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ABSTRACT. First is presented a proof of Lie's theorem on solvable Lie algebras based on the non- 
existence of the Heisenberg commutation relation. This is used to construct an effective 
procedure for finding all quotients of a given Lie algebra g which are isomorphic to the non- 
abelian two-dimensional algebra. As a byproduct one gets that the ideal A(9 ) recently introduced 
by K. H. Hofmann is characteristic if the characteristic of the ground field is zero. 

1. I N T R O D U C T I O N  

In [-5], Tits determined the one-codimensional subalgebras of finite dimen- 
sional Lie algebras g over fields • of characteristic 0. All of them contain an 
ideal c such that g/c is isomorphic to q~, t o  ~12(q b) or to the two-dimensional 
non-abelian Lie algebra ~2. Clearly, the one-codimensional subalgebras of ~, 
~2 and 512 a r e  very well understood. In [-3], K.H.  Hofmann studied 
systematically how one can actually compute these subalgebras in a given Lie 
algebra. In this context, he introduced and explored the ideal A(g) which is the 
intersection of all one-codimensional subalgebras. Except for ~ = E, C, one 
question was left, namely, whether A(g) is a characteristic ideal. By Tits' result, 
A(g) is the intersection of l-g, 93, Aaff(g) and As(g) where Aaff, respectively, As 
denotes the intersection of all ideals ¢ such that g/c is isomorphic to ~2, 
respectively, to ~l 2. Clearly, [g, g] is characteristic. Also As(g) is characteristic 
because As(g) contains the solvradical r (which is characteristic) and each 
derivation of g/r is inner. The fact that Aaff(g ) is characteristic follows from 
general theorems in algebraic group theory. (Obviously, Aaff(g ) is invariant 
under the linear algebraic group Aut(g), the automorphism group of g. The 
Lie algebra of Aut(8) consists of all derivations of g; each subspace which is 
invariant under a linear algebraic group is invariant under its Lie algebra. 
For the latter two facts see, for instance, l,I, Exer. 2, p. 93 and Th. 9.1, p. 60].) 
But we will present a very elementary proof which also gives a slightly 
different method to compute all non-abelian two-dimensional quotients and 
the corresponding one-codimensional subalgebras. Our approach will be to 
view hyperplanes through the origin as points of the linear dual 9* or, more 
precisely, its associated projective space. 

Thinking about this problem led me to consider Lie's theorem on 
representations of solvable Lie algebras because the one-codimensional 
subalgebras corresponding to ~2-quotients are given by certain eigenvectors. 
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I asked myself why this theorem is wrong for fields of positive characteristic. I 
found that the (non-)existence of the Heisenberg commutat ion relation 
IX, Y] = id in finite dimensional spaces is responsible for the failure (truth) of 
Lie's theorem. Clearly, if [X, Y] = id the operators X and Y cannot have a 
common eigenveetor. For  each prime p one can produce matrices over fields 
of characteristic p such that [X, Y] = id, for instance 

2 j 
X = 0 and Y = 

p - 1  

0 

Q 0 1 

0 

0 

1 0 

1 

0 

1 0 

Using these matrices there will be constructed a Lie algebra 9 such that Aaff(~) 

and A(g) are not characteristic. 

On the other hand, I will give below a proof  of Lie's theorem only using the 
non-existence of the Heisenberg commutat ion relation. This proof  differs 
from the ones I found in the standard textbooks. Altogether, my proof  might 
not be shorter but I find it conceptually clearer. 

By the way, the Heisenberg commutat ion relation cannot be realized in 
any Banach algebra; an elegant elementary proof  is due to H. Wielandt. 

Let me finish this introduction with the remark that the content of this 

article is elementary. The material could be presented in a course on Lie 
algebras after introducing the first basic concepts. It has the advantage that 
these concepts are employed and that it uses very concrete computat ions in 
Lie algebras. The same applies to Tits' theorem mentioned above. 

2. A N O T H E R  PROOF OF LIE 'S  THEOREM 

Let us start with two simple consequences (1) and (2) of the non-existence of 
the Heisenberg commutat ion relation. 

(1) Let V be a finite dimensional vector space over a field @ of characteristic 
0, and let A and B be endomorphisms of V such that [A, B] -- B. 

(a) B is nilpotent. 
(b) If  V is simple as a &°~,(A, B)-module, then B -- 0. 

Proof By taking simple subquotients, (a) follows from (b). Concerning (b), 
let W : =  {v E V; By = 0}. The relation [A, B] = B implies that W is also A- 
invariant, hence W = 0 or W = V. If  W = V we are done. In the other case B 
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is invertible. Putting X = A B -  1 one computes [X, B] = id which is impossi- 

ble (compute the trace). []  

More general than (1)(a) is 

(2) Let V be as above and let q c End(V) be a linear space of commuting 
endomorphisms. If D ~ End(V) satisfies [D, q] c q, then [D, q] consists of 
nilpotent endomorphisms. 

Proof  Extending the field of scalars we may assume that (I) is algebraically 
closed. Again, taking simple subquotients of the q)D + q-module V we may 
assume that V itself is simple. Define ad(D): q--* q as ad(D)(Q)= [D, Q]. If 
ad(D) = 0 nothing is to show (actually, under our assumptions this will turn 
out to be the case). It remains to consider the following two cases. 

CASE N: ad(D) is a non-zero nilpotent operator. 

Then there exists X, Y e q such that [D, Y] = 0 and [D, X]  = Y ¢ 0. As Y 
commutes with everything it has to be invertible. But [D, X]  = Y implies the 

Heisenberg relation [D, X Y -  1] = id! 
CASE S: There exists y eq), 7 ~ 0, and a non-zero X eq  such that 

[D, X]  = 7X. 
By (1)(a) X is nilpotent, hence the kernel W of X is non-zero. From 

[D, X]  = 7X and [q, X]  = 0 it follows that W is (I)D+q-invariant, hence 
W = V, contradicting X ¢ O. [] 

L E M M A  1. Let  g be a Lie algebra over 0~, char (I) = 0, let D be a derivation on 

9, and let V be a finite dimensional module over the semidirect sum (I)D ~< g =: g. 
Then the eigenspace V~ := {v e V; X v  = c~(X)v, V X ~ g} for  c~ • 9" = Hom(g, ~) 
is D-invariant. 

Proof. The eigenspace V~ is contained in the space W = V [g'9] of [g, g]-fixed 
points which is ~-invariants as [9, g] is an ideal in 6. Actually, W is a module 
over ,I)D ~< g/[g, g]. By (2), D(g) c g acts nilpotently on W, hence a(D(g)) = 0 if 
V~ ~ 0. The latter fact implies immediately that V~ is D-invariant. []  

F rom Lemma 1 one can deduce in the usual manner the theorem of Lie and 
its corollary. 

T H E O R E M  (Lie). Let  g be a solvable Lie algebra over an algebraically closed 

field o~ o f  characteristic O. I f  V is a flnite dimensional g-module then there exists 

a ~ g* such that V~ := {v ~ V; X v  = e(X)v, V X  ~ g} is different f rom zero. 
Proof. Take an ideal I~ of codimension 1 in g and D~g \b ,  hence 

g = (I)D~<b. By induction there exists e ' e b *  such that W = 
{v e V; X v  = e'(X)v, VX e b} ¢ 0. Then choose any D-eigenvector in W. [] 
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C O R O L L A R Y .  Let g be a solvable Lie algebra over afield • of characteristic 
0 and let V be a finite dimensional g-module. 

(a) [g, g] acts on V by nilpotent transformations. 
(b) If, in addition, V is a simple g-module then [g, g] annihilates V. 
Proof. (a) Extend the scalars to an algebraic closure and  apply  the theorem 

to the simple subquotients .  
(b) Suppose  tha t  g acts faithfully on V and assume (contrary  to the 

assertion) that  [g, g] contains  a non-zero  abel ian ideal a. By (a) the fixed point  
space V a is non-zero.  No te  tha t  for abel ian a this is an e lementary  fact, so we 
are not using Engel 's  theorem.  As a is an ideal in g the space V a is g-invariant,  
hence V a = V,, a cont radic t ion  to the assumpt ion  that  g acts faithfully. [ ]  

3. A DESCRIPTION OF Aaff(g ) 

Let g be a finite dimensional  Lie a lgebra  over  an a rb i t ra ry  field ~.  In this 
section we shall describe all pairs (c, I~) such that  

(i) c is an ideal in g with g/c ~ ~2, the two-dimensional  non-abel ian  Lie 
algebra,  

(ii) t~ ~ c, b/c is one-dimensional ,  

(iii) ~ is not  an ideal, i.e. ~ + [g, g] = g. 

As an appl icat ion we get a descript ion of Aaff(g) = n c, c as above.  This ideal 
turns out  to be characterist ic if the characterist ic of • is zero, while an 
example  shows tha t  the cor responding  assert ion is wrong  in finite character-  
istic. We  start  with an easy (and well-known) lemma.  

L E M M A  2. I f  q is a finite dimensional Lie algebra with one-dimensional non- 
central commutator algebra [q ,q]  then there exists A , B ~ q  such that 

[A, B] = B, q = L-q'~(A, B) G 3q and ~B  • 3q is the centralizer of [q, q] -- OB. 
Moreover, 3q is the unique ideal c such that q/c is isomorphic to ~2. 

Proof. Choose  any non-zero  B in [q, q] and let ~ be the centralizer of  B. By 
assumpt ion ,  f is of  codimension 1 and there exists A ~ q such that  [A, B] = B. 

Let  b be the centralizer of  A, by  assumpt ion  q = b  • ~B. Fo r  X, Y~I) let 
B' = [X,  Y] ~ [q, q] = ~B. Then  B' = [A, B']  = [[A, X] ,  Y] + IX,  [A, r ] ]  = 0, 
hence D is abelian. F r o m  D = ~ A  0)(Dn~) one gets the decompos i t ion  
q = q~A 0) ~ B  • (D n ~). Since I) n ~ is abelian, f rom this decompos i t ion  one can 
read off all the brackets  and one can conclude the first assertions. As the 
center of  82 is trivial any  h o m o m o r p h i s m  f rom q on to  82 has to annihilate 
3q. [ ]  
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The Lie algebra g acts on the dual g* and on the dual [g, g]* by 

(Xf)(Y)  = f([Y, X]) and (Xg)(Z) = g([Z, X]) 

for X, Yeg ,  Z e [ g , g ] ,  f e g *  and g e [ g , g ]  *. For  g e [ g , g ] *  we define 
gO= {X e g; g([g, X ] ) =  0}; gO is nothing but the stabilizer algebra of any of 
the linear extensions of g to g. In the following statements (A)-(D) we assume 
that e e g *  is non-zero and ge [g ,g ]*  is a (non-zero) ~-eigenvector, i.e. 
Xg = e(X)g for all X e g. In particular c~ = 0 on [g, g]. 

(A) gO is an ideal in g, g/gO is isomorphic to s 2. 
(B) If [ denotes the kernel of c~ then ~ = [g, g] + gO. 
(C) There is a unique he  ~* such that hl[g,~l = g and h is an e-eigenvector 

(note that g acts on [* as well because ~ is an ideal in g). Indeed, h is 
given by h = 0 on gO; gO is precisely the kernel of h. 

(D) If f e g* is any extension of h then the pair (go, ker f )  satisfies (i)-(iii). 

Proof Clearly, ker g is an ideal in g. Let q = g/ker g, denote by q~: g --* q the 
quotient map and by q e [q, q]* the functional induced by g. But q satisfies the 
assumptions of Lemma 2. Everything follows from the known structure of q. 
To be more specific, qq is just gq, hence go = q~-l(qq) is an ideal with g/g0 ~ s2, 
i.e. (A). The space [ is the preimage of the centralizer of [q, q] which is 
[q, q] + 3q, hence [ equals [g, g] + ~o- X(~q) = [g, g] + go. (C) follows from the 
fact that q allows a unique linear extension to [q, q] + ~q as an c~-eigenvector, 
the extension annihilates ~q. (D) is now obvious. []  

On the other hand, if a pair (c, b) satisfying (i)-(iii) is given, choose any f e g* 
with ker f = t). Then g = fl[g,o] ~ 0 is an eigenvector for a certain non-zero 
c~ e g* and flk,r ,  is an e-eigenvector, too. Thus we find 

THEOREM.  Starting from all possible common g-eigenvectors g in [g, g]* 
corresponding to non-zero eigenfunctionals the procedure described in (A) 
through (D) leads to all possible pairs (c, D) satisfying (i)-(iii). [] 

Altogether, one has an algorithm to compute all possible pairs (c,I)): 
Compute all common g-eigenvectors g in [g, g]*. The o's are obtained as gO, 
the solution set of a certain system of homogeneous linear equations. To get b 
form f = go+ [g, g], define her*  by h = 0 on gg and hl[9,~] = g and extend h to 
f e g*. Then ker f gives all possible b's. Alternatively, one may take any non- 
zero a e(g/[g, g])*, determine ker c~ and then compute all e-eigenvectors 
h e (ker e)*. If again f denotes a linear extension of h then (ker, h, ker f )  gives 
all possible pairs (c, l?). 
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The following corol lary  is an easy consequence of the theorem and of 
L e m m a  1. 

C O R O L L A R Y .  Aaff(g) is a characteristic ideal for finite dimensional Lie 
algebras g over fields of characteristic O. Hence also A(g) = 

[9, ~] O Aaff(9) ~ As(g ) is characteristic. 
Proof F o r  a ~ g * ,  ~ 0 ,  let V ~ = { g ~ [ g ,  9]*; Xg=~(X)9, VX~g }. The 

theorem implies that  Aaff(9) is the intersection of all gg, gEM:= 
(.J {V~; a~9* \{0}} ;  clearly, we m a y  include 9 = 0 because this yields g g =  9. 
We have to show that  for any  der ivat ion D of g, any 9 ~ M  and any 
X ~ NkeM gk the value DX is conta ined  in go. By L e m m a  1, applied to the 
@D t>< g-module  [g, g]* the functional  Dg, defined by Dg(Y ) = 9(-DY),  is 
conta ined in M. To  check tha t  DX ~ go take any Z ~ g and  compu te  

g([OX, Z])  = g(O[X, Z ] ) - - 9 ( [ X ,  DZ])~ Dg([X, g ] ) +  g([X, g]). 

The  latter set is zero as g, Dg ~ M and X ~ (~k~M gk. [ ]  

3.1. An Example 

Before s tudying an example  for finite characterist ic as ment ioned  in the 
in t roduct ion  we r emark  tha t  a weaker  form of Tits '  theorem is true for any 

field. 

R E M A R K .  F o r  any  Lie suba lgebra  I) of  codimension 1 in a finite dimensional  
Lie a lgebra  g one of the following condit ions holds: 

either (a) b contains  the solvradical  r of  ~, 
or (b) b contains  [g, g], 
or  (c) D contains  an ideal c such that  g/¢ ~ ~2 and I) + [g, g] = g. 

Proof Let g be a given Lie a lgebra  with solvradical  r and assume 
inductively tha t  the r emark  is true for all a lgebras of  lower dimension.  If  r = 0 
noth ing  is to show, case (a) happens.  I f  r ~ 0 there exists a non-zero  abel ian 
ideal a in g. Then  either a + I) = l) or  a + t) = g. In  the first case we apply  the 

induct ion hypothesis  to the pair  (b/a, g/a). So, assume that  a + D = g. Then 
a n t) is an ideal in g. Again, by induct ion we m a y  assume that  a c~ D = 0, i.e. a 
is one-dimensional ,  g = t) t>< a. There  are two cases, [D, a] = 0 or  [1), a] = a. If  
[b, a] = 0 then [9, 9] = [I), D] is conta ined  in b, case (b) happens.  If  [D, a] = a 
let ~ be the centralizer of  a. Then  ~ is an ideal of  codimension 1 which is 
different f rom I). Choos ing  c = b c~ ~ one easily discovers case (c). [ ]  

To  see tha t  (a) is possible for simple Lie algebras g, not  i somorphic  to ~12, we 
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write down an example in characteristic 5. Similar examples exist for higher 

characteristic, the so-called p-dimensional Witt algebras; the choice of the 
number 5 has the advantage that the matrices can be written 'without dots'. 

Let ~ consist of all matrices 

- x  1 y 0 0 0 

2xz 0 2y 0 0 

3x3 x2 xa 3y 0 

4x4 2x3 0 2xx 4y 

0 3x4 x 3 - x  2 3xa 

in g/5(q)) where y, xl,  x 2, x 3, X4 if(I) and (I) is any field of characteristic 5. By 
direct computat ion one checks that ~ is a subalgebra of g/s(q)). It is not hard 
to see that ~ is simple using, for instance, the fact that the spectrum of 

ad(X): ~ ---, ~, X =  1 , 

2 

3 

consists of {0, 1, 2, 3, 4} which implies that each potential ideal is spanned by 

some of the (easily computed) eigenvectors of ad(X). Finally, the subset b of 
where y = 0 forms a subalgebra of codimension 1. 

Now let q) be any field of finite characteristic. The matrices written down in 

the introduction show that there exists a finite dimensional vector space V 
over @ and endomorphisms X and Y on V such that 

(I) [X, Y] = id, 
(II) W : =  Y(V) is of codimension 1 in V, 

(III) Y + fl id is invertible for any non-zero fl E ~. 

Using Y we shall construct a metabelian Lie algebra g over q~ for which it is 
easy to compute zXaff(g ) and A(g). Using X we shall construct a derivation D 

on g such that neither Aarf(g) nor A(g) is D-invariant. 
As a vector space, g is (I)2 (~ V where the commuta tor  is given by 

[(b, c, v), (b', c', v')] = (0, O, b gv' + c v ' -  b' g v -  c'v) 

for b, b', c, c' e~b and v, v'eV. 
It is easy to check that g is a Lie algebra and that [g, g] equals V. 

- 1  

0 
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L i k e w i s e  one  verif ies w i t h o u t  diff icul ty  us ing  (I) t h a t  D:  g -~ g de f ined  b y  

D(b, c, v) = (0, b, Xv )  

is a d e r i v a t i o n  o n  g. 

T o  c o m p u t e  A,ff(fl) we use  the  a l g o r i t h m  d e s c r i b e d  above .  S u p p o s e  t h a t  

ct ~ g* van i shes  o n  V = [fl, fl], i.e. a(b, c, v) = bfl + c7 for  s o m e  fl, 7 ~ *  a n d  
s u p p o s e  t h a t  g ¢ V* is an  (non-ze ro )  a - e igenvec to r ,  i.e. 

g ( - [ ( b ,  c, v), (0, 0, v')]) = ct(b, c, v)g(v') 

for  al l  b, c e • a n d  v, v' e V E v a l u a t i n g  this  e q u a t i o n  gives 

g(Yv') = - fig(d) a n d  g(v') = - 7g(v') 

for  al l  v' ~ V, hence  ~ = - 1. U s i n g  (II) one  o b t a i n s  fl = 0; g van i shes  on  the  

o n e - c o d i m e n s i o n a l  space  W = Y(V).  There fore ,  

Aaff(g ) = gg = {(b, 0, w); b e ¢ ,  w e W}. 

As  g is s o l v a b l e  the  a b o v e  r e m a r k  impl i e s  t h a t  A(g), the  i n t e r sec t i on  of  all  

s u b a l g e b r a s  of  c o d i m e n s i o n  1, equa l s  [g,  g] c~ Aaff(g), hence  

A(g)  = w .  

N e i t h e r  A(g) n o r  Aaff(g ) is D - i n v a r i a n t  b e c a u s e  D ( W )  = X ( W )  is n o t  c o n t a i n e d  

in W : [ X , Y ] = i d  imp l i e s  t h a t  X Y v - v m o d W  for  all  v e V ;  X Y ( V ) =  

X ( W )  c W w o u l d  give v - 0 m o d  W for  all  v. 
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