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I. [INTRODUCTION

Let O, be the field of p-adic numbers with a p-adic valuation | - |, that has
the properties

lx -yl <max(ix|,,|yl|,)
Ixyi,,——‘!xinl}’!:a

and is so normalized that | p» l» = p™™ As is well-known, @, is a complete
metric space with respect to the distance function dix,y) =|x —yl|, and
the field of rational numbers Qis dense in Q.

We will consider functions defined on the set of p-adic integers
T={x:1ix|, <1},

with values in Q, . The theoty of p-adic valued functions in the period from
the introduction of p-adic numbers by Hensel [1] at the end of the nineteenth
century until very recent times resembles closely the theory of analytic
fanctions,

The study of p-adic valued functions from the point of view of the con-
structive theory of functions and approximation theory was initiated in 1944
by Dieudonné [2], who proved that every continuous p-adic valued function
on a compact subset of Q,, can be approximated uniformly by polynomials.
A more constructive proof of this result was given in 1958 by Mahler [3, 4]

(see also [5, Chap. 6]) for continuous functions on I. Mahler's theorem can be
stated as follows,

THEOREM A, Ler f: [ — Qs be a continuous function and let

a(f) = z (— -t (z)f(k), k=0,1,2,.. (1.1)
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Then the series

- x
:’;n ak(f)(k) 1.2)
converges uniformly on I and
fxy=1% a,,(f)(i) for every xe . (1.3)
prour}

Mahler’s series (1.2) is clearly the analogue of Newton's interpolatory
series and it was natural to use this series since a continuous function f on 7
is completely determined by its values on the set J — {0, 1, 2,...}, which is
dense in 7. However, the remarkable fact here is that serics (1.2) converges
uniformly for every continuous function f on /. This is clearly equivalent to
stating that for every continuous f on [

lim | ax(f)I, = 0. (1.4)

A simple analytic proof of this result was given recently in [6].

Another, even more remarkable property of Mahler’s expansion is that
the nth partial sum of series (1.2) is a polynomial of best approximation of
degree < n to f on I This result can be established quite easily in p-adic
analysis,

If fis a continnous function on 1, and a,( f)} is defined by (1.1), then

[an(f)lp < max {f(x)l, [foreveryn=0,1,2,.. (1.5)
On the other hand, since

< 1 for xe 1,

from (1.3) it follows that
S, < max [ al(f)]- (1.6)
From inequalities (1.5) and (1.6) it follows that
max | f(x)l, = max | a(f)l, . *.7n

Since any polynomial P of degree < nis of the form

n

PO =Y u )

k=l
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we have, by (1.7},
max | f(x) — P(x)}, = max (| a(f} — ax 5, 1 ok <in; max [ a(f),)

= max | a(f)l,.
On the other hand, if

P = 3 alh)})

k=0
is the #th partial sum of Mahler’s expansion (1.3) of £, we have, by (1.7),

max | f{x) — Pp*(x)l, = max ja{f)l,.

Hence, if we denote by P,, the set of all polynomials of degree < n, we have

max | f(x) — Pp (0, = inf (max|f(x) — P(x)};) = max | a(f)i,.

This fact that the nth partial sum of Mahler’s expansion (1.3) of a con-
tinuous function f on I is a polynomial of best approximation to f of degree
< 1 seems to be quite important, even if the polynomials of best approxi-
mation are not unique. It indicates that one should expect that the structural
properties of a continuous function f could be characterized, as in real
analysis, in terms of the asymptotic properties of the coefficients a,( f).

The aim of this paper is to present several results of this type. These results
are stated in Section 2. Section 3 contains lemmas necessary for the proof of
our theorems and, finally, Section 4 contains proofs of the theorems.

2. RESULTS

The first problem that will be considered here is closely related to Mahler’s
Theorem A and it can be stated as follows.

Let f be a p-adic valued function defined on J == {x : | x|, < 1} and let the
p-adic numbers (a,(f)) be defined on J = {0, 1, 2,...} by

aff) =Y (=1 *(F)fk), n=0.1,2.. 2.1)
k=t}
What are the necessary and sufficient conditions for fin order that
lim | a,(f), = 07 (2.2)

In view of Mahler’s Theorem A, the continuity of fon 7 is clearly a sufficient
condition for (2.2). However, since a,(f) is defined in terms of the values of
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f on J, the continuity of f is certainly not a necessary condition for (2.2).
We will show here first that a weaker condition, which can be described as the
uniform continuity of f on J, is both necessary and sufficient for (2.2). This
result can be stated more precisely as follows:

THEOREM 1. Let f be a p-adic valued function on the set J = {0, 1, Z,...}
and let (a,( f)) be the sequence of p-adic numbers defined by (2.1). We have
then

lim | an( /)l = 0
if and only if

wip~) = max | f(k + p') — f(k)i, —> O (¢ > o). (2.3)

Condition (2.3) is clearly satisfied il /' is a continnous p-adic valued func-
fion on [,

Next, we consider functions that satisfy continuity conditions stronger than
(2.3). For such functions it is natural to expect more precise results than (2.2).

THEOREM 2. Let [ be a p-adic valued finction defined on the set J —
{0, 1, 2,...), Iet (a.{[)) be the sequence of p-adic numbers defined by (2.1) and
let 0 < o < 1. We have then

| au(f)ly = Cln—=)  (n— 0} (2.49)

if and only if
|
wp) = max | [k -+ p) — fR), = Op) (1> ). @5

A special case of Theorem 2 corresponding to « = 1, in a slightly modified
form, was suggested as a research problem by Prof. Mahler in his lectures on
p-adic analysis at the Ohio State University in the summer quarter 1973.

A class of p-adic valued functions which satisfy both conditions (2.3} and
(2.5) are pt-periodic functions. A function f: I -» @, is p'-periodic (t = 1) if

f(x -+ pt) = f(x) for every x € I.

For pt-periodic functions on J we have the following much stronger result
than (2.4).

Turorem 3. Ler f: J — Q, be a pt-periodic function with t = 1 and let
(@.(f)) be the sequence of p-adic numbers defined by (2.1). Then for every
n = pt

| @n(f} < prined o A% [ al )l - (2.6)

k= pr-
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If, in particular, (f(n)) is a p*-periodic sequence of rational integers,
Theorem 3 states that, for every n > p', the integer

Z n
Y 1)

is divisible by pir/®",

To study more general problems of this type we will choose an arbitrary
continuous, nondecreasing function £2 on [0, [], with £2(0) = 0, and we will
consider p-adic valued functions on 7 that satisfy the condition

wp™) = max | f(k + p") — flk)i, =C(p™) (@— ). (27)
In view of Theorem 2, it would be natural to expect the estimate
|2 ), = AL [m)  (n— o), (2.8)

and, conversely, that (2.8) should imply (2.7). However, results of this
generality seem to be very difficult to prove, if they are correct at all. We are

able to show that (2.7) implies (2.8) if the speed with which £ converges to
zero is restricted by the condition

fXA/p)
llﬂﬂgrnf o) = 0. (2.9)

As examples of function satisfying this condition we mention in particular

Q) =(log (1IN~ (0 < &« < o0) (2.10)
RN =r O<a< x) (2.11)

and
Q) = exp{—eclogx1/A)) (0 < o < 1), (2.12)

but the function £2(A) = exp(—1/A) does not satisfy condition (2.9).

THEOREM 4.  Let f be a p-adic valued function on J such that
wp) = max | flk + p) — f(K)ip = OQ(p~)  (t— oo).

and let (a.(f)) be the sequence of p-adic numbers defined by (2.1). If the
Junction §2 satisfies condition (2.9), then

lan( iy = &A1 n))  (rn— ).

To prove a converse statement we need an even more restrictive hypothesis



APPROXIMATION IN p-ADIC ANALYSIS 195

about 2. We shall have to assume that there exists a subinterval (0, 8) of
(0, 1) such that

QPR = 1lp  forevery Le (D, 9). (2.13)

This condition is satisfied if £2 is defined as in (2.10) and (2.12). It is also
satisfied if £2(A) = A* with 0 << « < 1, but it is clearly not satisfied if « > 1.
More generally, (2.13) is satisfied whenever

—

o 00 T p

THEOREM 5. Let [ be a p-adic valued function on J and let (a,(f)) be the
sequence of p-adic numbers defined by (2.1). If the function £2 satisfies condition
(2.13) and if

[ aa(f)l, = O8A1fn))  (n— o),

then

WA p) = max | f(k + p) — fR)ip = EXAp ) (1 c0).

3. LeMMAs

For the proof of Theorems 1-5 we need a number of preliminary results.
We will always assume here that fis a p-adic valued function defined on the
set J ={0, 1, 2,...} and that

alf) = 3 (=1t () Fk),  A=0,1,2... 3.1)

We also write
wy(p~*) = max | flk + p') — (R, .
LEmma t. If
wip)—>0 (1 o) (3.2)
then {is bounded on J.
Proof of Lemma 1. Choose T such that
M:(f) = jmax | f(k)ly >
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By (3.2) we can find a r such that
max | f(k + pt) — f(R), < M(f). (3.3)
We will show that
| f), << M, {f) foreveryneld. (3.4)

This inequality is clearly satisfied if 0 < n < p'. Suppose therefore that
rn 2> pt. Then sp* << n < (s + 1) p* for some 5 > | and so

Jm) = fln —sp) =3 (f(n — jp* + ptY — f(n — jpY)).
i=1
Since 0 < n — sp' << p', we have, by (3.3),

Ef(n):p (‘“-t/ max(Mp'(f)! MT(f}) = Mpf.l_ T(f)'

Hence (3.4) holds also if # 2> p* and the lemma is proved.

LeMMa 2. For everyn 22 O and m = 1 we have

"

% (7 anith = éﬂ(—-l)"" () -+ m)y — F kD (3.5)

and

fortmy—fomy =3 (

k=0

i m\\/n
Sanln). oo
Proof of Lemma 2. Let 7, f(x) = f(x + m). The proof of relations (3.5)

and (3.6) consists essentially in expressing the coefficients of the translated
function 7, f in terms of the coefficients of /. Let

au(Tmf) = éﬂ O D (;{’) o f (. (3.7)
Then
ruf )= 3 araf((}. 69

In [6] it was proved that

alral) = T 0 (S 1 0= 5 (awdp 39

k=0 FES | I
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Relation (3.5) is clearly a consequence of (3.9) and (3.6) follows from {3.8)
and (3.9).

LeMmA 3. Foreveryn = Oand t = 1 we have
L, DN, < max ((1p) @nijlp. 1 << pt— L wdp.  (3.10)
Proof of Lemma 3. By (3.5), with m = p*, we have
p‘-l ¢ ]
aeylf) == T (&) anin) + ¥ (= D= ()& + p) — s
j=1 v J k=0

and (3.10) follows since p I(”;) foreveryj = 1,..,p* — 1.
While Lemma 3 is sufficient for the proof of Theorems 1-3, we need a
more refined version of that lemma for the proof of Theorem 4,

LEmMA 4. Let f: J — Q, be a bounded function and let
Aln)y = max | a )l

Then, for every integer o = 1 and t = 1 we have
A((er + 1) p) < max((1/p®) A(pt), w(p*).
Proof of Lemma 4. By Lemma 3 we have, forevery t 2= landn = 0,
la, (DN, < max ({(Ipia, (), 1 <j<p' — 1;wdp)
Replacing here n by » -}- sp* we find that
@y yiaypl Wy < ax (1 ay, e (P01 < <Pt — 13w ()
< max ((1/p) A(sp?), wp).
Since this ineguality holds for every n 2= 0, it follows that
A((s + 1) p*) < max((1/p) A(sp), wi( p=1). (3.10)
In particular, we have
A2p") < max((1/p) A(p*), wd p~™)).

Hence, Lemma 4 is true if ¢ = 1. ‘
Now, we show by induction that Lemma 4 is true for every mtegf:r o ;: 1.
Suppose that the lemma is true for ¢ = 5. We have then, by induction

hypothesis,
A{(s + 1) pt) < max((1/p*) A(pY), w:(p~9) (3.12)
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By (3.11) and (3.12) we have then

A(s + 2) p9) < max((1/p) A((s + 1) p wAp™)
< max((1/ p) max((1] p*) A(p*), wi p~*}), wAP™'D
< max((1/ p***) A(pD, wip~™)

and the lemma is proved.

LemMA 5. Let £ be a continuous and nondecreasing function on [0, 1] with
0) = 0. If there exists § € (O, 1) such that

Q\Np) = p AN forevery Ae(0,0), (3.13)
then, as 1 — &,

lgfaétp,jﬁ(i/j) = d(p'A ™).

Proof of Lemma 5. Let T be a fixed integer such that 1/pT1 < & and
t > T. We have then

21/ < Q1 QL. 14
Iggpffﬂ( fiy < max, 1y + pmax ,j am (3.14)

The first term on the right-hand side of (3.14) can be estimated as follows.
From (3.13) it follows that for every Ae (0, 8) and 5 = 0, 1, 2,... we have

QA p*) = po-18(A). (3.15)
By choosing A = §/2 we obtain, in particular, the inequality

QA p") = Q8[2p+) = pt 183 2)
or 1< (p/CA3(2)) p'Ap~). (3.16)

Next, suppose that pT < j < p*. Then pr~! < j < p* for some integer I
suchthat 7 + 1 < r << f. Hence

FOD < prp~rh).

Since 1/pr1 << 1/pT-t < §, from (3.15), with A = 1f/ptand s =1 — T, it
follows that

Q(p—r«H) < pt—r+1_Q( P_r"'lf,'?‘_r'ﬂ) g pi—-r«l-lﬂ( p““‘).

Hence, for every j such that p7 < j < p*, we have

JRALY < pMHp)
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and it follows that
max ,,ff?(l!j) < ptQ(pH). (3.17)

aT=f<p

Finally, from (3.14), (3.16) and (3.17) follows the statement of Lemma 5.

4. ProOFS OF THE THEOREMS

Proof of Theorem 1. Sufficiency of (2.3). Since this part of Theorem | was
essentially proved in [6], we shall give here only a brief outline of the proof.
Given 5 > 0, choose t such that

Wp ) = max | f(k -+ p) — fR)y <P
By (3.10) we have
@l Dy < max((1fp)] gy 1,0 TGt = 10D @)

Since, by Lemma 1, f is a bounded function on J, we can without loss of
generality assume that | f(k)|, < 1 for every k € J. From (2.1) follows then
that | a,( f)}, < 1 for all n = 0. Using this inequality and (4.1} we find that
| a,(f), << 1/p for all n = p'. Continuing this process we find that

| aa f)l, < 1/p* for n = sp'

and (2.2) follows since s can be chosen arbitrarily large.
Necessity of (2.3). Suppose next that (2.2) holds. Then

max | g, < ©

and
Alry = max | a(f)ip -0 (n— o0) (4.2)

By (3.6) we have

5 a7 ()

i=1

fin 4 p) — flmy = ¥ (

k=0

and so

(4.3)

El akw‘(f}(i:)

| f(n + pP) — f(m)], < max

B
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Let AN be a fixed integer and p* > N. We have then

o n(f)=r £ 500 + § o)
E ax+;(f) (I; :11) ‘ ?_gu ak+j(f)(‘3t) .
Hence
o D(5)], <7t o, | 2455

N+1;s;j'§ . | @y s(F)lp
<p Nmaxja(f)l, + fl(N).

From this inequality and (4.3) follows that

max | f(n + p) — FEml, < poN max | a (), + AN)
Consequently,

Tim sup w,(p*) < AN

and (2.3) follows from (4.2) since N can be chosen arbitrarily large

Proof of Theorem 2. Sufficiency of (2.5). Suppose first that (2.5) holds

ie., that fe Lip « on J, 0 < a < 1. Then f is bounded on J and, as in the

proof of Theorem 1 we can assume, without loss of generality, that

| f(k)l, =< 1 for k € J. It follows then that | a,( f), << 1 foreveryneJ
Also, since f€ Lip « on J, we have

wAp™) — max | f(k + p) — fB)i, < M,p=t  for ¢

=0,1,2,... (44
Then, by Lemma 3, we have, foreveryn > 0and ¢t = 1,2, r
l aﬂ+p‘(f)E max{(”;”) aﬂ+1(f)|:p b} 1 <_I

pt—1; M, p~).
Since | a (), <

1and 0 << @ < 1, from (4.5} it foliows that

| @nin(Nlp < max((1/p), My p=®) < pyp
where p, =— max(l, M,), or

(4.5)

10, |, =

pep™  for

(4.6)
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Using {4.5) with t = 2 and » = p, and (4.6), we find that
a,, A, < max(u,p-ot M,p7*)

< ey Max (p~7, P
= pep T
Hence,

| G |p 5 pyp~® for  m = p? 4 p.
Continuing this process we find by induction that
Pam(f)lp < pep’ for mZ=pr+ - - p. 4.7)

Now it is easy to see that this inequality implies (2.4). Suppose that
n = p® - p. Then, for some s = 2, we have

P4+ p =plp* — Di(p — 1] < n < pl(p*t* — D(p — 1)]
=ptt+ - TP
Since p*t? 3= n{p — 1) - p = n, we have, by (4.7),
[ @a(f)p < prp*= < pephop=tot®e <y ptene

for n == p® + p and (2.4) follows.
Necessity of (2.5). Suppose next that (2.4) holds. We have then

la (), < Mn* for n =1 (4.8)

where 0 < « =< 1. As in the proof of the necessity part of Theorem 1, we
have, by (4.3),
pt
(),

W

|+ p) — F), < max

for every n = 0. Since

() =r £ 240

it follows, by (4.8), that for every k< J,

—t k+j'(f)
1§1ak+j(f)( )l <pt max | = |
<Pt max .o % )a(k 4 )0 1 el
< Mp~t max P
_.5-:_ Mpwf
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Hence,
f(m) -+ pY) — f(m)l, < Mp™* for #
and (2.5) follows.

Proof of Theorem 3. Suppose that f(n -+ pY) = f(n) for neJ, with
t = 1. The inequality (3.10) of Lemma 3 reduces then to

W
2

| @pot( )y << max{(1/p) lap.;lp, 1 <j<<pt - 1)
and it follows that for every r = 1, 2,... we have
nzrpt = lalf), < Mp

where M = max;gcpt 1 f()y. If n =z pt we have rpt < n < (r + D p*
for some r > 1 and so

| an(f), < Mp— < Mp—r/?'+1

since r > nfp' — 1. Let M = p™, Then
Ll (), < prnir,
Since the p-adic value is always an integral power of p and

~[np*] << —njp* + 1,
we must have

| an(f)lp < protn/e!)
and Theorem 3 is proved.

Proof of Theorem 4. From (2.7) it follows that
wlp™) = max | f(k + p9) — f(K)l, < MQ(p~) 4.9

for: = 1_, 2,... Since L p*) — O (r — o0), this inequality implies, by Lemma
i, that fis bounded on J. We can assume, without loss of generality, that
Hf(k), < 1 for every ke J, We have then | a,(f)], < 1 for every n ;= O

and consequently
Ay = max | a(f)l, =1  for n =0 (4.10)
Next, from

oo SHA/p)
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it follows that we can find a constant ¢ > 0 and an integer T 3> 1 such that

-T LAA/p)
Let s == 1 be an integer such that
c=p" and MSX p-T) = pate+D, (4.12)

We have then, forr = T,
Ap ) = SAp™) = p Lo p~)

and it follows, by induction, that, for every integer o == |,

Qpo) 2 pre QA p)
It follows, in particular, that

Qp11) = prr 0 p). (4.13)

Next, by Lemma 4 and (4.9) we have
A 4+ s(s + D) pY < max( p~*+DA(p%), ML2(p—)).

Since /1 is monotone decreasing and p*+H = [ + s(s + 1), it follows that
A(pr) < A + (s + D) p) < max(pr VAP, MAp).  (414)
In particular, if ¢t = T, we have by (4.10) and (4.12),

A(pa+1+]") < max(p“"*”/l(pr), MQ(p‘T))
max(p~ ", ME(p™))
MQ(p-T). (4.15)

4

AN

Next, replacing ¢t by s + 1 + T in (4.14) and using inequalities (4.13) and
{4.15), we find that

A(prerT) max(p"‘*""”;‘l(p.””r), MQ(p—*1-T))
_‘q{“ max(Mp‘*’“*“Q(P‘T), MQ(‘p-a—l—T))
= MQ(p—*-1-T).

Continuing this argument, we find, by induction, that, for every r = 1,

640/15/3-4
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Using (4.13) we find easily that

Q(p—(r—lliﬁ-l}-—-?') g p2:{s+1lQ(p—{f+1Hl+1)+T).
Hence,
A(prtHlHT} .‘_{‘ Mpas(s+llﬁ(p—{r+1)hH}Jf_

Let, finally, n = p**3#7. Then pr+ii7 & p < plr+IMsHINT for some
r 2= 1. By monotonicity of A and £ we have

A(n) < A(prtsr DIT) . Mprets s p-tr41ite+1)-T)
< Mp*+0{)(1/n)
and Theorem 4 is proved.
Proof of Theorem 5. 'We have, by hypothesis,
Pan f)lp << ME(1/n) for n=1, (4.16)

We have, by Lemma 2,

| fln + p') - fm)i, < max

Z ak+i(.f)( )

i=1

4.17)

F o

for every n e J. Next, by (4.16),

= Z (ﬂw(f)/,')( )

T

ép" 1 max | ae () 5
nisp
<5 MPM* 15[5?‘};" _].Q(l/k 7‘*}))
= Mp~t max jO(1/)).
1< i< pt
From this inequality and (4.17) it follows that
.
wAp~') == max i f(n + pf) — f(mi, < Mp~t max jEA1/7). (4.18)
ne Wit p

Since the function 2 satisfies condition {2.13), we have, by Lemma 5,

pt max JO(I) = EL(p")  (r— o0)

lssi=p

and Theorem 5 is proved.
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