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Coding for Write-Efficient Memory
R. AHLSWEDE AND Z. ZHANG
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We introduce write-efficient memories (WEM) as a new model for storing and
updating information on a rewritable medium. There is a cost p xR,
assigned to changes of letters, A collection of subsets % = IC1<is M) of 7 is
an (n, M, D) WEM code, if C.nC,= g for all i#jand if
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Isi s M e Ve
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D,y is called the maximal correcti
The performance of a code € can a
maximal cost per letter d,=n'D
rate achievable with a maximal pe

On cost with respect to the given cost function.
Iso be measured by two parameters, namely, the
max aNd the rate of the size re=n 'log M. The
r letter cost 4 is thys

R(d)= sup r,.

€. dy< d

This is the most basic quantity (the stora

ge capacity) of a WEM (T ") . We
give a characterization of this and related

Quantities.  « j9g9 Academic Press, Inc.

INTRODUCTION

Papers by Ahlswede (1986),
Ahlswede and Han (1983), Costa (1983), El Gamal (1983), Gelfand and

Pinsker (1980), Heegard and El Gamal ( 1983), and Tsybakov (1977) either
continue this line of investigation or else contain results with strong con-
nections to it. A new impetus came from g Paper by Rivest and Shamir
(1982), in which write-once memories (WOM) were introduced. They have
been further analysed in Heegard (1983) and Wolf, Wyner, Ziv, and
Korner (1984). In a WOM there are two states 0 and 1 for g ceJ (or posi-
tion) in the memory (or medium); 1 is the state of 5 cell which has been
used and 0 is the state of a cell which has not been used, Once a cell is in
state | it will stay there forever. So among the four possible transitions of
the states, 051, 0-0, 1 - I, and 150, the first three are allowed,
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whereas the last one is forbidden. This means that the memory is somehow
a permanent one.

Recently a new model of updating information stored on a rewritable
medium has been introduced by Willems and Vinck (1986) and Borden (in
press). There the memory is not permanent, all of the four transitions are
permitted; however, for a rather long time period of updating, it is allowed
to write either 1's or 0's, but not the combinations of both of them. This
assumption arose in laser technology, where the printing of the same letter
can be done fast, but changing the directions of the magnets necessary for
a variation of letters was rather slow. This storage medium has been named
“write-unidirectional memory.” The abbreviation “WUM" suggests itself.
The papers of Cohen and Simonyi (in press) and Simonyi (1989) deal with
or relate to WUMs.

Recently, we learnt from Franz Willems that technology has advanced to
the extend that the changing of magnets is no longer a major obstacle. This
stimulated us to consider still another memory (Hamming WEM) and then
to set up a seemingly natural and quite general model for memories, which
includes also WOMs and WUMs as special cases. We argued as follows.
Since a rewriting (transition from 1 to 0 and from 0 to 1) always costs time
and energy, whereas the other two transitions (0 — 0 and 1 — 1) cost very
little, it is reasonable to design codes of updating information stored on a
rewritable medium which require as few changes as possible in the text
written on the medium. In other words, we want to minimize the rate of
transitions 0 —» 1 and 1 — 0 in order to save time and energy. These ideas
are made precise in the following definitions.

Let #=C,. {1<i< M) be a collection of subsets of {0, 1}". All of the
members of this system are disjoint, that is for i # j

CnC=0. (1.1)

To use this system as a WEM (write-efficient memory) code, we use all the
Sequences in a subset C; to represent the same message, say m,. While m;
is stored on the medium, one of the sequences in C', say c;, is written. If
We want to update m, to a new message m; i choose one sequence in C say

» Which is nearest to ¢, in Hamming distance, and correct only the posi-
tlons where ¢; and ¢, are different. We need to write only dyl(c;, ¢;) times.
For a WEM code there are several parameters of interest. n is called the
block length of the code, M is called the size of the code, and D, is the
maximal updating correction; that is,

D, = max max mindgy(c;, c;). (1.2)

max
1<i,jsl ;e C el

§I - ! X
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If the parameters are as specified and D...<D, then we speak of an
(n, M, D) Hamming WEM code.

Now we go for more generality. Instead of using the alphabet {0, 1} and
instead of counting the number of transitions 0 — 1 and 1 -0 now we
allow a general alphabet 2 = {1,2, .., a} and a function =4 x ¥ - R
measuring the costs of the transitions from one letter to another one.

We call a collection of subsets of 27, ¢ = {C,: I1<i<M} an (n, M, D)
WEM code, if C,nC;= ¥ for all i, j with i# jand if

Doy 2 max  max min o"(x", y")< D, (1.3)

lsi.jij x"eC, yeC,

where ¢"(x, ") & T7_, (x,, y,)

D .y is called the maximal correction cost with respect to the given cost
function. The performance of a code % can also be measured by two
parameters, namely, the maximal cost per letter dy=n"'D_., and the rate
of the size r,=n"!log M.

The rate achievable with a maximal per letter cost d is thus

R(d)= sup r,. (1.4)

€ dy<d

This is the most basic quantity (the storage capacity) of a WEM
(Z", ") |. When we apply a WEM code ¢ = {Cil11 <ig< M) repeatedly
in a process of rewriting on a rewritable medium, it seems natural to con-
sider not only the maximal correction cost, but also the cost arising in
“average.” A reasonable concept of average cost can be introduced in the

following model. It is assumed that the sequence of messages (M,);2 |,
which will be written on the mediu

, : m, are the values of a sequence of
independent random variables, which are uniformly distributed over the
set {1,.., M}. The rewriting proce

ss is defined by a mapping ¥: Q x
{1.2,.., M} > Q, where pping

M
Q=) (1.5)
i=1
and
P(x" )eC;, for x"eQ (1.6)

The un:igrstar_xding is as follows. Suppose that before the ¢th rewriting a
word x” is written on the medium and that in the rth rewriting we have to
change the message to I, then we choose ¥(x", i) to represent ;.
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For our purposes any ¥ as defined above is suitable. One could choose,
for instance, the “greedy” mapping

7 2x{l, ., M}>Q

with y(x", i)e C; and @(x", y(x", i))=min_._. @(x", z"). The sequence of
words (U,}2 ,=((X"),)™, written on the medium during the rewriting

r=1

process forms a Markov chain. Its transition probability matrix
(Y"1 X")) ne g, yne o 1S given by

/M if i with y" = ®(x", i)

1.7
0 otherwise. (1.7)

#(y"IX")={
The state space of this Markov chain can be partitioned into disjoint
classes:

o= @, (1.8)
j=0

where in the terminology of Chung (1967), 2, is the set of inessential states
and the Q; (j=1, .., s) are the sets of essential states. In the long run, @,
makes no contribution to the average correcting cost and can therefore be
deleted from Q.

Let 17, be the stationary distribution for the essential class 2,; that is,

Y, Mix")=1 (1.9)
x"e.Qj
and
m(y") for ye®,
) "j(x”)u(y”lx")={0’(y) fZi inzgj_ (1.10)

x" € £2,

In order to make the Markov chain stationary the initial distribution must
be of the form

I(x")=Y AI(x"), Y A=1, 4;=0. (1.11)
j=1 Jj=1

If we start with any initial distribution p and define the average correct-
Ing cost by

_ 1 &
D= lim — Y Eo(U,, U, ) (1.12)
=1

m—»ooml
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then from the theory of Markov chains we can conlude that

Bzil’(%) Y X Iy u(y"x") o(x", y) (1.13)
j=1

n M
x"ef) e

H
II. M"‘

p(Qj) Djs

ji=1

where D, is the average correcting cost for class ©,.

Therefore best use of the code is made, if we delete all but one of the
essential classes with minimal value D,. This means that the Markov chain
corresponding to the WEM code should be irreducible. For such codes the

average correcting cost rate d, is well defined. Also we can define the
average correcting cost rate

R(d)y= sup r,. (1.14)

dg<d

Our main result is a characterization of R(d) in terms of entropies
(Theorem 1). The next result is an even more explicit characterization
(Theorem 2). It is also of interest to know that R(d) equals R(d)
(Theorem 3). In the special case of Hamming WEMs, R(d) just equals the
binary entropy function h(d) (Theorem 4), Finally, we draw attention to a
certain duality between WEM codes and channel codes.

At the end of the paper we announce further results obtainable by our
approach and we also sketch some directions of further investigations.

2. CopING THEOREMS

For the description of our results we need some definitions. For a set Z,
P(Z') denotes the set of all probability distributions on Z. Let (X,7) be
a pair of random variables with values in & x # and distributions P, ,. We
denote the (marginal) distributions of X (resp. Y) by p x (resp. P,). A set

of distributions important to us is
Fu={PxyeP(XxXA). Py=p,, Eo(X, Y)<d). (2.1)

These are distributions with e
not greater than 4

Furthermore, for Pe P(Z) and 9 PI)

qual marginals and ap expectation of costs

we define

,@(P,.@)z{P”eQ"(Zl”xfl"): Py=P P,e 9} (2.2)

and

ZalP. 2)={Py, e 2(P, 9). Ep(x, Y)<d), (2.3)
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Finally, we need the quantities

pld)= sup H(Y|X) (2.4)
Pyye #;
p'(dy= sup inf sup  H(Y|X). (2.5)

depr)Ped prrepypr 2)
Here H(Y|X) is the conditional entropy.
Our main results can now be stated.
THEOREM 1. For any d20and ¢: F x¥ - R*, R(d) = p'(d).
LEMMA 1. p(d)=p’(d).
THEOREM 2. R(d)=p(d).

THEOREM 3. R(d)= R(d).

One possibility to define the average updating correction of a Hamming
WEM code is

| 1 :
ave — W Z = Z ml? dH(ci, Cj)'

1<ijsM |C: ceC, 9€Y

D

We call R,..(d) the maximal rate of codes (n, M, D,,.). Our last result
concerns Hamming WEM codes.

THEOREM 4. (a) For an (n, M, D) Hamming WEM code M <Y P_, (7).
(b) For an (n, M, D,..) Hamming WEM code,
! n
MD,. 2@+ 1)M- ) (t+1—i)(.),
=0

l

=

where 30 _ o (M<SM<T!EE (7).
(c) For Hamming WEM codes, R(d)= R,..(d) = h(d).
3. NOTATION AND KNOWN FACTS

~ We abbreviate 2(2'), the set of probability distributions on %, as #. For
Integers n we put

=N

L)

S -

%={Pe?|P(x)e{O, ,...,l}for allxeﬂ”}.
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For x"e " we define for every xe X, P.(x)=1/n (number of occurences
of x in x"). P_. is a member of 2, by definition. It is called the type of x".
Analogously we define the type P n,» foOr pairs (x", y")e Z"x X" For Pe P
the set 777, of all P-typical sequences in 7" is given by 75 = {x"| P..= P}.

Let Qe 2(X xZ') have a 1-dimensional marginal distribution P_.. We
define a set of sequences Q-generated by x”,

Go(x")={y"|P =0} (3.1)
If for the random variables X, Y we have

Puv(x, y)=P(x)W(x|y) forall x,y,

then for the entropy H(X) and the conditional entropy H(Y|X) we also
write H(P) and H( W|P), respectively.
We shall use the facts

12 < (n+ 1)1 (32)
(n+1) " Fexp{nH(W| P 1)) < 1G(x"))
<exp{n(W|P.)},  if Q=P W (3.3)

4. PROOF OF THE CONVERSE PART IN THEOREM 1|

We show that R(d)< p'(d). For this let € — {Cil1<gig M} be a WEM
code with blocklength » and maximal per letter cost dy,<d
For any x"e @ & (Y | C, consider the set

Sdx"y={y"eQ|p(x", V') <ndj}. (4.1)
By the definition of a WEM code we have

M < min |5,(x"). (4.2)
We evaluate this bound by partitioning Sa(x") according to joint types as
follows. Consider the set of joint types

P(x", S4(X")) = {Pynn| y"e Sa(x")} (4.3)

and write

Si(x") = U (S4(x") N G7(x")), (4.4)

Qe P(x" S4(x"))
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By (3.2) and (3.3) we have

1 logn+1
log |S,(x <4125 L max H(WI|P.)
n n Peon-We P Sa(x™))

and from (4.2), therefore,
1 o logn+1 :
—log M < |F|? —=——— + min max H(W|P ).
n X"es2 P We Px" Si(x"))

The first summand tends to 0 as » tends to infinity. Since for y"e S,(x"),

n

Y ox,y)=nY Y Pax, p)olx, y)

=1 xed ye ¥

=nk, ., o(X, Y)<nd,

by definitions (2.3) and (2.5) the second summand does not exceed p’(d),
because we can choose 2 & {P.:z"e Q).

5. PROOF OF THE DIRECT PART IN THEOREM |

Recall the definition of 2, = () in Section 3 and define

p'(d)= sup inf sup  H(Y|X).

2e2,Pe? pyreyp 2)

By continuity,

lim p,(d)=p'(d). (5.1)

Fix now n and choose 2, < #, such that

min max H(Y|X)2p,(d)—c (5.2)

Pe 3, Pyye Py(P, 3p)

We shall show by random selection that for any n and ¢ R(d) > pj(d) — 2¢
and thus the result.
For the 2, chosen, define

Qb4 | Thecan (5.3)

PeQy

Now labe] the elements of 2 independently and with probability 1/M with
one of the numbers 1, 2, ..., M. The elements labeled with i form the codeset
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C;. M will be determined below. We first calculate the probability Pr(x", i)
that for a fixed x" € 2 there does not exist a V'eC,nS,(x" 2), where

S4(x", Q)= {z"€ Q: p(x", ") < nd\. (5.4)
Clearly,
1 INFTR SN #31] (55)
Prix", i)=(1—-—— i .
r(x", i) (1 M)

fnow I'=3Y . 37 | Pr(x" i)< 1, then there exists a code of size M and
maximal per letter cost less than d.
Now by (5.5),

x"e

1 )minr"eﬂlsd(x”.ﬂﬁ < l,

=1 M(1-=
2| ( -

if M < (210g |2]) =" min,., g, [S,(x", Q).
By (33) and (54) |S,(x" Q)

MAX g = W Pine 24P yn, 2,) EXP{NH(W| P
M such that

= lUQe?d(Pxn.jn) G'é(x")! 2z
)} (m+1)"" and we can choose

1 )
zlog M = min max H(Y1X)—O(log n)-l-.
n

Pe 2, Pyye @y P, 2.

6. PROOF OF LEMMA 1

Since obviously p(d) < p'(d)

» it suffices to establish the opposite
inequality. For £> 0, let 9 P

&) be a set of distributions with
inf sup H(YlX)Bp’(d)—s

Pe2 pyyedyp 2)

(6.1)

_ v
and, for Pe2, let P, (P) be a distribution ip Z(P, 92) with
H(Y|X)>=p'(d)—e. This gives rise to two maps,

¥:2- () Z,(P, 2)

Pey

Wz: .@ — .@,
with ¥\(P)= Py, (P) and ¥,(P)=P ()
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Choose now a sequence of distributions in 2, say (P,)*_,, where
P, =¥,(P) for 1<ig<k-1. (6.2)
Define now
§ kot
Pyy=—13 Yi(P), (6.3)

k-1

T P (64)

] k-1

1
Py=:— 3 P, Pr=r—

Furthermore, let (X, Y,) have distribution ¥,(P;) and let the random
variable / take values in {1, ..., k — 1} with equal probabilities. Then by our
construction,

1 2! -
pld)~e<;— T HYIX)=HY X, DSHTID)  (65)
V=
and, from (6.4), we conclude that in the norm ||-|| of total variation
1 2
[Py — Pyl = HP. Pl <STT (6.6)

Therefore Pyy has almost identical marginal distributions. This, (6.5), and
an elementary continuity argument complete the proof.

7. PROOF OF THEOREM 3
Since R(d) > R(d), we have to prove only
R(d) < R@). (7.1)
For this we make use of a known fact.

LEMMA 2. For any of < & and distribution Q" on X" defined by

(Yl if x"ed
Q"(x") = {O otherwise,

logl#| = H(Q™)< . H(Q,) <nH(Q) (7.2)
=1
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where Q,,..,Q, are the \-dimensional marginals of Q" and

Q=(/m37.,Q,.

Proof. The two inequalities in (7.2) are basic properties of the entropy
function. Notice that Q has the property

1
Q(x)=——{(r, x")| I 1<n, x"€.of with x,=x!. (7.3)
n|.of|

Fix any ¥ as in (1.5), (1.6).

Let now € = {C,[1<i< M) be a WEM code, which is irreducible under
the Markov chain induced by ¥. For x"e Q = UM | C, define

Qx"y={¥(x, " 1<i< M) (7.4)

We have assigned to every .o/ = 4" in (7.3) a probability distribution Q on

Z. Here we carry this one step further by assigning a probability distribu-
tion Q .(-,-) to £2(x") by

Ol 3) = e W I <<, e Qx7), x,= x, = ). (75)

We also use

1
Px,.(x)z;!I{t, xX")x, =x}|, (7.6)
Wl y1x)=Q.ulx, y) P afx)", (7.7)

Now for o = (x") by Lemma 2,

n

1 o 1 1
’—Ilog!!)(x )IS;!E H(Q,)=Z; Y. H@Q,)

X iix=x

and, by the convexity of the entropy function,

!
Ly, Y HQ)
I 1
<L P H (ann(x) ) ;ﬂ Q,)

=Z Pxn(X) H(W,r"('!x)):H(Wx"lpx")'
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Therefore, Lemma 2 generalizes to
LEMmMA 3. (1/n)log |Q(x")| < H(W .| P ).
This implies

Rz;:-log 12(x")] < H(W | P ). (7.8)

This is true for every x"e .
Let IT be the stationary initial distribution and define

Q(x, ¥)= 3 M(x")Qulx, y). (7.9)

e £
Let (X, Y) have distribution Q. Then as in (6.5) we conclude that

HYIX)2 Y IIx") HW.|P.)=R.

x"e 2

We complete the proof of Theorem 3 by showing that P, = Q € #,, which
is defined in (2.1). Now

Y Q(x, p)olx, y)

M
= ), (x") ;%(P(X", P(x, i"))
=1

xe i

1 n "
==Y Hx"u(y" | x")e(x", y")
=d<d.

It remains to be seen that P x=Py,

Py(x)=3 Qx, y)=3 3 H(x")Qulx, y)

vy x"eQ
1
= I(x"
2 2 )

x|{(t, y)1<t<n, y"eQ(x"), y,=y x,=x}]|

1
= "y — <n, x,=x}l. (7.10)
=y n(x)n|{(t|1<:<n x,=x}|

x"e Q2
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PY(y):ZQ(ysx)=Z Z H(xn)Qr"(x’y)

x x"e

1
=Y ¥ 1)

e n|Q2(x")|

X[{(t, y"HI<1<n, y"eQ(x"), x,=x, y,= y}|
1
=y Y M(x")- Y, u(y"x")
x x"eQ n_v"e.(?
x| {t|1<t<n, X=X, y,=y}
1
= 2 Ix)= ¥ u(y"|x")
x"e 2 n_v"e.Q

x{t1<r<n, y, =y}

L1
=y SNt <i<n, y, =y},

yef2

because 17 is stationary. By (7.10) the last quantity equals P ,(y).

8. HAMMING WEM CoDEs

A. Proof of Theorem 4.

. (@) For any x"€ {0, 1}" the total number of elements in {0, 1}" with a
distance not greater than D from x" ig 271 (). Therefore, necessarily,
M<3P ()

il

(b) For any x"e Q= UM, C; the contribution to D,.. is at least

1

() reen(u-g )]

if Yo (DSMYIH (M),

i

(¢) We show first that Rave(d) < h(d)
trivial,

From (b) we know that

L& (n L
Davczm_ . d —=2
M .'go (’) o M (igo (’)) ’

for d<!, the case d>1 being
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and thus D, >(3:*, (7)) §=0i(f)2t~0(ﬁ). Therefore we have
also

e ()< (o fo(25) e

and thus the claim.

Since R,..(d) = R(d) and by Theorem 2, R(d)= p(d), it suffices to show
that p(d)= h(d). In the formula for p(d) choose now (X, ¥) such that
Py=Py, Px(0)=P(1)=1, and Py, (0]0) = Py,4(1|1)=p. Then p(d) >
max, ;. ,h(1—B)=h(d), if d<3, and hence the result.

Remarks. (1) Statements (a) and (b) in Theorem 4 suggest two defini-
tions. A WEM code is called perfect, if the equality holds in (a), and it is
called quasi-perfect, if equality holds in (b).

A closer look at the definitions of perfectness and quasi-perfectness
shows that the collection of cosets of a perfect linear channel code is a per-
fect WEM code; also the collection of the cosets of a quasi-perfect channel
code is a quasi-perfect WEM code. On the other hand, we can prove very
easily that any coset of a perfect linear WEM code is a perfect channel code
and any coset of a quasi-perfect linear WEM code is a quasi-perfect
channel code. By this duality the results (van Lint, 1975) for perfect linear
codes lead to corresponding results for perfect linear WEM codes.

(2) The answer R(d)=h(d) for the storage capacity of a Hamming
WEM suggests a close connection to mutli-user source coding. This can
best be understood from an abstract point of view. In Ahlswede (1979,
1980) it was demonstrated that the essence of many multiuser source
coding problems is a statement about vertex colorings of hypergraphs
which assign different colors to almost all vertices in every edge.

The essence of Theorem 1 is a statement of a similar kind. This can best
be seen from the proof in Section 5. Indeed, let (£, &) be a hypergraph
with vertex set 2 and edge set & (that is, {S,(x", 2)|x" € Q} in Section 5).
We say that (£, &) carries M colors, if there is a vertex coloring with M
colors such that a/l these colors occur in every edge. Let M(£2, &) be the
maximal number of colors carried by (£2, &). .

The derivation leading to (5.6) carried out in abstract gives the following
result.

COLORING LEMMA. The hypergraph (8, &) carries M colors, if
M<(In|2{) ' min,_,|E| and M >2.

~Since in typical applications the quantities |2 and |£] grow exponen-
tially in the blocklength n, we have M(Q, &)~ ming.,|E|.
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(3) We are grateful to N. Cai for having drawn our attention to the fact
that the coloring problem, which consists in determining M(Q2, &) for any
hypergraph (2, &), includes problems of Ramsay type.

To see this, let us choose for integers n, k, [ with n>k > I, the /-element
subsets ('} ) and the k-element subsets (e)of #7=1{1,2, .., n} as vertex set
(resp. edge set) of a hypergraph (( 1) (1)), whose vertex-edge incidence
structure is defined by set-theoretic containment. Now the classical Ramsay
number n(k, /) is the smallest integer such that for n > n(k, [} the hyper-
graph ((-7), (")) satisfies M((-*), (1)) = 1.

9. SUGGESTIONS FOR FURTHER RESEARCH

Here we mention problems and directions which deserve further study.

In some cases we already know the answers, Since they are obtained by
combinations of known proofs we just state the results.

Code Constructions

Perfect WEM Codes

One may try to classify

the perfect and quasi-perfect non-linear WEM
codes.

Error-Correcting WEM Codes

There may be errors in writing, printing,

concept of the error-correcting code can be combined with that of a WEM
code. The following definition Seems 10 us to be the most natural:
{C/l1<i<M}is an (n,M,d,, d,) WEM code, if

and in reading. The familiar

(1) for all i, j (i # j) and all x"eC, y'eC, d
(ii) for all X"€Q, ,=1{z" e, 4
1sayye C; with ¢"(x", y™) <d,.

H(xna y")?dl,
#(Z% ¥") <d,/2} and all J there

ExaMPLE. {000 000 000}, {111 000 000,000 11 111
111 000 111}, {000 000 111, 111 11] 000}
with d,, as the cost function. Several interest
arise already for special choices of the parame

1, {000 111 000,
is a (9,4, 1,4) WEM code
ing combinatoria] problems
ters d, and d,.
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Side Information

The issue of side information has played an important role in multi-user
source and channel coding. We use the notation E_. (resp. D,), if the
encoder (resp. decoder) has side information, and the notation E_ (resp.
D_}, if the encoder (resp. decoder) does not have side information. For
memory cells the side information refers to the knowledge of the contents
of the memory before a new action (encoding or decoding is taken. For
WOMs the papers of Rivest and Shamir (1982) and Heegard (1983)
consider the case (£, , D _), and in Wolf, Wyner, Ziv, and Kérner (1984),
the remaining cases are analysed.

Our results for WEM codes concern the case (E,,D ). Additional
knowledge of the decoder has no effect; that is, our results also hold in case
(E,,D,). We have the same independence of decoder’s knowledge in
case £ _ .

There is an interesting case E, between E_ and E,, where the encoder
knows time.

In a forthcoming paper “Multi-User WEM Codes” we prove that for
average costs in obvious notation

R ()= sup H(P) (9.1)

P:.Ep.po<d

k

- 1
Ry(d)= lim Esup{z H(P)| Py, .., P;: fE_,,,.xpMcpsd}. (9.2)

=

For maximal costs we have no final answers. They depend on the solution
of two seemingly basic extremal problems, which in the Hamming case
with 2 ={0,1} are solved and known as diameter and isoperimetric

problem (see Ahlswede and Katona, 1979):
Maximize | /| subject to the constraints .&/ < & and
e"(x", y")<d forall x" y"ef. (9.3)
Maximize |./| | B| subject to te constraints &/, Bc 2" and
o"(x", y")<d for all x"e .o, y"€B. (9.4)

Defects

Work on memory cells with defects was initiated in Kusnetsov and
Tsybakov (1974). The papers of Ahlswede (1986), Ahlswede and Han
(1983), Costa (1983), El Gamal and Greene (1983), Gelfand and Pinsker
(1980), Heegard and El Gamal (1983), and Tsybakov (1977) either
continue this line of investigation or relate to it.

643.83 1.9
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Gelfand and Pinsker (1980) gives the most general result in case
(E*, D7) and Ahlswede and Han (1983) gives the most general result in
case (E°, D*), with partial side information. Both results are incorporated
in a more general theorem with partial side information for encoder and
decoder. Optimality is far from having been accomplished. The model is
that of a memoryless channel with state ¥, where the states are selected by
an iid. process. The side information concerns knowledge about the
outcome of this process. By a combination of the methods, our results for
WEM codes can mostly be extended to include cases of defects. One can
also include aftereffects in the sense of Witsenhausen and Wyner (1983)
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