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Inequalities for Code Pairs

RUDOLF AHLSWEDE AND MICHAEL MORS

Cur main discovery 15 the inequality:
HABc{l..... 2!™: m € N; salisfies for the Hamming distance d
dia, b) — da. b) + dl@. b) — dia’, b) ¥ 1,2
foralla,a’ e A and b, 0’ € B,
then (4]18] < d**, where
a fora = 2,3, 4,

d' — x
- - 4
[2! '2i foraz 4,
and the bound is best.

It is much more general than its predecessors ([1], j2]) and has a perspicucus combinatorial proof.

1. INTRODUCTION

The pair (4, By, A, B < &™; whered = {1, ..., a},iscalled an (m, 8)-pair (or 5-distance
code pair of block length m), if for the Hamming distance d

da, b) = 9, forallae A, be B. ()

The discovery of [1] was

THeoreM 1. In the case a = 2, for every (m, d)-pair (A, B},
2", if m 1s even,

4|8l < ) .
m-t if m is odd.

Equality occurs with 6 = |7 J for the sets in:

ExaMpLE 1.
= {0L10}, B = {1100}, m even,
= {01,108 x {0}, B = {11,00}° x {0}, m odd.

In trying to extend this inequality to cases for « > 3 we found the inequality as stated in
the abstract.

Whereas the original two proofs of Theorem [1] (by a 1-step and a 2-step induction on
m) use frequency and complementation arguments, the simpler (and closely refated) proofs
of [2] and [3] are based on elementary algebra of the m-dimensional vector space over
GF(2).

Since, for general a, ™ cannot be endowed with a complement-operation or vector space
structure, a new argument was required. In problems concerning a cartesian product it is
natural to proceed by induction in the number of factors. For a set Cc @, mz?2 and
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i e ¥ we define

C = e, ....callll ey .., ) EC). (0

Our proofs are based on properties of the systems {(4,. 8,):1 < i<« 1 < j < a}. Of
course having the induction hypothesis for a larger class of pairs helps in the induction. A
first fruitful idea in this respect was to replace the property (), that is the property of
two-sided equal distances, by the weaker property of one-sided equal distances

dla,d) = d(a, ), foreveryae A andall b, b cB. (H)

A pair (4, B); A, B < 2™, satisfying (H) is called one-sided equidistant code pair of block
length m or in short an m-pair.

The proof of the inequality stated in the abstract (Theorem 1) is particularly simple for
m-pairs and is extremely simple for the case & = 2. Since from this case Theorem [1] easily
follows (see Section 3), we have as a by-product a proof of this Theorem, which we consider
to be simpler than all previous proofs {[1], {2}, [3]). It was the analysis of the proof for
m-pairs, which led for @ = 2 to the weaker 4-words property

d{a, b) — dia, b") + d(a’, b)) — d(a’, b) # 2, (4-WWP)
and for « > 2 to the 4-words property
da, b) — da, &) + d(a’, ) — d{a’, b) # 1,2, Va, a’c 4,¥b,b' € B.
(4-WP)

One can readily venify that for « = 2 the two conditions are cquivalent and that they are
not equivalent for & > 3.

Also one can immediately see that for any « there are the following implications

(A) = (H) = (4 WP) = (4-WWP). {1.2)

It is clear from the form of the bound «*” in the main inequality (Theorem 1), where
a, fora =12,3,4

ot = = max (a, &), (1.3)

- x|l a
= = || = -]
o lEJ[Z-” fore > 4

that the cases « = 2, 3 (and also the break point @ = 4 to a certain extent) show exceptional
behaviour.

Insight can be gained from the following examples

EXAMPLE 2. (x > 4),

EXAMPLE 3. (a = 2, 3, 4).
4= {lL,...,q" B = {Nh,.. . D
They satisfy (H) (and thus (4-WP)) and |4]1B]

2 also satisfies (H) and thus Theorem | §
with o 2> 4. However, here the best cho

IB| = a*" (tightness of the bound). Example
mplies the extension of Theorem [1] to the cases
ice for § is & = n rather than § = 15}
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Theorem | also implies the result of Theorem [1] for even m, whereas the case with m odd
requires an additional argument (see Section 3).

The case 2 = 3 has the mos! complex structure with respect to (H). Here the optimal
bound is not of the form B™. Tt will be treated in another paper, which is concerned also
with the Lee metric. Notice that for « = 3 the Hamming and Lee distances are equal. In
this case we encounter already problems which are typical for (L), the case of constant
Lee-distance code pairs. A discussion about this and also several other problems can be
found in Section 4.

2. THE MAIN INEQUALITY

TueoreMm 1. If (A, BY, A, B ¢ ™ satisfies (4-WP), then with «* as defined in (1.3)
|A{[BE < a*™, me N,

and the bound is best.
The proof is based on two Lemmas.

Lemma 1. [Inheritance of (4-WP). Let m 2 2. If (A, BY, A, B = 7, satisfies
(4-WP), then for any A;,ie I < X and any B, je &, (\J; A, B)) satisfies (4-WP).

Here by symmetry the roles of the A;s and the B;s arc exchangeable.

Proor. Forae A, @' ¢ A,; b, b € B, by assumption
1, 2 # d(a, jb) ~ diia, jb')y + dka’, jb") — dika’, jb)
= d(a, b) — d{a, b) + d(a’, b") — d(a, b),

because d(i, j) — d(i,j) + d(k, j) — d(k, j) = O for k = ias well as for k # I
Define now the non-negative numbers k, s and ¢ by

k = {1 €£i<al|A4llB] >0}, 2.1)
s = {1 Cigald >0 -kt = {l si<a|Bl >0 -k (22)

After relabelling we have

|41|B] >0, for | €igk;
|4 > 0, for 1€i<k+s;
I8l > 0, for 1<i<k and k+s<i<k+s+t 2.3)

LEMMA 2. (Disjointness property). Letm = 2. If(A, By; A, B c ™ satisfies (4-WP)
and ifk + s,k +t > L thenforl Sisk 1 <jsai#]
(d) A,‘ M Aj = Qf, and
) BB =3

ProOF. By symmetry it suffices to show (a), that is, 4, 0 A4; # & 'contradicts (4-WP).
By our definitions B, # {andsincek + ¢ = 2 there cxists an/ # i with 8, # &. Choose
nowae A, N A4;, b;e B, be B and potice that

d(iﬂ, ’b‘l) - d(iﬂ, fb,) + d(ja, lb,) — d(ja, !b[)
= d,]) +d(, D — D = 2 —d0 b
This contradicts (4-WP).
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PrROOF OF THEOREM | BY INDUCTION ON m.

m=1. IfAnB = then|4||B] € @ € max(a, ) = «*,andif 4 " B = (&, then
the assumption 4 o {i, j}, B o {i, I} w:[h i # j, {leads to the contradiction

dialy—-di, )+ d(, ) —-d(j) = 1 -0+ 1 — d(j 1) e {1, 2}.

Therefore in this case |4||B| € a < «*.
m— 1 —m: Ifin Lemma 2 the hypothesis k + 5, k + ¢ > 2 does not hold, then

[A|I8] < a max |48,

and since, as a special case of Lemma 1, (4,, B;) satisfies (4 WP), we have by induction
hypothesis

[A]|B] € ao*™ ' < a*™.

Inthecasek + s,k + ¢t 2 2 we consider the scheme specified by the definitions (2.1)-(2.3)
with the following subdivision

A Agdy Aiyz e Ary,

B,

. 1 il
B,
Bk+:+| |

. I

I

Bk+s+r

Clearly |A]|B] = 1 + II + III, where

1= |A|(218| . |Bfl)

i=1 F=k+3+1
k+1

k+s+r
= | 4 (2 1Bl + ¥, |B,.|) (by Lemma 2)
i=1 J=1 F=k+stl
€ (k+ no*™'  (by Lemma 1 and the induction hypothesis).
k+x k
I = ¥ |4 (U Ei) U By (by Lemma 2)
=k i=1
< (s — Da**~'  (by Lemma 1 and the induction hypothesis).
ks k3542
Hb = % 141 ¥ IBI<¢—-D(- Da*m-!
imwk+2 J=k+s42

(by Lemma { and the induction hypothesis).
Since (k + #) + (s — )t — 1) = k + st, and since

{(k+s)t$&, fort > 1,
k+ st €

k<o fort = 0,
we conclude that

[4i1B] € max(e, )a*™! = o (2.5
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ReMark. P. Delsarte and P. Piret gave in [2] for @ = 2 the congruence condition:
dia, b) = rmod 4, forsomere {0,1,2,3} andall ae 4,beB.
Since4r mod 4 = 0 mod 4 # 2 mod 4, this is a very special case of the 4-words condition.

3. A Proor oF THEOREM [I] Via ONE-SIDED CONSTANT DISTANCE CODE PAIRS

It is clear from (1.2) that Theorem | and Examples 2 and 3 yield:

COROLLARY 1. If (A, B), A, B © I; satisfies (R); then for me N
|A||B} < a*",
and the bound is best.

A SIMPLE PROOF FOR THE CAsEx = 2. Thecasem = 1is trivial. For an m-pair (4, B),
either B, = {7, for some j, and then inductively

|A[|B} = {AIB;| + |A)IB; 1< 2-277, [ #)
or we have A, n A, = &, because otherwise forae 4, N 4,,be B, b" € B, by (H)
d{la, 1b) = d(la, 2b") (3.1
d(a, 1b) = d(2a,2h) (3.2)

and (3.2) implies d(la, 1b) + 1 = d(ia, 25') — 1, a contradiction to (3.1).
Notice now that (4, \J 4,, B)) is an (m — 1)-pair and that therefore

A|B] < |4, U 4108 + By < 2-2"1

THEOREM [1] FRoM COROLLARY 1 (¢ = 2). Only the case m odd remains to be proved.
We denote the complement of an a € {0, 1} by o. For a sct 4 < {0, 1}" we define
A° = {a*: a € A}. Since for any g, b € {0, 1}"

dl@, b) + d(a, b) = m, (3.3)
for any (m, 8)-pair (4, B) the pair (4 v A%, B)is an m-pair and foroddmalso A n A" = .
Therefore by Corollary 1
NA|B| = |4 u A£||B <2

COROLLARY 2. (Extension of Theorem [1]). If (4, B); A, B c &™; satisfies (H), then
formeNandalla = 2

|4]18] € a*".
The bound is best for « # 2, 3.

Proor. Since (A) implics (F), Corollary 2 is a special case of Corollary 1. Tightness of
the bound for a > 4 follows from Example 3. We know already that for & = 2 the bound
is also tight for even m, however, for m odd it is not, because here a*™ ' is tight. Finally
the bound is not tight fora = 3, because (4, B) = ({!, 2}, {3}) is an optimal configuration
incasem = 1 and |A}|B] = 2 < 3 = o™

For a further discussion of the exceptional behaviour of the cases « = 2.3 see
Section 4.
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4. DIRECTIONS FOR FURTHER INVESTIGATIONS

We sketch here possible extensions of the results of the paper and state some specific
problems.

(1) FRoM HAMMING TO GENPRAL DISTORTION MEASURES

In information theory, any function D: & x & — R, is called a distortion measure and
D:&™ x & - Ris of sum-type, if D(x", ") = £, D(x,, £). Quite generally one can
study the sizes of sets 4 = ™. b « 4™ meeting a fixed finite set of constraints in terms of
the mutual distances. In particular for the familiar {4-WP) Inheritance Lemma ! extends
to every sum-type distortion measure.

Lemma 2 extends to accurate (D(x, x) = 0 for xe & } and symmetric (D(x, x'} =
D', x) for all x, x" € ¥ = §') sum-type distortion measures, if

4G, 1) = DGJ) + DG, 1) — D(j, 1) # 0, (4)
foralli,j, /e &, with i # j, !, and if the generalized four word property is defined by
D{a. by — D(a, ¥) + D(a’, b') — D(a', b) ¢ {AG LD #£ 4,1}
(G4-WP)

Inspection of the proof of Theorem 1 shows that the bound o*” (but not tightness!) holds
in this greater generality.

ProBLEM 1. The generalized (WP) above holds for constant distance code pairs
(4, B), if the metric space (¥, D) has no degenerate triangles, that is, (4) holds.

Establish right bounds on |4]|8}!

PROBLEM 2. We have mentioned in the introduction for the Hamming case the weaker
4-words property (4-WWP),

Forevery « 2 2 and m € N study

max {|4{|B|: A, B = ¥™ satisfics {4-WWP)}.

(2) LEE METRIC

Notice that (A) is satisfied for instance by every ultrametric, but not by the Lee metric
for o = 4 and also not by the Taxi metric (a name used for the L'-metric, if the space is
finite).

It is remarkable that the cases o = 2, 3, which showed exceptional behaviour for

constant distance Hamming code pairs, are exactly those where the Lee and the Hamming
metric are identical.

PROBLEM 3. What are the exact bounds for
(a) constant distance
(b) one-sided constant distance
code pairs in the Lee case?

In particular for @ = 3 in the ¢ircums
is tight,

Notice that the case o = 4 is solved, because the Hamming metric on 72 s isomorphic
to the Lee metric on {1, 2, 3, 43,

tances of (a) we conjecture: form > 10 max (7)2¢
d
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PrOBLEM 4. What are the answers to the questions in Problem 3 for the Taxi metric?
PROBLEM 5. What are the substitutes for the (4-WP) in the Lee resp. Taxi case*.

A solution to these problems may give hints how to proceed with the program described
in (1).

(3) SeecrFIC DISTANCES, FREQUENCY CONSTRAINTS

For a metric D define
D.(m, ) = max {|A}|B|: (A4, B) is {m, d)-pair}.

ProBLEM 6. Determine D, {m, 8) in the case D is (a) the Hamming metric, (b) the Lee
metric and (c) the Taxi metrnic.

ProBLEM 7. We say that (4, B); A, B « &'™; is of constant frequency type, if
fifa b) = It (a, b)) = (@&

does not depend on (g, #) € 4 x B. What are the configurations maximizing {4||B{?

{4) More THAN Two CoDEs

The questions raised in so far can be asked for tuples of sets 4, B, ... < &™. Already
if only constraints on pairs are imposed, there is a multitude of problems.

(5) FroM SyMMETRIC DIFFERENCE TO OTHER BOOLEAN OPERATIONS FOR SETS AND
MULTISETS

The Hamming space ({0, 1}™, d} is isomorphic to (#({1. . . ., m}), |A1), where |A|(a, b)
denotes the cardinality of the symmetric difference for two subsets a, bof {1, . .. . m}. One
might consider |U|(a, ) = |a u bf and other Boolean operations and ask questions in the
spirit of the preceding paragraphs for sets (and also multisets).

There is of course already an extensive literature on problems of this or a similar kind,
but some of the questions seem to be new.
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*In a recent paper ‘A bound of sizes of code pairs satisfying the strong 4-words property for the Lee distance’
Cai Ning showed that for 4, B < {1,2,...,4}" (> 3 ne€ N). which satisfy for the Lee distance 4

ila, b)Y — Ma, by + Ala, b)) — Mg, b) = O, for aia,ad e A; b, 5 e B,
|AllB| = (max{a, (Lz/41+ 1) (Le/2127 + DY
and that this bound is best possible.
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