An addendum to K. H. Hofmann's article ~ memo on the exponential function and regular points"

By

DETLEV POGUNTKE

In this short note we solve two problems posed in the above mentioned article, [2]. We will use freely the notations introduced in [2]. In particular, for a regular element x in a connected Lie group G let $\alpha(x)$ and $\beta(x)$, respectively, be the Fitting one- and Fitting null-component of Ad(x) - 1 in the Lie algebra q of G, and let $N(x)$ denote the normalizer of $H(x) := \exp f(x)$. Moreover, let $W(x) = \{h \in H(x); x h \text{ is regular}\}\)$. In the notations of [2] the open subset $W(x)$ of $H(x)$ is nothing but exp $V(x)$, and $W(x)$ is, via exp, analytically equivalent to $V(x)/\Gamma(x)$ where $\Gamma(x) = \exp^{-1}(1) \cap \mathfrak{h}(x)$ is a discrete (additive) subgroup in the center of $f(x)$ and $V(x) = exp^{-1}(W(x)) \cap f(x)$.

Proposition 1. *Let g be a regular element in a connected Lie group G. Then there exists an open neighborhood U (g) of zero in a (g) such that the map* β *: U (g)* \times *W (g)* \rightarrow *G defined by* β (*X*, *h*) = exp *X gh* exp($-X$) has an open image and that β induces an isomorphism of *analytic manifolds from* $U(q) \times W(q)$ *onto the image of* β *.*

R e m a r k 1. The map β is essentially the map α studied in the Foliation Theorem (Proposition 13) of [2]. Essentially means that α and β are transformed into each other by the canonical identification of $W(g)$ with $V(g)/\Gamma(g)$, see above. Proposition 1 allows us to replace in the Foliation Theorem the words "analytic homeomorphism" by "isomorphism of analytic manifolds" in part (i) and to dispose of part (iii).

R e m a r k 2. The map α was also investigated in [1], p. 35, Lemma 3, even in the case of non-regular elements. It was shown that α is regular in a neighborhood of (0, 0).

P r o o f. Obviously, independent of the choice of $U(q)$ the map β will be analytic. The only two things we have to arrange for are that β is injective and that β is regular everywhere. As g is fixed we let $a = a(g)$, $b = b(g)$, $W = W(g)$ and $N = N(g)$. From the results in [2] we quote that $a(gh) = a$ and $b(gh) = b$ for all $h \in W$. For $X \in a$ define ψ_X : $\alpha \to G$ by $\psi_X(Z) = \exp(-X) \exp(Z + X)$, and denote by $d\psi_X$: $\alpha \to g$ the differential of ψ_X at 0. Clearly, the map $X \mapsto d\psi_X$ from a into End (a, g) is analytic. Now we choose an open neighborhood $U(g)$ of zero in a with the following two properties.

- (i) For $X \in U(g)$ the composition $pr_a \circ d\psi_X$ of $d\psi_X$ with the projection pr_a from $g = a \oplus b$ onto a is an invertible linear transformation on a.
- (ii) The map $(X, n) \mapsto \exp(X) n$ from $U(q) \times N$ in G is injective.

To see that such an $U(g)$ exists one notes concerning (i) that $pr_a \circ d\psi_X$ depends continuously on $X \in \mathfrak{a}$ and that $d\psi_0$ is the inclusion of \mathfrak{a} in \mathfrak{g} . Concerning (ii) one observes that N is a closed (not necessarily connected) Lie subgroup of G , that the Lie algebra of N equals $\mathfrak h$ as $\mathfrak h$ is a Cartan subalgebra and that a is complementary to $\mathfrak h$ in g. Moreover, one sees that the required properties of $U(g)$ do not explicitly depend on g but rather on α and on β (and on N which is derived from β).

With this choice of $U(g)$ we claim first that $\beta: U(g) \times W \to G$ is injective. Let $X_1, X_2 \in U(q)$ and $h_1, h_2 \in W$ and suppose that

$$
\exp(X_1)gh_1 \exp(-X_1) = \exp(X_2)gh_2 \exp(-X_2).
$$

Then $gh_2 = \exp(-X_2) \exp(X_1) gh_1 \exp(-X_1) \exp(X_2)$ and, therefore,

$$
f_1 = f_1(gh_2) = f_1(\exp(-X_2) \exp(X_1)gh_1 \exp(-X_1) \exp(X_2))
$$

= Ad (exp(-X_2) exp(X_1)) f_1(gh_1) = Ad (exp(-X_2) exp(X_1)) (f_1);

here we used that the assignment $x \mapsto f(x)$ transforms appropriately under (inner) automorphisms, see [2]. It follows that $exp(-X_2)exp(X_1)$ is contained in the normalizer N of $H = \exp \phi$. From (ii) we deduce that $X_1 = X_2$ which immediately implies that also $h_1 = h_2.$

It remains to show that β is regular at each given point $(X_0, h_0) \in U(q) \times W$. Evidently, this is equivalent to the fact that the map

$$
(Z, Y) \mapsto \exp(Z + X_0)gh_0 \exp(Y) \exp(-Z - X_0)
$$

from $a \times b$ into G is regular at (0, 0). Modifying this map once more by translations with fixed group elements our claim is equivalent to the regularity at $(0, 0)$ of the map $\rho: \mathfrak{a} \times \mathfrak{h} \to G$ defined by

$$
\varrho(Z, Y) = \exp(-X_0) \exp(Z + X_0) gh_0 \exp(Y) \exp(-Z - X_0) \exp(X_0) h_0^{-1} g^{-1}.
$$

We have to compute the differential $d\varrho: \alpha \oplus \mathfrak{h} \to \mathfrak{g}$ of ϱ at $(0, 0)$ and to verify that it is an invertible linear transformation. Using the above introduced family ψ_X of maps we obtain

$$
\varrho(Z, Y) = \psi_{X_0}(Z) I_{gh_0}(\exp(Y) \psi_{X_0}(Z)^{-1})
$$

where I denotes the canonical homomorphism from G into the group of inner automorphisms of G. To compute $d\varrho$ we write ϱ as a composition of four maps, namely

$$
\gamma: \mathfrak{a} \times \mathfrak{h} \to G \times H \times G,
$$

where $\gamma(Z, Y) = (\psi_{X_0}(Z), \exp Y, \psi_{X_0}(Z)^{-1}),$

$$
\mu: G \times H \times G \to G \times G ,
$$

where $\mu(a, b, c) = (a, bc)$,

$$
id_G \times I_{ah_G}: G \times G \to G \times G
$$

and

$$
m\colon G\times G\to G\,,
$$

where $m(a, b) = ab$.

Using the chain rule one gets

$$
d\varrho(A \oplus B) = d\psi_{X_0}(A) + \text{Ad}(gh_0)(B - d\psi_{X_0}(A))
$$

= Ad(gh_0) (B) + (1 - Ad(gh_0)) ($d\psi_{X_0}(A$))

for $A \in \mathfrak{a}$, $B \in \mathfrak{h}$.

To see that $d\varrho$ is invertible, for dimensional reasons it is sufficient to show that $d\varrho(A \oplus B) = 0$ implies $A = B = 0$. To this end, apply pr, to the equation $d\rho(A \oplus B) = 0$. As $b = b(g) = b(gh_0)$ and $a = a(g) = a(gh_0)$ these two spaces are Ad(gh_0)-invariant. Hence $pr_a \text{Ad}(gh_0)(B) = 0$ and

$$
0 = pr_{\alpha}(1 - Ad(gh_0))(d\psi_{X_0}(A)) = (1 - Ad(gh_0)) pr_{\alpha}(d\psi_{X_0}(A)).
$$

As $1 - \text{Ad}(gh_0)$ is invertible on a it follows $\text{pr}_a(dy_{X_0}(A)) = 0$ whence $A = 0$ by (i). Then B is zero, too. Proposition 1 is proved.

In Proposition 19 of $[2]$ it was shown that in the solvable case each regular element x is contained in $H(x)$. The proof used the theory developed in [2] and some results of [3] as well. Below we will give a short direct proof of this fact.

Proposition 2. *If G is a connected solvable Lie group and f x is a regular element of G then* x *is contained in H(x).*

P r o o f. Evidently, it is sufficient to show the assertion in the simply connected case. Let's suppose that (the simply connected version of) the proposition is wrong, and let G be a simply connected solvable Lie group of minimal dimension which contains a regular element x such that $x \notin H(x)$. Of course, G can't be nilpotent. Let m be an ideal in the Lie algebra g of G of minimal positive dimension. Then m is necessarily abelian, and as G is simply connected M : $=$ exp m is a closed abelian normal subgroup of G. Denote by $\pi: G \to G/M$ the quotient map. Since $\pi(x)$ is regular, see Proposition 2 on p. 35 in [1], and since $d\pi$ maps $f(x)$ onto the Fitting null-component of Ad $(\pi(x)) - 1$ in g/m the proposition applied to *G/M* gives that x is contained in $H(x)$ M. Hence we may write $x = hm$ with $h \in H(x)$ and $m \in M$. Moreover, the minimality of G implies that $G = H(x)M$ and $g = f(x) + m$. Hence $f(x) \cap m$ is an ideal in g. By the minimality of m either $b(x) \cap m = m$ or $b(x) \cap m = 0$. In the first case one concludes $G = H(x)$, a contradiction. So we are left with $\mathfrak{h}(x) \cap m = 0$. As $\mathfrak{h}(x)$ is invariant under Ad(x) and Ad(h), it is invariant under Ad(*m*) as well. Let Z be the unique element in m with $\exp Z = m$, and let Y be an arbitrary element in $h(x)$. We know that $Ad(m)(Y) - Y$ is in $h(x)$. On the other hand,

$$
Ad(m)(Y) - Y = Ad(exp Z)(Y) - Y = exp(ad Z)(Y) - Y = [Z, Y]
$$

is contained in m. Hence $[Z, \mathfrak{h}(x)] = 0$ and, therefore, Z is contained in the center of g and in b (x). Using $b(x) \cap m = 0$ we conclude that $Z = 0$, $m = 1$, $x = h \in H(x)$, a contradiction to $x \notin H(x)$.

References

- [1] N. BOURBAKI, Groupes et algèbres de Lie, Chap. 7 et 8. Paris 1975.
- [2] K. H. HOFMANN, A memo on the exponential function and regular points. Arch. Math. 59, 24-37 (1992).
- [3] K. H. HOFMANN and A. MUKHERJEA, On the density of the image of the exponential function. Math. Ann. 234, 263-273 (1978).

Eingegangen am 3.2. 1992

Anschrifl des Autors:

Detlev Poguntke Fakultät für Mathematik Universität Bielefeld Postfach 8640 DW-4800 Bielefeld 1