‘

It has been conjectured by S. Friedland that the factor a, = n may
be replaced by 1 or at least a constant independent of n. This seems to
be quite a hard problem.

Let us end this chapter by drawing attention to another conjecture,
which was formulated by Mirsky 24 years ago:

If A, B both are normal then it is a consequence of the Bauer-Fike
theorem ([1]) that

gA B <[[A—Bl
Mirsky conjectured [15]
(3.8) v(A B <[[A—Bl

To my knowledge the best result in this direction is given in [3]
by Bhatia, Davis and Mc Intosh:

Jc independent of n such that
v(A,By<<c||A— Bll,

for all A, B normal. Bhatia and Davis have shown in [2], that (3.8)
holds for A, B both unitary.

4. In this chapter we want to report on some generalizations of
classical perturbation theorems to the case of the generalized eigen-
value problem [8]. We prefer to write it in the form

41) eBx=BAx

(«, B) % (0, 0) € C? is an eigenvalue of the matrix pair Z = (A, B) if
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there exists x # 0 s. t. (4.1) holds. We consider («, B) as a point in the
projective complex plane with the chordal metric

loed — By
Vie2+ 1812 Viy[E+ (82

42) e ((®B) (1.9) =

It is known that if the matrix pair Z = (A, B), which we view
as a nXx2n-complex matrix, is regular, ie.

(4.3) det (A — 2 B)=£0

then it has n eigenvalues (multiplicities counted in an appropriate way).
If W = (C, D) is a regular pair with eigenvalues (v;, 8;),i = 1, ..., n,
we may define the spectral variation of W wr.t. Z

Sz (W) = max min ¢ ((«), 8;), (v, 8y))
i

and as above analogously hy (W), g (Z, W), v (Z, W).

Having introduced distances between spectra we have to define dis-
tances of matrix pairs Z, W. It is not appropriate to use || Z — W || for
some matrix norm since, for T nonsingular, Z and TZ = (TA, TB) have
the same spectrum, hence the spectrum depends only on Ker (Z) c C2n
or on its orthogonal complement L; = {ZT x : xe C1}.

With

(4.4) P, =7ZH (ZZH)-1Z

the orthogonal projector onto Lz, we define the distances
(4.5) dy (Z, W) = || Pz — Pw ||,
(46) dp(Z, W) =1)2 | Pz — Pw |l

which are metrics on the Grassmann-manifolds G, 20 of the n-dimen-
sional subspaces of C2n,

We define a regular pair Z to be diagonalizable if there exists a
basis of eigenvectors of Z. This is equivalent to the statement that
there exist nonsingular S, T such that SAT and SBT are diagonal. Z is
called normal if in addition the eigenvectors can be chosen orthonormal
1. e. that there exist S nonsingular, T unitary such that SAT and SBT
are diagonal. It can be proved
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TuroreM 1. If Z = (A, B) is a diagonalizable pair, W regular
and SAT and SBT diagonal then

@47 Sz Wy < Tl [| T, dy (Z, W)
This should be compared to the Bauer-Fike theorem [1]:

Tueorem 1. If A is diagonalizable, T—' AT diagonal, then for
any nxn-matric C

(48 SA Q)< T [Tl A = Cll
The Hoffman-Wielandt theorem ([12]) is the following
TaeorREM 2'. For A, C normal with eigenvalues {A}, {u;}

(49) v (A, Q) <min { 3 [k — prgy BE<[A — C g

T ]
The generalized version is

TueoreM 2. Let Z, W be normal pairs with eigenvalues (u, 8;)
and (yj, 8;). Then

(4.10) v (Z, W) = min max ¢ (%, B1), (Y @), 3= )

K 1

<min [ 3 ¢* (o Bi), (vr ), Or )] < dgp (Z, W)
1

Denote the inverse function of x > x + x2+4 ... +-x2in Ry by g,
and define

[r d=0
(4.11) Sy (d, 1) =1 d (g @) dr>0
lO r=210

The departure from normality of a matrix A is defined by A (A) =
= {min || M ||, | M strictly upper triangular, A = U (A + M) UH, U uni-
tary, A diagonal}.

Then Henrici has shown ([11]):

TueoreEM 3. If A = A (A) then

(412) SA(C) <Sa (A [IA—Clly)
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Generalizing the departure from normality, it is possible to define
a function m (Z) such that m (Z) > 0 for all Z and m (Z) = 0 iff Z is
normal. Then we can prove

TreoREM 3. If Z, W are regular pairs then

(4.18) Sz (W) <<Sp(m (%), (1 + m (7)) dy (Z, W)).

In the case that Z is normal Theorems 1 and 3 both reduce to
(4.14) Sz (W) < d, (Z, W).

We remark that the classical results (Theorems 1’, 2', 3') are not
special cases of the general results. However they can be obtained via
a limiting argument:

For given A, C consider the regular pairs Z¢ = (I, ¢ A), W, = (I, £ C).
Applying Theorems 1, 2, 3 to Z., W and letting ¢ — 0 results in Theo-
rems 1°, 2, 3. This «derivation»-procedure was used previously by
Stewart.

Finally let us mention some results on definite pairs.

Here a pair Z = (A, B) is called a definite pair, if A, B both are
hermitian and

(415) c{Z) =min {{xT (A +iB) x|, xHx =1} > 0.

It is well known that definite pairs are diagonalizable.
The following result holds

THEOREM 4. If Z is a definite pair and W is regular then

(4.16) Sz( )<HZH2( (Z))71 dg (7, W)
W)y < @) Z— Wl

For the case of W definite Stewart obtained a similar result for
v(Z, W), ((17], Thm. 3.2). While Theorems 1, 2, 3 and the first ine-
quality of Theorem 4 are proved in [8], the second inequality of Theo-
rem 4 can be found in [19]. For {arther results sce the overview by
Sun [18].
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