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Abstract: In this paper, we present an algorithm to compute the distance to uncontrollability. The problem of computing the 
distance is an optimization problem of minimizing or(x, y) over the complete plane. This new approach is based on finding zero 
points of grad ~r(x, y). We obtain the explicit expression of the derivative matrix of grad ~(x ,  y). The Newton's method and the 
bisection method are applied to approach these zero points. Numerical results show that these methods work well. 
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I. Introduction 

One of the fundamental concepts in linear control theory is that of controllability. A pair (A, B) of 
matrices A ~ R n×n, B ~ R nxm is controllable if in the system 

=lax + Bu, (1.1) 

for any initial state x 0, final state x~ and any t~ > 0, there is a continuous function u(t) such that the 
solution of (1.1) with x(0) = x  0 satisfies x(t l) =x r It is well known that (A, B) is controllable iff 

rank([ A - sI, B ]) = n, Vs ~ C. (1.2) 

In [9], Paige defined the 'distance to uncontrollability' as the spectral norm distance of the pair (A, B) 
from the set of all uncontrollable pairs: 

d ( A ,  B) = min{ II[E, F ]  II: (A  + E, B + F )  uncontrollable}, (1.3) 

where II II denotes the spectral norm, and [E, F] is the n × (n + m) matrix formed by the columns of E 
followed by those of F. It was pointed out by Eising [5,6] that d(A, B) admits the following description 

d ( A ,  B) = min o-~([A - s I ,  B])  = min o-(s),  (1.4) 
s~C s~C 

where ~r,(G) denotes the n-th singular value of a n x (n + m) matrix G. It is clear that the problem of 
finding the distance to uncontrollability is the problem of minimizing or(s) over the complex plane. 

Another  characterization of d(A, B) is given by 

d ( A ,  B ) =  m i n { I J q " [ A - q H A q I ,  B] II:HQII = 1), (1.5) 

where II II is the Euclidean vector norm [5,12]. There are several algorithms in the literature for 
calculating d(A, B). They are based on the minimization of o-(s). Their  main drawback is that they need 
a good starting point to converge [2,4,5,12]. Here we propose to use Newton's method with damping. 
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This method is known to show convergence also for not so good starting values, a behaviour observed in 
our examples too. 

We are able to use this method, because we can explicitly calculate the first and the second partial 
derivatives of o-(x, y) = o-(x + iT) = o-(s) using the singular value decomposition (SVD) of [A - sI, B]. 
Let 

[ A - sI, B] = UXV u (1.6) 

be the SVD, where X is the n × (m + n) diagonal matrix with diagonal elements a I >/o-2 >/ " ' " >i o-~ >/0, 
and U and V are the n × n resp. (m + n) × (m + n) unitary matrices, the columns of which are the left 
resp. right normalized singular vectors of [ A - s I ,  B]. If o-,, is a simple singular value then the 
normalized left singular vector u,(s) (the n-th column of U), and the normalized right vector ~,,(s) (the 
n-th column of V) are uniquely determined by (1.6) up to a common factor and so 

f (  s) = c',( s)(  U~(oS) ) (1.7) 

is well defined. This function plays an important role, it is shown that 

0o-(x + iT) 0o-(x + iT) 
- - R e  f ( x  + iT),  Im f ( x  + iT), (1.8) 

Ox Oy 

and hence the zero points of f ( s )  are the critical points of the function o-(s). In addition, we have 

o-( s) f (  s) = u". ( s)( A - s I ) u . ( s ) ,  

as [A - sl, B]Hu,(s) = o-(s)L,,(s). This shows that the critical points satisfy s = u~t(s)Au,(s), and hence 
lie in the field of values of A. 

The paper  is organised as follows. In Section 2 we study the function ~r(x, y ) =  o-(x + iT). It is 
analytic as a function of the real parameters  x and y for all but a finite number  of points. We calculate 
the first and second derivatives of or(x, y) using an SVD. Here  we treat a slightly more general case. In 
Section 3, the connection between zeros of f ( s )  and local minima of o-(x, y) is studied. Two criteria, one 
analytic and one in matrix terms, are given which guarantee a critical point of o-(x, y) to be a local 
minimum. In Section 4 several possibilities of using Newton's method are outlined. They are the cases of 
real or complex parameters  s. Numerical results and some discussions concerning the case of multiple 
singular values are given in Section 5 and 6 respectively. 

2. The explicit expressions of the first and second derivatives of o-(x, y) 

In this section, the main results are the explicit expressions of the first and second derivatives of 
o'(x, y) given in (2.10) and (2.11). Let us consider a more general case of a complex matrix G(s) = G1 + 
sG  2 with a real parameter  s. It is well known that a singular value of G(s) is analytic if it is simple [13]. 
In the following theorem, we give explicit expressions of its first and second derivatives. More general 
results can be found in [10,11]. 

Theorem 1. Let G( s ) = G 1 + s G  2 be an n × p complex matrix ( n <_ p ) with a real parameter s, and 
G(s) = U(s)X(s)V(s) H be the SVD of G(s) with the last singular value o-n(s) = ~r(s) being simple, then 

do- 
6"= d--s = Re (u~( s )GHun( s ) )  (2.1) 
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and 

d2or 

(d s )  2 
- R e ( v H G H u , , ( S )  + vH(s )GHU ds )  

( '  ) + Re trn(s) I m ( v # ( s ) G ~ u n ( s ) ) v ~ ( s ) G H u , ( s )  , 

where Uds and Vds are given in (2.3) and (2.4). 

(2.2) 

Before proving Theorem 1, we will prove Lemma 2, which gives formulas for tin(s) and bn(s) in terms 
of the uj(s),  v~(s) and h , ( s )  = uH(s)tin(S), h,,(s) = vH(s)bn(S). 

l_emma 2. Under the assumptions o f  Theorem 1, the derivatives o f  Un(S) and vn(s) satisfy 

an(s) =Uds+h.(s)Un(S), 
g'.( s)  = Vds + h,.( s ) v . (  s ) ,  

where Uos = -)ZT-l lay(s)uy(s)  and 

with 

n - I  

Vds = - E & ( s ) v j ( s )  + - -  

j=l 

1 P 

 o(s) E (v"(s)G"(S)Un(S))V,(S) 
j = n + l  

,~j( s )  = 

&(s) = 

o-,,( s)u~( s)O( s)v.( s) + O'j( S)V~'( S)O"( S)Un( S) 
m2(s) -~#(s) 

m(S)U~(S)O(S)Vn(S) +~.(s)vy(s)O"(s)u.(s) 
m~(s) -~#(s)  

and h,,(s) = u~(s) t in(s) ,  h , ( s )  = v~(s)bn(s) .  The last two functions satisfy 

Re h , ( s )  = 0, Re h , ( s )  = O, 

i 
h . ( s )  + h , . ( s )  - crn(s) l m ( v ~ ( s ) G H ( s ) u . ( s ) ) .  

(2.3) 

(2.4) 

(2.5) 

R e m a r k .  Observe that h .  and h,  contain the derivatives too. 

Proof  and Lemma 2. In the following proof, we omit the parameter  s. So keep in mind that all the 
mentioned vectors and matrices are functions of s. According to the SVD of G, we have 

G G H u .  = tr2un. 

It is well-known that the eigenvalues and the eigenvectors of G G  H are analytic with respect to the real 
parameter  s if the eigenvalues are simple [13]. So the derivative of u n satisfies 

( G G  n - o - 2 I ) a , ,  = _ C G n u n  - G C n u n  + 20"n6"nU n. 

Thus from G = U,~ V H, 

( 2~2~ lq - o -2 I )Unun  = -o-nU"Crv" - ~,VrI(~Hu.  + 20"n6"ne n , 
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i.e. the first n - 1 equat ions in 

~ r2 -  ~r 2 

~,,~ , - C  ) ( )  --ornU ! G t n  - - o ' t u  I G u,, 

U Ht~,, = 
H " , ,I t  "H -o',,u,~_ lGc ,, - o',,_ ¢,,_ lG u,, 

0 0 

The last equat ion is just u,n'u~ = h , .  Solving for u n a ~  gives (2.3) and similarly (2.4) is obtained by 
applying the same kind of analysis of GHGu, = cr2t',,. Now we consider the propert ies  of  h,  and h, .  
Note  that unnu, = 1, so u,nu~" + f i~u ,  = 0, i.e. Re h,  = 0 and Re h,, = 0. Formula  (2.5) follows from the 
observation that ~, = u f fGn u ,  and 

6-,; = t:~GUu,, + ~r~(h. + h,.) .  (2.6) 

As 6-,, is real, and h,  + h; is purely imaginary, we have 

i 
h ,  + h , -  Im(u, ,HGHu,) .  [] (2.7) 

O',, 

P roof  of Theorem 1. From Lemma 2, it is easy to prove the conclusions of Theorem 1. As a direct 
consequence of (2.6), we obtain (2.1) as (~ = G 2. Now we different iate  (2.1). Replacing t~ and t:,. by (2.3) 
(2.4), we see that the unknown terms h,  and h,  appear  only in the form h ,  + h ,  and can be replaced by 
(2.7). Thus we get (2.2). [] 

Let  us come back to our  original problem. We consider first the real case G ( x ) =  [A - x l ,  B] and 
~r,(x), u,,(x) and v , (x )  are all real. It is easy to see from Lemma 2 that both h , ( x )  and h,.(x) vanish. In 
view of 0 ( x ) =  - [ I ,  0], Theo rem 1 gives now Corollary 3. 

Corollary 3. Let x be a real parameter and [A - x l ,  B] = U ( x ) X ( x ) V T ( x )  be the SVD of [A - x l ,  B] 
with ~r,,(x) = or(x) being simple and f ( x )  = u f ( x )  (g,,(x)), then the first and second derit'atives of  ~r(x) are 
giuen by 

dcr 
- f ( x )  (2.8) 

dx  

and 

1 + )) 
Here 

where 

n - 1  n - 1  

a,,(x) = E ~ ( x l u ~ ( x ) ,  ~,,(x) = E t~Ax)v~(x) 
j = l  j = l  

~i(X) = 

~T ~ Un(X) 

~2(x) - C ( x )  

(2.9) 

ln+n( ( )) 
L,iF(x) uo(s) ~ (x ) ,  

~rn(X) i=  1 0 

~i(x) = ~2(x) - ~ ( x )  
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Now we consider the case of the complex parameter s =x + iy. Note that G(x, y)=  [ A -  (x + 
iy)I ,  B], OG(x, y)/0x = - [ I ,  0] and aG(x, y ) / a y  = - i [ I ,  0]. Substituting these two partial derivatives 
to G2 in (2.1) and (2.2), Theorem 1 gives the formulas of the partial derivatives of 0-(x, y). 

Corollary 4. Let [A - (x + iy) l ,  B] = U(x, y )~ (x ,  y)V(x, y)H be the SVD of [A - (x + iy)I ,  B] with 
0-,(x, y)---0-(x, y) being simple and f ( x ,  y ) = f ( s )  is defined in (1.7), then we have 

00- ~0- 
- R e  f ,  - -  = - I m  f ,  ( 2 . 1 0 )  

0x 0y 

020 - af 820- Of 020- Of 
- -  - R e - - ,  R e  , - - I m - - .  ( 2 . 1 1 )  
ax 2 ax Oxay Oy ay 2 Oy 

Here 

of =vyx(u° v"(u°~ i 
ax ~ 0 ) +  ~ \  0 ) + ~ 7  (Im f ) f '  (2.12) 

where Ud, and VdX are given in (2.14) and (2.15). 

Of-vnfun)ay- dy, 0 +v~ ' (u  )~u y - ~ i  ( R e f ) f .  (2.13) 

where udy and Vdy are given in (2.16) and (2.17). 
n--I 

Udx = Y'. axjU i, (2.14) 
j = l  

n 1 1 n~m (UH(On))  
Vdx = E [ ~ x j V j - -  Uj, (2.15) 

j = l  0-n j = n + l  

where 

0-o[u,", 0]vo + ~,v, ~ 0 ) v° 0-or, 10 ) 
a x~ = ~ 2  < 2  , 3x~ = _ o ~ 2  _ 0 - 2  

n--1 

Udy = i ~ % s u  i ,  (2.16) 
j = l  

where 

i 5 ((non)) Vay = i E 3yjVj + - -  v H v i, (2.17) 
j = l  0-n j = n + l  

01v. 
'~y~ = ~ 2  _ 0-2 , & j  = o)2 _ , ~  

3.  T h e  l o c a l  m i n i m u m  o f  w ( x ,  y )  

From the nice relation between grad 0-(x, y) and f ( x ,  y) (2.10), we conclude the following result. 
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Theorem 5. s* = x *  + i y *  is a zero point o f f ( s )  defined in (1.7) iff (x* ,  y*)  is a critical point of  
~(x ,  y) = 0.,[A - (x  + iy)I ,  B]. 

From this theorem, the computation of d(A,  B) is equivalent to find the zero points of f ( x ,  y), in 
which - ( R e  f ( x ,  y), Im f ( x ,  y))T will be the gradient of 0.(x, y). The critical points of 0.(x, y) are 
divided into three groups, local minima, local maxima and saddle points. 

Let f ( s * )  = 0, s* = x *  + iy*.  The following is well known. 
(a) If (a20"/~JX2)(O20./~Jy 2) -- ( 0 2 0 . / a x a y )  2 > 0 and a 2 0 . / a x  2 < 0,  then (x* ,  y*)  is a local maximum of 

o'(x, y). 
(b) If (a20./ax2)(O20-/Oy 2) -(O20./OxOy)2> 0 and ~20./~x2> 0, then (x*,  y* )  is a local minimum of 

0.(x, y). 
(C) If (820./sxe)(~20./Sy2) - (ae0./~xOy) 2 < O, then (x*,  y*)  is a saddle point of 0.(x, y). 
Using the results of Corollary 4, we can now decide to which group the critical points s* belongs. We 

can also give a sufficient condition of (x*,  y*)  being a local minimum of 0.(x, y) in matrix theoretic 
terms. 

Theorem 6. l f s *  = x *  + iy* is a zero point o f f ( s ) ,  u,* = u,,(x*, y 

0.,e 1[ A - s * l ,  B ]  _0. ,2[  A - s * l ,  B] > 411 u,,*H( A -- s, i)  II =, 
then ( x *, y * ) is a local minimum of  0.( x, y). 

*) and 

(3.1) 

Proof. Let s = x  + iy = s *  + 6 be a point near to s* and q = un(x, y) be the n-th left singular vector of 
[A - s l ,  B] corresponding to 0.,(x, y). Then we have 

IIqH[A -q r tAq l ,  B] ]l 2 

= q " [  A - s* l ,  B][ A - s*I ,  B I " q  

+ qH([A -- qHAql, B ] [ A  - qHAqI, B] - [A - s ' I ,  B ] [ A  - s* l ,  BIH)q 

= q H [ A - s * I , B ] [ A - s * I , B ] H q  - Iqu(  A - s * l ) q l  2. 

H. , * + b h  with h u,, 0, Ilhll 1, lal  2 2 Write q = au,, = = + I bl = 1. Thus according to perturbation theory 
for eigenvectors using the simplicity of ~r,, one has I b t = 0(6) .  Note that 

qH[ A -- s*l ,  B][ A - s * l ,  B]Hq = la12%ff + I b lZhtt[ A - s* l ,  B][ A - s* l ,  B]Hh 

=0"2+ ] b l 2 ( h H [ A - s * l ,  B ] [ A - s * I ,  B ] h - <  2) 

and 

Thus 

] q H ( A - - s * l ) q l 2 = l b a h H ( A  -- s * l)u,,+abu,*,H(A* - s*/)h 12 + 0(6 3) 

[2 Re abu,,"(A s*l)hl'- = -- , __ Jr- 0 ( 6 3 ) .  

[[qH[A --qHAql, B] t l 2 - 0 . ~ ( x  *, y* )  

. . . . . .  [b[Z(hH[A s * I , B ] [ A  s * l , B ] U h  o "2) [ 2 R e ~ b u * H ( A  s * l ) h [  2 + O ( 6  3 ) 

2 2 n , a  - - S * I ) H 2 +  O ( 6 3 )  >_ ]b] ( 0 . n - 1 - - 0 - *  2 )  - 4 ] a ] 2 ] b 1 2 ] ]  u* t l (  " 

2 ) "~ = Ibl ( 0 . ; _ , - , v - 4Hu* ' ( A- s** ) l l 2 )  +o(a3) .  
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According to the condition of (3.1), I[ q"[A - qHAqI, B] [[ 2 >_ o-~(x*, y*)  is always true. Since 

cr~[A - ( x  + i y ) I ,  B] = [[qH[A - ( x  + i y ) I ,  B] [[ >_ [[qH[A-qr~AqI,  B] [[, 

%(x, y) >_ %(x*,  y *). Thus (x*, y*)  is a local minimum of cry(x, y). [] 

Since 

I l u n  - = - 

we get at once the following sufficient condition. 

Corollary 7. If  s* = x *  + iy* satisfies f ( s*)  = 0 and 

%_1[ A - s*I, B] > ~/5%[ A - s*I, B], (3.2) 

then ( x*, y*) is a local minimum point of o'( x, y ). 

4. Newton's algorithm 

Because we have obtained the first and second partial derivatives of o-(x, y)  in terms of the SVD of 
[A - sI, B] when (r(x, y) is simple, Newton's method can be applied to compute the minimum points of 
(r(x, y). Generally speaking, the local minima of or(x, y) happen when they are simple. More details are 
discussed in Section 6. As • * H , . . ,  "n ~,u, = S*, all minimum points s* = x *  + iy* lie in the field of values of 
A, and hence 

}kmin T _<X* _<,~ . . . .  ~min 2------i--- --<Y* -~<~max 2i " (4 .1)  

Here brain(A) and Amax(A) denote the minimal and the maximal eigenvalue of A. Since %[A - s * I ,  B] 
= (r,[A - g * I ,  B], the search for minimum points can be restricted to 

[A  - A  T ) 
0 ~ y *  _~<Amax~ T . 

Theorem 5 also suggests a method to compute d(A,  B). We need only to find all zeros of f(s) ,  which 
are the critical points of ~r(s). Especially in the case of f (s)  being a real function of a real parameter s in 
order to compute the following dr(A, B), the bisection method can be used to find all zeros of f (x) .  We 
ought to say that Theorem 6 and Corollary 7 and the criterions of the second partial derivatives give only 
sufficient conditions to determine which zeros of f (s)  are local minima of or(s). 

4.1. Real case 

We first consider the problem of computing 

dr(A,  B) = min %[A - s I ,  B]. 
s~R 

So f (s)  will be real. Since s* = u~(s*)Au~(s*), s* is in the interval 

Ir = '~ min 2 ' ~ max T " (4.2) 
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Also since u V , , ( s ) A u . ( s ) - s  = o".(s)f(s),  we have 

[ A + A " ~  ( A + A  r ) _ 2 _ _  " 
f ( s ) > 0  f o r S < h m i n [ ~ - - ) ,  f ( s )  < 0  f o r S > h m a  x 

The following Newton method is suggested to compute the minimum points of o-(s) = o-,(s). 

(4.3) 

Newton ' s  a l g o r i t h m  (real case). Choose s 0 ~ 1,. For k = 1, 2 . . . . .  

f (Sk)  
Sk + I Sk 

= - O h f ( s k )  

where O h is such that o"(Sk+ I) < O-(Sk). 

In our examples a choice O k =~ 1 is only neccessary at the beginning steps of the Newton algorithm. 
After having a good approximation of a local minimum point, we can take O h = 1 and hence have the 
usual Newton algorithm. Also the following bisection method can be used to find the zeros of f ( s ) .  

Bisec t ion  m e t h o d .  (a) Find an interval [a, b] such that f ( a )  * f ( b )  < O. 
1 (b) Let c = 2(a + b), if f ( c )  * f ( b )  < 0 then a = c and go back (b) and if f ( a )  * f ( c )  < 0 then b = c 

and go back (b). The step (b) is repeated until c is an acceptable zero point of f ( s ) .  

4.2. Complex case 

In order to compute d ( A ,  B ) =  min,.~ co"n([A - s l ,  B]), we have the following Newton algorithm for 
complex s. 

Newton's algorithm (complex case). Choose ("") For k = 1, 2, Yll . . . .  ' 

(xk+,)=(.) 1 Y k + ,  Yk - -Ok~Pk2 ' 

where 

Pk2 

~x 

l m - -  
Ox 

and O h such that 

Re ~f 
Oy 

~y 

o"(Xk- -  OkPk, '  Yk - -  OkPk2) = 

- ' / R e [  f ( x ,  y) 

lm f ( x ,  y )  

rain o"( Xk -- OPk,, Yk -- OPk2)" 
I_<0_<1 

Computing the minimum of cr(x k - Opkl, Yk -- OPk2) in [-- 1, 1] is as easy as that of o"(x) for real x. 
Let u,,(O), l',,(0) be the left, right singular vectors of [A - ( x  k - O P k ,  + Y k i -  OPk2i)I, B] corresponding 
to o"(x k - OPkl, Yk -- OPkz), then f (O) = t',H, (O)(i'/'~°)) is well defined. We introduce 

d o  

g( O) = ~ (  x k - OPk,, Yk -- OPk2), 

then g(O) has the following expression by (2.10), 

g(O) =Pk,  Re f (O)  +Pk2 Im f ( O ) .  
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As a direct consequence of Theorem 1, g(0) is given by 

~,(0) =Pkl Re f(O) +Pk2 Im f(O). 

All together we have the following algorithm to calculate Ok: 

Newton Algorithm to compute O k. (a) Initial value 0 0 = 1. 
(b) Run the following Newton method for j = 1, 2 . . . .  : 

g ( o r )  
o j +  l = or - "or ( o j )  ' 

where r/r is chosen such that O'(X k --Or+lPkl , Y k -  Oj+lPk2) < O ' ( X k -  OjPkl, Y k -  OrPk2)" 

Also the bisection method can be used to find the zeros of g(O). Numerical results suggest that this 
Newton's  method with the paramete r  O k enjoys the property of global convergence. Moreover one needs 
only to compute two or three 0k's to get a good initial point for the Newton method. It means that after 
two or three steps 0 k will be near to 1. Thus Newton's method with O k = 1 will converge quadratically. 
Hence O k is only calculated in the first three steps, it is automatically taken to be 1 since then. 
Computing the minimum O k takes much work. One needs generally seven or eight SVDs to find a good 
approximate value to 0 h. However it seems that this step cannot be neglected. It is worthwhile to say that 
there exists only one zero point of g(O) in our examples. 

Another  way of selecting O k is from the following inequality: 

II uL'(0) [ A - ( x k  + iyk)I, o] II >--II u."(0) [ A - ( x k  - OkPkl q'- Yki - OkPk2i)I, B] II, 
where O k = -{o ' (xk ,  Yk)(Pkl Re f ( 0 ) + P k 2  Im f(O))}/(pZl +P~2). From this inequality, we have 

O'(Xk, Yk) ~ O'(Xk -- OkPkl, Yk -- OkPk2)" 

But Newton's  method with O k selected in this way converges to s* very slowly. 
Before we finish this section, we shall discuss how to select a good initial point for the Newton 

method. In [3], it has been proven that s* is located within one of the disks in the complex plane whose 
centers are the eigenvalues of F, where 

F = , (4.4) 
D 

with [C, D] a random matrix or having orthogonal rows such that F is square. Our numerical examples 
show that those disks are small and almost located in the region (4.1). So the eigenvalues of F and A are 
generally a good choice of the initial points. For our examples, Newton's  algorithm with the initial points 
being the eigenvalues of F without selecting the parameters  0 h (i.e. O k = 1), converges to the local 
minima of o-n(s) within 5 steps. 

5. Numerical examples 

Two examples presented in [12] are implemented under  MATLAB. Using Newton's  method and the 
bisection method,  all minimum points of ~r(s) with s being real are found. So there exists no difficulty to 
get dr(A, B). But for d(A, B), though we have known the exact region containing all zero points of f(s), 
the number  of zero points is still a problem. Generally speaking, the Newton's method converges very 
quickly if a good initial point is selected. 
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Example 1. Consider  

i 3.28 - 2.44 - 1.54 - 3.20 - 3.34 / 
1.58 1.02 3.86 4.15 3.94 / 

A = 4.06 3.54 1.65 1.79 2.15 ] ,  
4.15 3.96 0.84 2.70 2.70 [ 
1.76 0.29 1.14 1.64 2.21 } 

- 2 . 8 0  

2.79 
B = 1.88 

- 0.48 
- 1 . 8 9  

For this example, we compute  dr(A, B), so f(s) will be real. All minimal points of  o.(s) are according to 
(4.2) in the region 

( - 8 . 5 1 2 3 ,  9.7310). 

The graphs of  f(s) and o.(s) are shown in Figure 1. One can see that the minima and maxima of  ~r(s) 
are interlacing, f(s) has seven zero points including four minima. When  s* = 0.431388, or = 0.231910 is 
the minimum value. So s* will minimize dr(A, B) = mins~ Ro.(s) and dr(A , B) = 0.231910. In [12], only 
two zero points of  f(s) are found. Nei ther  of  them reaches the value of  dr(A, B). When taking any point 
in the interval ( - 8 . 5 1 2 3 ,  9.7310) as an initial point, the Newton algorithm (real case) converges to a 
minimum point of  o.(s) within 5 steps. Is k - s* I < 10 -6, where s k is the acceptable iterative value of  the 
Newton 's  method.  When  the initial values are taken as the eigenvalues of  F defined in (4.4), the Newton 
method converges to the local minimum points within 5 steps without selecting O k (O k = 1). 

Example 2. Consider  

A = .1 3 5 , B = .1 . 
- 1  - 1  

All zero points s* = x*  + i y*  are in the rectangular  region given by 

- 1.851295 < x  < 3.992519, -3 .074491  < y N 3.074491. 

f(s) has only one real zero point  s* = 1.027337 and dr(A, B) = 0.172460. The  minimum point  s* = 
0.937084 + 0.998571i minimizes min,  ~ cO'(S) and d(A, B) = 0.039238. We tried several initial points, the 

f(S) 

I IS I0 I io  % @ 5 

Fig.  1. 
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f(S) 

I 

s 

Fig. 2. 

Newton method with each of them converges to s* in 5 steps. Say s o = 1.5 + i, we found 00 = 0.09935, 
01 = 0.564158 and 0 z = 1.00126. So from step 3 on, 0 h = 1 is selected. However if the initial point is taken 
as one of the eigenvalues of F in (4.4), say 0.8625 + 0.9749i, then the Newton's algorithm with O k = 1 
converges to s* in 5 steps. 

Example 3. Consider 

A = 
0 1 ) B =  

0 1 J ' 
0 

In this example, A is a 10 × 10 matrix, B a 10 × 1 matrix, l e t  f(s) be the real function of the real 
parameter  s, then f(s) has three zero points in real axis. They are 0 and -0.959492, + 0.959492. It is 
interesting to know that f(s) is no longer a continuous function. It has a big jump at zero point (see 
Figure 2). 

The reason is that [A - sI, B] has a multiple least singular value 1 at s = 0, so its singular vector u,(s) 
may not be continuous at zero. In such case, one can change the initial point to run the Newton 
algorithm again. Fortunately this extreme case never happens at s*. 

6. Multiple singular values and conclusions 

Our theorems about the differentiability of the least singular value o-,(s) of G(s), a matrix with 
Re(G(s))  and Im(G(s))  being real analytic matrix-valued function of a real parameter  s, are based on the 
assumption of o-,(s) being simple. In this section, we discuss the case of o-,(s) being a multiple singular 
value of G(s). The problem of minimizing the least singular value of G(s) is very different from that of 
minimizing the largest one of G(s). The solution of the latter is usually at a point where singular values 
coalesce, i.e. at a nondifferentiable point, since the minimization will drive several singular values to the 
same minimum value [8]. But for the former problem, its local minimum does not happen at the cross 
singular values in general. So at its local minimum point, ~r(s) is generally simple and differentiable. 

When the minimum of crn(s) happens at the point s* (this is extremely unusual), where ~r~_r + ~(s * ) = 
. . . .  cr,(s*), o's(s) is also differentiable at s*, and its derivative is zero. This comes from the fact that 
the left and right limits of 6-~(s) at s* always exist [11], and they are equal to zero when s* is a local 
minimum point (see the graph below). What about the second derivative of o-~(s) at s* ? We claim that 
the second derivative of o-n(s) at s* always exists too. Considering ~ ( s )  and On(S), where j is one 
number of {n - r  + 1 . . . . .  n - 1}, we define two new functions pl(s)  and p2(s) near s* as the original 
singular value functions without ordering them, so p~(s) and p2(s) are analytic near s*. The relations of 
P1(s), P2(s) and ~ ( s )  and o-,(s) are o) (s )=  max{pl(s), p2(s)} and t r ( s ) =  min{pl(s) , pz(s)}. Moreover 
pl(s*) =p2(s* )  and /~ l (s*)=/~2(s*)= 0, since %.(s*)= o-,(s*) and %.(s*)= ~ , ( s * ) =  0. Let us assume 
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(s) 

| 

5~ 
Fig. 3. 

that (d2p l /dS2) ( s*  ) > (d2p2/ds2)(s* ). When ( d 2 p l / d s 2 ) ( s *  ) > (d2p2/ds2Xs* ), we have pl(s) -- P2(S) 
>_ 0 near to s*.  By the definitions of  p~(s) and p2(s), we know that pt(s) = ~ri(s) and p2(s) = ~r,(s), so 
~r,(s) is analytic. When (d2p l /dS2) ( s  *) = (d2p2/ds2)(s*), we know that the second derivative of  a,(s) 
exists near s*. Hence the Newton method can be used at the minimum points of  o-,(s*). See Figure 3. 

We have presented a new method to compute the distance to uncontrollability d(A, B), which is 
based on the explicit expressions of the first and second derivatives of  o'(x, y). Numerical examples show 
that this method works well. 
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