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1. Definitions and introduction of the capacity functions

¢(A), c(rg), c(Xg) .

Let X = {1,...,a} and Y = {1,...,b} be, respectively, the
input and output alphabets which will be used for transmission
over a channel (or a system of channels). Any sequence of n

letters X, = (x1 ,x7)

n
gees € E X 1s called a transmitted or sent

n
l=sequence, any sequence Yy = (yl,...,yn) €1 Y is called a

received n-sequence.

et S = {1,...,k}, and

C = tu(-1-18)]s e 33,

where each w(-|.|s) 1is an (axb) stochastic matrix, also called
a channel brobability function (c.p.f.). TFor each

Xy = (xl,...,xn) € Xn = ? X we define a probability distribution
(d 1 1 n t.t

P.d.) on Y, = Z‘Y by Pn(ynlxnls) = tzl wiy’|x“ls), (v, e Y ).

Pn(ynlxnls) 1s the probability that, whep the n-sequence x 15
n

Sent, the (chance) Séquence received ig
(Pn('l' IS)) n = 1’2:
(dom.c.).

Y+ The sequence

. describes g discrete channel without memory

1) Research of both authors supported
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Thus we have assigned to each s € S a d.m.c. We call the

system of channels

*

5 = {(Pn('|'ls)): n= 1321'°‘S € S}

a compound (or simultaneous) channel (cf. [6]), 1f the transmission
is governed as follows: each n-sequence Xy is transmitted accord-

Ing to some channel in -@f and the channel may vary arbitrarily

¥
in ¢ from one such n-sequence to another.

We define a code (n,N,A\) for the compound channel as a system

{(ui,Ai)lui € Xy Ay S Y, Ap N Ay = g for i 43, 1 =1,...,N)

which satisfies
Pn(Ailuils) >1~-A 1=1,...N; s € S.
As usual the entropy of a probability vector 7w = (vl,...,vt)

t
1s defined to be H(w) = - = m, log, mi. Denote the rate for the
i=1

(row) probability vector 7 on X and c.p.f. w(:|+|s) by

R(r,s) = H(r'(s)) - § my H(w(-|i[s), where w'(s) = mw(.].]s).

Let N(n,\) be the maximal length of an(n,N,A) code for zj*. It

is an easy consequence of Theorem 1 in [4], that

(1.1) lin £ log N{n,2) = C

where C 1s a constant, independent of A, given by

C = max inf R(m,s).
T SE€ES
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(1.1) means that the coding theorem and streng converse of the

coding theorem hold. ¢ 1is called the cararcity,

A code (n, N, A) with average error A is a system

{(ui,Ai)lui € Xp» Ay Y ,A, 0N Ay = ¢ for i 43, 1=1,...

which satisfies

N
N .L

5 Pn(Ailuils) 21-% s € 8.

Let N(n,%) be the maximal length of an (n,N,%) code for (f*. Tt

was proved in [3], that

inf 1lim % log N(n,%) = ¢.
D 0 N>

(The coding theorem ang weak converse for average error, )

| =1 1t is immaterial whether we use maximal or
average error (cf, [6], Ch. 3.1, Lemma 3.11). This has led to

the beliefr - widespread among engineers - that this 1s true even

for more complex channel systens., However, already for compound

channels with IS| =2 one has to distinguish carefully between

these errors, as was shown in [1], éxample 1. 1p fact
3

11

n>w

2
ol

log N(n, ¥)

1s in genersl greater than ¢,

This meansg that, when We€ use aver-
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1) For which A does lim % log N(n,\) exist?
n->o0

2) What can we say about the capacity function C(A),

where

¢(%) = lin £ log N(n,7)

n>w
whenever the latter exists?

3) When C(A) > C, which encoding procedure gives the
longest codes?
We shall also study channel z;* under randomized encoding,

A random code (n,N,AR) is a system of pairs

[(p%,8,)|p" p.a. on X ,4, disjeint, 1 =1,...,N)

which satisfy

i .
(1.2) , Ex P~ (x,) Pn(Ailxnls) > 1 - Ay (1=1,...,N) .
n n

If we allow average error instead of maximal error we have
to replace (1.2) by
N

i
Tz op(x) Bya
i=1 xnexn

P

(1.3) x,ls) 21 -7y

in order to define a random (randomized) (n,N,Xﬁ) code.

The use of a random code 1s as fcllows: A set of messages

N=1{1,...N} 1is given in advance. If messages i 1is to be sent
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the sender performs a random experiment according to pi, and
the outcome of the experiment is sent. The receiver, after
receiving the n-sequence Yy € AJ’ decides that message J was
intended. [This code concept was described in [2] under 2.1].

Questions of interest to us are:

1)  For which values of A, Xk does liux% log N(n,»

)
N0 R

respectively 1ip & log N(n,iﬁ), exist?
e 1

2) What is the structure of the capacity functions

- 1 -
C(A,) = 1im £ log N(n,?
R w1 (n, R)

and

c(n

1
R liﬁ = log N(n,AR)

n-)
where these are well defined?

All our results will pe obtained under the restriction that

C contains only finitely many, say k, C.p.f's,

A word aboyt notation. The functions c(™), C(AR), and C(Xh)

are distinguished only by their arguments; these will always appear

explicitly, The result ig that all oyr results have to pe inter-

Preted with tpig understanding. For example,
Says that

one of our theorems

C(?\R) = c(A) = C(TR)
under it1 A=
certain conditions when AR =\ = AR' Taken literally this

1s a trivial Statement, 1Ip the light of oyr notation it lmeans that
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the three functions coincide for certain values of the argument.
This notation will result below in nc confusion or ambiguity, and
has the advantages of suggestiveness and typographical simplicity.
Throughout this paper A, X, Ag» and iﬁ take values only
in the open interval (0,1). This assumption aveids the trivial

and will not be stated again.
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2. Auxiliary results.

1) In the following we need:

Lemma 1:

Let § = {1,...,d} and let {(u AL = 1,...,N) be a code
l N

with inf = ¢ P (A |u,ls) D 1 - %. There exist sequences
ses ¥ gy nULTLY

{uy |v = LeeosNyb e fug i = 1,...,N} such that
v

x = = [_€_
Pn(AiVIuiv|s) >21l-(X+¢€)d for v = 1o,y = | N]

and for s = L,ooo,d.

Proof of Lemma 1: Define the probability distribution p* on
L 1 .
{l,...,N}] by P (1) = § for 1 =1,..,N. Define the random

variables (X |s = 1,..,d] by X, (1) =1 - P(Ai|ui|s) for 1 = 1,...N.
Thus X (1) 2 0 and

EX, =1 --% .g P(Ailuils) .
i=]1
Hence
P*{xs CAEK,  for s =1,..,q)
CPUX AR+ €) for s o 1,..,d)
Define

* —
B = {xs Ca(h + €)  for s =1,...,4)
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and
B, = {Xg > d(x +€)}, s=1,..,d
Then
* E(XS) X
P (By) { —= —
d(A+e) d (A+e)
Hence

and therefore

PR ) > 1 - A=
N+ + €

By the definition of P

2N T2 g

*
IB'| 2 N« =

+ €

The elements of B* are the desired sequences. This proves Lemma 1.
In Lemmas 2 and 3 only we let |S| =1 and (Pn(-l-)), n=12,..

be the only element of ¥ . We then have:

Lemma 2: (Shannon's) Lemma 3.1.1 in [6])

Let {(ui,Ai)li =1,...,N} be a code for Pn(-l-) with

average error A, then there exists a subcode of length N, =
AN+ €

with maximal error M + €.

Proof:

Denote I[uian(Ai!ui) {1-%-¢€}| by Z, then Z(1-%-¢)

+ (N-2) > N(1 - %) and therefore N, =N -7 ) — < N.
! A+ €
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Lemma

Given a random code {(pi,A4)|i =1,..,N} for Pn(.|.)

with average error A, we can construct a nonrandom code of the
same length N with average error < 7 .

(As a consequence of Lemma 3, for given length N the average
error is minimized by a non-random code. Obviously the maximal
length of a code of average error A increases with increasing A.

Hence, for given average error, a nonrandom code is at least as

long as any random code. )

Proof of Lemma 3:

Let {(p, Ai)li =1,...,N} be a random code with

N .
T T pl(xn) Pn(Ailxn) =1 -7 . The contribution of message
i=1 xneXn

1

i to N(1 - 1) is clearly T pl(xn) Pn(A.lx ). Suppose now
X _€X 1n
n-n
n
)

that Pn(Ailxél)) > Pn(AiIx£2)) > .. Z_Pn(Ailxéa ). Instead of

n .
using {xél),...,xéa )} with the probabilities {pl(xél)),...

for message 1, now use xél) with probability 1, and keep Ai as

the decoding set which corresponds to message i. The contribution
of message 1 to N(1 - A) is now replaced by the larger quantity
Pn(Ailxél)). Using the same procedure for all i one achieves a
nonrandom code {(ui, Ai)li = 1,...,N} with average error { % ,
(One can improve on the code even more by keeping the uy
of the new code, and replacing the Ai by the maximum-likelihood

sets Bi')
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2) Averaged channels:
Let § = {1,...,d}, and let g = (g,...,gd) be a probability
vector on S. The sequence

d
(P (1)) = (=

ool gS Pn ('l'ls))’ n=1,2,

is called an averaged channel. Let Na(n,x) be the maximal length

of any code (n,N,\) for this channel. Denote lim % log Na(n,x)
n->o
by ca(x) for thase A for which the limit exists.
Theorem 1 and remark 2 of [1] imply that
c.(n) = max max inf R(m,s)
a
[s']s'cS,g(S')> 1-A} 7 seS
at least for N\ ¢ {zies,giIS'cS}. Furthermore, as a consequence
of Lemma 2 we have
(M) =c. (?) for A=%¢{zT gls cs]
2 iegt *

Also, as a consequence of Lemma 3 we have

c, (%) = ¢, (%) -

Obviously, ¢, (Ag) 2 C,(Ag) 2 C,(\) and therefore

C (7)) = C.(A) =C(X) =c (r) for A=n¢{zx @ls csl
a‘' R R ies! 1

3) Compound channels with side information were introduced in [4].
If the sender knows the c.p.f. inzf’which governs the transmission

of a message to be sent, an (n,N,A) code is defined as a system
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{(ui(s),Ai)|ui(s) € X, Ay © Y, A disjoint, i=1,...,N; s € §]

which satisfies Pn(Ailui(s);s) > i-2 for i =1,...,N; s e S.

The capacity is then given by inf max R(m,s) (Theorem 2
SES T
of [4]).

We will need a slightly more general theorem. In the situa-
tion just described the sender knows precisely the channel which
actually governs the transmission of any word; in other words, he
has complete knowledge. We shall say that the sender has the

partial knowledge

K = {(sl,...,sh)lsi cs, i=1,...,h},

if the sender knows only that the governing channel has an index

which belongs to a set of K, the set itself being known to him.

Lemma 4:
The capacity of the compound channel Zf* with the sender's

partial knowledge K = (Sl,...,sh) equals

inf max inf R(m,s)"*
i=l...h T sesi

The proof follows the lines of the proof of Theorem 2 of [4] and

will therefore be omitted.
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3. The structure of C(}).

The determination of C(X) at its points of discontinuity
seems to be difficult, and it 1s even undecided whether

lim %-log N(n,A) exists at these points. (Compare also [5] and
n—>«

[1]. The determination of C(T) becomes more and more complicated
as |S| increases, and it seems to us that a simple recursion formula
does not exist. However, the following results help clarify the

structure of C(%).

Theorem 1.

given £ = [w(-|-|8)|s=1,...,k}, then C(X) is well defined
except perhaps for finitely many points kl""’AK*(k)’ and for
every X # xi(i =1,...,K (x)) C(®) equals an expression

(3.1) ch = max inf R(m,s)
T T S, Lruw

The points Ai belong to a finite set D* which 1is
characterized in Theorem 2 below.

since 0 < log N(n,N) { n log a, ¢t(7) = Tinm % log N(n,\)

n->oo
and C (A) = lim 1 10g N(n,\) are well defined for all 2. Let
n—>oo n
— ¥
{(ui,Ai)li -1,...,N} bea (n,N,N)-code for " of maximal length.
n
For every € ) O define
(3.2) Gor.oo. (€) = {uian(Ailuils) > e for s = A,r,..

and for no other index}
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and

G (e) = {uiIPn(Ai|ui|s) { e for all s e 8}.

The G's form a partition of the code into disjoint subcodes.
Applying Lemma 2 with € sufficiently small for any one value of
s, say s = 1, we obtain that |Go(e)| is bounded by a fixed
multiple of N(n,A). Since N(r,A) grows exponentially, we can,

and do, omit Go(e) from our code without any essential loss,

provided e is sufficiently small.

) = IGLr... (e)l

Define « (n,e = Iet n.,n.,..., be a
Lr... N(n,)\) 1’72
subsequence of the integers such that
(3.3) Tim = log N(n,,%) = ¢"(%)
tro Tt

We can now define

A = 1im
(3.4) Ypr. .. (e) t»f aLr... (nt,e)
Let

L(E) = {('L:r:"':)‘a{,r;._ (G) > O}°

If (4,r,...,) € L(e) then, as a consequence of the strong converse
for compound channels (Theorem 4.4.1 of [6]), C+(7) < CLr ,

and therefore

(3.5) c*(®) {inf {C,  (r,ens,) € L))
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Since € was arbitrary,

(3.6) ¢*(%)  1im inf {C,, | (2,1,...)€ L(€)} .
e~>0 e

Define

£,(s) = |{uy By (ay]ugls) > €]l

t
for s =1,...,k. Hence f.(s) + (N - £ (s)) € > N(1-X)

and consequently

1-A=
ft(s) 2 N(—'i'_'__e_e) (S = lJ"':k)
On the other hand,
£, (s) 1-h-
(3.7) £° g a,. (n,e) 2 Eas, s =Lk
N (L,r;-“) Lr... t 1-¢

s € {1,r.0.]

Clearly, for n» O there exists a no(n) such that, for
ng Z‘no(n), aLr...(nt’ e) {n for (4,r...) ¢ L(e), Dbecause
there are only finitely many sets of indices. From (3.7) it follows

that, for s = 1,...,K,

1-A-€ k
(3'8) (L r -?.)EL(E) a&)r...(nt’e) 2.—1:2— -n. >

s e(4,7...)

Consider a code (nt,N',& of maximal length for the compound

channel with the sender's partial knowledge



K= (4,0, )[(2,05...) € L(e)).

For each (4,r,...) € L(€) choose N'.q (€) indices from

S PR
L, ..., N' (the choice is arbitrary, but different complexes
which are in L(€) must correspond to disjoint sets of indices),

- : !
and for these indices use as nessage sequences (i.e., uis) only
those message sequences which would have been used if the sender

knew that the governing channel was in (¢,r,...). By (3.8) and

Lemma 4 this leads to a code (nt,N;T') for Cf;t of length

(3.9) N(n.,%') 2 exp [n, - inf {CLr_..l(a,r,...) € L{(€)} - const. /o

where 1-%' = (l:%fé -n - 2k) (1-5). Using the same a's for all n

sufficiently large, we get

N(n,x") 2 exp [n - inf {CLr"J(L,r,,..) € L(€)} - const. ,/n ]

and consequently

C™ (') 2 inf {CLr...I(L’r"‘°) € L{€)}

Furthermore, ¥ = 1im 3', and therefore
€,m,6>0

C7(X) 2 lim inf (c,

o v r) € L)

for every X\ which is a continuity point of C7(X). Using (3.6) we
get

(3.10) C™(X) = ¢™(%) = ¢(%) = 1im inf {c [(4,r,...)€ L(e€)}
€0 LT,
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for all ¥ which are continuity points of C™(X). However, T (N)

is a monotonic function on [0,1] and can therefcre have only
countably many discontinuities. It follows from (3.10) that

¢7(®) takes only finitely many values on the set of its continuity
points. Hence C™(X), and therefore also c(®), have only finitely
many discontinuities. This proves the theorem.

From the definition of C(?), every point of continuity of
¢(7) is a point of continuity of CT(X). From (3.10) and the fact
that C™(*) is a step function it fcllows that every point of
continuity of C*(%) is a point of continuity of ¢(X). Therefore
¢(X) and C7(X) have the same points cf continuity.

Theorem 1 says that, except perhaps for at most finitely many
points, C(X) is given by an expressicn

Chr = max inf R(m,s)
1) LRI T S=L’r,...

For different channels C(X) may be given by different expressions.
We now seek a formula for C(%) which dces not depend on the channel.
(The actual values taken by this fcrmula will, of course, depend on
the channel.)

We introduce the class of formulas

(3.11) T = {I|I is gilven by maxima and minima of expressions

CLr... = max “inf R(T,s)}-
TT S—L,r,...

The value of a formula I for @ will be denoted by I(€). A partial

ordering is defined in f by
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(3.12) 1, { 1, if end only 1f I,(£) < 1,(£) for a11 € with

£ = k.

; need not be totally ordered. It can happen that, for Il,I2 € f
and two channels 61, 62, I4( Cl) > L Cl) and 11(52) < IQ(CQ).

We start our considerations for a fixed(f which has k elements
and develop an algorithm for the ccmputation of C(%). For any real
numbers z, and z, define z, N Zy = min(zl,zg), 21 U 2, = max( 21,22)-
Obviously

log N(n,n)

Sl

(3.13) Clp, £ lim

->»00

=]

Every term C which is a possible value of C(R®) for some value

!,rn e
of X therefore has to satisfy

(3.14) ¢ =C C
Lr... LT... S#{L/,\T,---} S

Every index 1,...,k appears in the right member of (3.14). We now

write C”‘“ as

(3.15) ¢ A Ao AC , where

= C c
LT. .. LqTqe - LoTpe - LyTy

a) no index can be added to any set “’i’ri""} without
violating (3.15),
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b) no additional term can be added on the right without

violating (3.15) or condition a).

The representation (3.15) is therefore unigue. Let the number of
terms on the right of (3.15) be t. For s = 1,...,k and 1 = l,...,t
define

s(s,i) =1 if s € (Li,ri,...)
G(S:j—) =0 1if s ¢ (Li’ri"")

Let a = (al,...,at) be a probability t-vector. We define

]
o]
t

(3.16) Na,r,... max min T oy 5(s,1).

a s i=1
We will now prove that, for X > A(4,r...),

(3.17) 1im = log N(n,%) 2 €

no>e

Lrl.l

Let o* be the maximizing value of o in (3.16). Let € > 0 be small

enough. For suitable m(€) » O we construct a code

(n,N = exp, {n C&r... - /am(e)y,e)

for the compound channel with the sender's partial knowledge
K = {(Ll,rl,...), ver s (Lt,rt,...)].

Let the code be written as
(ol ...,u(i't),Ai), i=1,...,N

Consider the new code
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(1) . *
(ui ’Al)’ 1= l) :N al
* * ¥*
(u(ig),Al), i= (N’al + 1),...,,:\1-(_al + cxe)
t L] .l L ] *0 * * [ ]
(%80, 1= W (af 4ot ol + 1,

For s = 1,...,k the average error of this code is not greater than
t

*
1-(1-¢) min ¥ a, §(s,i).
. i
s 1i=1

When € is small enough we obtain (3.17).
Now define

(3.18) v (X) =

C,p,., for XD M,
Lr."

0 ctherwise

and

(3.19) V(%) = ng'c V,p. (R)s" = {a,r,...3 c §)

_ many
V(X) is a step-function with at most finitely/jumps. It follows

from (3.17) that

(3.20) lim & log N(n,) ) V(T)

n->w

at every point of continuity of V(%).

Let X be a point of continuity cf C(N) and V(X). Let € >0
be so small that L(eo) = L(€) for 0 { < €y. From (3.6) we know
that C(A\") is the smallest, say CLr...’ of a finite number of
expressions of this type whose index sets belong to L(eo). Passing

to the limit in (3.8) we have, for s = 1,...,k,
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1-2-¢, K

.21 0 _ ..ok
(3 2 ) 2 au(eo> _>_ l_eo n 2

where the summation is over all index sets | which contain s and
belong to L(GO). Write CLr... in the form (3.15) and suppose,
without loss of generality, that (3.15) is the actual representation.
Assign each element of L(eo) to some one of the sets in the right
member of (3.15) which contains this element, and define a*(eo) of
the latter set as the sum of the a(EO) of the sets assigned to it;
a*(GO) will be zero for a set to which no sets have been assigned.
A fortiori, for s = 1,...,k,

t 1- -€

(3.22) izlé(s,i)aziri“’(eo) 2 T

Letting n and €, approach zero we obtain from (3.16) and (3.22)

that

(3.23) TIE = log N(n,%) L V(%).

From (3.20) and (3.23) we obtain that
(3.24) C(X) = V(X\)

at the points of continuity of both functions. C(%) is defined and
continuous at all but a finite number of points, and monotonic.
V(X) is defined everywhere and monotonic. Both are step-functions.
Hence the two functions are identical at every point of continuity
of C(N).

We now have that (3.15), (3.16), (3.18), and (3.19) determine
an algorithm for the computation of C(X). (See Section 5 for appli-

cations.)
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It follows from (3.18) and (3.19) that any point of

discontinuity A; of C(X) must be one cf the set

(3.25) {Ae,r,.. )| (e,r,.000) € 83,

Now A(4,r,...) depends upon the representation (3.15). However,
it does not depend on the actual values C which enter into that
representation, but only upon the indices which enter into the
right member of (3.15). All possible sets of such indices are
finite in number. Moreover, for any given C with |S| = k, the set

of indices in the right member of (3.15) depends only on the

ordering according to size of the various C's of‘éz and not at all

on the actual values taken by them. When |S| = k there are a fixed
(finite) number of expressions of the form C&r...' A finite number
of channels with |S| = k and alphabets of sufficient length will
produce all the possible orderings of these expressions. Call one

such set of channels

(3.26) Q= (Tysee ey

We have therefore proved:

(3.27) For any channel € with |S| = k, the set of points of dis-
continuity of its function C(A) coincides with the set of
polnts of discontinuity of the function C(X) of T(Ci), where
™€) is that member of Q whose C's have the same ordering

according to size as those of Cf, and

(3.28) The set D of all possible points of discontinuity of C(%)

for all € with |S| = k consists of all points of the form
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(3.25), and can be evaluated by *the algcrithm implied by

(3.16) and (3.15), and

(3.29) Two channels, Cfl and (,, say, both with |S| = k, have
the same points of discontinuity for their respective

functions C(%) if the set

{c [(4,7,...) € 8}

LT...

has the same ordering according tc¢ size for both Cfl and CEQ.

The representation (3.15) is defined for a fixed Cf. To

indicate the dependence on Cjwe write

67,6, €y p (D00 1 (O,

Suppose now that, for a fixed % not in D",

(3.%0) ¢, (C)=c, . (E)ac (CIA - ACy

LT LTy LoTne e g
=c(x,C)
and for channel Tl
(3:31) € (M) = Cl.(ll)rl(l)...(Tl)AmAct(tl)rs;l)-..ml)
= c(T,Tl)

In (3.22) let o correspond to channel(f and a** correspond to
channel T,. Both {a*} and {a**} satisfy (3.22). Hence, by the

argument which follows (3.8) we have

(3.32) ¢(X,C) 2¢ (q)

TR



Hence, from (3.30) and (3.32),

(3.33) c(X,C) = (O ry. (E) AL ]

[C ..
V Lgl)rgl)o-- (Ci)/\ ]

Repeating this argument we ottain

(3.34) ¢(7,8) =

[C
21Ty

1\371 [Cl,gi)rg_i).“((i)/\"' ]

where, for i = 1,...,q,

is the representation (3.15) of (7, Ti) in terms of the C's of

channel Ti'
Assume temporarily that we can show that

(1) (OOA.. 0.

I‘l ‘e

. »6) =\ [c,.
(3.35) c(%,€) v [CL(ll)

We could then regard (3.35) as an identity in the "free variable"
(argument) C:(with S| = k) if we cculd show that the system of
subscripts of the ('g which occurs in the right member of (3.30)
does not depend on (?. (It may, and actually does, depend on the

fixed X.) To prove this it is sufficient to see that the system of
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subscripts 1s determined by

(3.36) C(F,T),-+,0(K,T).

Write the points of D' as

(3'37) al < a'2 < ve s < az(k)_l.

Also write ajy = 1, 32(x) = 1. Suppose a, (R < a,,,- Then clearly
(3.35) is valid for all points in the interval (az,az+l), because
both members are constant in the interval.

The formula (3.35) depends upon the interval (az,az+l); there
may be a different formula for a different interval. However, since
c(¥, C) is monotonic in X for any C, the different right members
of (3.35) for different intervals are monotonic for any Ci, and
thus are totally ordered.

It remains to prove that we can omit the first bracket on the
right of (3.34). The subscripts in it are determined by the

representation (3.15) of

C (C) = C(?\.’C)

*,ro .0

in terms of the C's of (C. We have already seen, in (3.27), that
this representation is the same as that in terms of the C's of E.).
Hence the first bracket on the right of (3.34) is already included
among the square brackets in ﬁ%&[ ] in the right member of (3.34).
This proves (3.35). 7

We sum up our results in

Theorem 2. For any integer k there is a finite set D*, described in
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(3.28). The points of discontinuity of C(F) for any Cwi‘th S| = k
belong to D*. The right member of (3.35) is constant in any X -
interval between two consecutive pcints of D*, and is determined by
this interval. (Different such intervals in general determine

different right members of (3.35).) C(X) is given by (3.35).

Remarks
1.) It is not possible to use only formulas of f which are built

up only by minima. In Example 2 of Section 5, for instance, we have

c(N) = (Cip V Ci13 V 023) ACy A Cy A Cs

]

(Cis /\03)\/ (013 AC,) v (023 A Cq)

for X € (

(o] T

2
,§)
Suppose C,, A Cy > C13 ACp Cos AC) then C(F) = Cip ACs

Permuting the indices we would get C(X) 4 C1p A Ca

2.) It is not true that any two terms in square brackets on the right

of (3.35) can be transformed into each cther by permutation of

indices, as can be seen from Example 3 in Section 5 for

% (9.
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L, The relationships of c(xR), c(x,), and c(n)

R
Theorem 3:
c(rg) = C(X) = C(Rg) for Ap =T =7,

at the points of continuity of C(X). [C(A) has only finitely
many points of discontinuity.] The proof will be given in several

steps.

For any positive integer n there exists a random code for
ﬁ*
n
i .
(4.1) (e, A 1= 1,..,N

which satisfies, for any s € S,

N . —-
Y T pl(Xn) Pn(Aiixn|s) 2, 1l - )\R ’
i=1 xnexn

(4.2)

=

and which is of maximal length  N(n, Xﬁ). Define, for i =1,...,N,

(5.3) B, ... (&) = (x| (aylx ls) > e

for s = 4,r,.., and no other index}
and also

(4.4) Bé(e) = {xnIPn(Ailxnls) { € for every index s € S}

There are Qk possible index sets {L,r,..Q,]. Denote these sets

in some order by pl,...,gzk. For every i(i = 1,...,N)



- 38 -

{B;.(e)lj = l,...,2k} is a disjoint partition of X . Define

J
the column vector

L (]

J

(4.5) Bpj(e) = :
BY (e)
e

and the matrix

(4.6) B(e) = (Bi (e)) i=1,...,N
PJ k

j=1,...,2

Henceforth we operate only on the matrix B(e¢).

+ _ T L
Define ¢ (AR) = iig = log N(n,kR)
CT(A,) = lim % log N(n,Ay)
R e 1 ’"R
(4.7)
+ = o !._ -
C (AR) = iig = log N(nng)
¢”(Rg) = lim & log N(n, )
Nn—>ow n )
Let nys n2, be a sequence such that
lim = log N(n,, Xﬁ) = C+(i§)

tr nt

Assume now that for every n(n = 1,2,... ) a random code (n, N, Xﬁ)
with maximal length N(n,iﬁ) is given. To indicate the dependence

on n we now write Bé (e,n). Dencte by Bp (e,n) the number of

J
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components (rows) of ﬁp (e,n) which are non-empty sets. We
J

say that the index set Py is e-essential if

ey 3 "l
(4.8) Tim {[N(n,, 7)1~ B. (e,n)} =B () > O.
t t? 'R [ [
o J J
Let M(e) Dbe the set of e-essential index sets p,. It follows

from the definitions (4.7) and (4.8) and from the strong converse

for compound channels (Theorem 4.4.1 of [6]) that
cFx) < e, p, in M(e).
R PJ J

Hence

ct(xg) < nf (€, "oy 1n M(e))
FJ J
This 1s true for every € ) O. Hence, when X = Xﬁ ,

(4.9) cting) < ¢T(Rp) gg inf {ij|pj in M(e)},

the first inequality being obvious.

We now prove the converse. Since there are only finitely
many indices pj we can conclude the following for any n > 0:
There exists an no(n) such that, for ng Z_no(n),

(4.10) ,Spj(nt , €) {m, P not in M(e).

Then, for n sufficiently large, in the matrix (4.6) for a code
(nt, N, ?ﬁ), we delete column Bo(e) and all columns Bp (¢)

for which py 18 not in M(e). As a result of this the average
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error of the resulting code is less than
(4.11) Ag t2emt e

Now take an (nt, N', 8) code

*

((uy(py)y ad 1 = 2,000,000, py 1in M(e)}
of length

(4.12) N' D exp [inf {C_ |p, € M(e)}-nt - K'(6) Jn ]
Py J

for the compound channel with the sender's partial knowledge
K = {pJIpJ in M(e)}

For any 4 ¢ {1,2,...,N'} define

(4.13) pi(uL(pJ)) - pi(sz) for 1 =1,...,0 p, e Me).

Also define & g =1 when s e Py and O when s ¢ Py Then

Py

we can conclude that

(¥.24) iy, lpy) 6
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Tt follows from (4.11) and (4.14) that

N .
415) & % £ p-(u,(py))s,. . P(A Iu )|s)
( Nin pjeM(e) ( L(pj P35 J
> [1-6] i g T T pi(x ) P(A,|x |s)-¢
B Ny21 p.eM(e) x eBd n ton
J n PJ

> [1-T - Koy - e[l -8]-¢ for ses and2=l,...

Defining now

N
£ p(8} )
i=1 P

=i

(4.16) (pj) =

for pye M(e), we conclude, using (4.15), that

4.1 o) ls)
(4.17) pjeﬁ(e) p(pj) 593 P(a, |u (p4

> [1 - ?ﬁ - 2k n - ¢][1-8]-e¢ for & = 1l,...,N'; s € S.

Thus we now have a random code with maximal error A' defined by

1 - = (1-7%- oK poe)(1-8) - €

and length given by (4.12).

Now define
ay = [p(py) W] for py emle).

If necessary we renumber the elements of M(e) so that

M(e) = {pjlj =1,...,k (€)} .



- 42 -

Conslider the non-random code

* *
)

(4.18) (uy(py)s A9)seees (ual(pl), A,

* *

(ual+l(92): Aal+1):- sy (uN! (Pk*(e)), AN')

It 1s a consequence of (4.17) that this code has an average error
less than A', Hence, passing to the limit with €, n, and & we
obtain, jJust as 1in the argument which led to (3.10), that

(4.19) ¢"(x) D 1inf inf { ¢ lp, 1n M(e€))

0 g9
at the continuity points of ¢ (%), and

(4.20) C"(Ag) 2 inf inf (cp lp, 1in M(e)}

€0 g d

at the continuity points of c'(AR). From (4.9) and (4.20) we
obtain that C(A;) exists at the points of continuity of C-(AR)
and that there

(4.21) c(A

From (4.9) and (4.19) we obtain that at the points of continuity
of ¢ (),

(4.22) CRg 2 2et(R), T=7%,

the first inequality belng obvious.
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Finally, from (3.10), (4.21), and (4.22) we obtain that, at the

points of continuity of c™(X) and of C'(XR) we have
(4.23) c(x) = c(xR) = c(xR), A= Ag = Mg

Since C(X) and C7(X) have the same points of continuity, we have

that

(4.24) c(%

) = ca

R) = C(N), Ng = Mg = A

at the points of continuity of c(¥) and C'(XR).

Earlier we proved that ¢(%) has only finitely many points of
discontinuity, takes on the set of continuity points only finltely
many values, and is monotonic. The function C'(AR) 1s monotonic,
and hence has at most denumerably many pcints of discontinuity. If
it had a point of discontinuity which is not a point of discontinulty
of C(X) this would result in a contradiction of (4.24). Hence every
point of continuity of C(%) is a point of continulty of C'(AR).
Theorem 3 follows from this and (4.24).
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5. Evaluation of C(X) in several examples,

Example 1. S = {1,2}.
We shall show that then

mex inf R(r,s) foro < ¥ %
_ T 8=1,2
c(N) =

inf max R(r,s) for £ <7< 1
s=1,2 7

Proof:

That C(X) ) mex inf R(r,s) for 0 { X ¢ l-follows from Theorem 4.3.1
T 8=1,2

of [6] (coding theorem for compound channels). On the other hand,

given a (n,N,%) code for a % ¢ & 5, We choose € ) 0 such that

2(X + €) < 1. Application of Lemma 1 with d = 2 guarantees the

existence of a code with length.[Ifg N] and maximal error 2(X + ¢).

Hence, from Theorem 4.4.1 of [6] (strong converse for compound

channels) 1t follows that

C(X) € max inf R(w,s) for 0 <X (
T 8=1,2

%(T(l

Cese:

Choose € < - £ . {(u,(1), ug(2), &) | 1=1,..., N} be a code with maxim

érror € for the compound channel with complete knowledge by the
sender, Then

((ug(1),89) | 3 =1,...,(m]21y Y ((uy(2),80) 1 = [N]2] + 1,...N)

is a code for Ci* with average error less than %. It follows from

{
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Theorem 4.5.3 of [6] that C(X) ? inf max R(m,s) for %-( T < 1,
s=1,2 T

and from Lemma 2 that

¢(%)  inf max R(m,s),
s=1,2 T

Ex%Ele 2. S = {1,2’3}
We shall show that

Cipg for O (< %
. AN for%<7<%—
(G15V 3V Cpg) ACIAC,ACs for 2 (T %
C) AC,yACS for3-< A< 1.
Proof:

case: 0( %<3

Use the coding theorem for compound channels with maximal error

(Theorem 4.3.1 of [6]) for proving C(}) D Cypqs &nd Lemma 1 and the

strong converse for compound channels (Theorem 4.4,1 of [6]) for

proving C(%) £ C1p3°
1, =
, Case: §'< R 5
- 1
Choosee { % - ¥ . Let {uy(12), uy(13), u, (23), Ai'i =1,...,N} be a (n,N,¢€) code

for (i*, where the sender has the partial knowledge

= ({12}, {13}, {23}). Th (12), +v. 12), 13),...
b {13}, (23 en u u[%]( ) 1%[%“1)( 3)
u[e_%](n), 12[2'%] \ l)(23),.-- uy(23); Apseve By 1s & (0,N,3)
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code for 6*. Application of the coding theorem for compound

channels (Theorem 4.3.1 of [6]) gives C(x) > Cis A A C,

Cl3 3"

Suppose now, without loss of generality (w.l.o.g.)

C1p = C1sp /\Cl3/\ 023, then C(%) < C,5 by example 1.

- 1
Choose ¢ { % - 5 and assume, w.l.0.g., that (C12VC13VC23) N
Cy A Cy A 03 = Cy, N 03. Then define K = ({12}, {31). Apply
Theorem 4.3.1 of [1] and select ul(le),... u g (12), u N (3)...,

(5] [z]+ 1
uN(3). By the usual procedure we finally

get C(X) D Cin 4\ 03. For proving the converse part we use the

3

Assume therefore that Cip = Cio A Cy [ > C23, Cl3]’ An (n,N,7%)

c* -
code for 1s a (n,N,%) code for the averaged channel

result for averaged channels. If C. = C1p /\C3, obviously C(%) € Cy-

1
3 P+ 1-18), n=1,2,..,)

Therefore Ca(T) = Ca(x) 2C%), if A =% and not equal to 0, % ,
2 —

%5 0rl. Ve get for _121_ <X (% » that C (%) = Cin, since

Cip D 023, 013. Hence C(X) < Ci5+ This proves the desired result.

Case: §<X< 1.

Choose € { % -% and define K = ({1}, {2}, {3)). a4pply
Theorem 4.3.1 of [6] ang select

u(1),..u (1), u

3 e 1 gl

(2)1""u 2N (2)!u2N (3))""111\‘3
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Prove C(X) 2 C; AC, AC, as usual. C(%) e A C, A\ C3 1s obvious.

3

The converse parts could have been proved in all four cases

by using suitable averaged channels. This will be illustrated in

Example 3. S = {1,2,3,4)
Crpgn 0T T € (0,7)

- 11

Cpg ACpoy A Cray NCogy for X € (73)

- 12
e = & yYot, oo gy A Oy) Tor R < (3:5)

(C1p3 V Copy VCygy V Cogy) A Cip A Gy A

- 21

( (012 N c34) \V (013 /\c24) \V (014 A 023) \4

V(Cypg3 ACy) V (Cppy A C3) v (Cy g ACY)

V)

-
U

\/(0234 N Cl) for % € (

(012 /\C13 /\c23 /\cu) V (Cip N Cyy N Coy /\03)

Ui

\/(Cl2 /\034)\/ ... for x e ( ,%)
(C1pV Cyg V Cy V Cpg V Oy V Cg))

/\Cl/\Cz/\C3/\ C, for X € (32,-,23.;)

\ Cy ACy ACy AT, forX e (72-,1)
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):
by el
Obviously C(X) 2 Cypaye, Use the averaged chann

M

Proof: Case (0,

Y n —
Pn('l') = T % P (+]-]s) for proving C(3) i C123u
s=1

3

Case: (z]f,l)

W)

Choose € { X - %uLet {u;(123), u,(124), u; (134), ug(234), Aili =1,...,N}

a (n,N,€) code for Ci*, where the sender has partial knowledge

K= ({123}, {124}, {1343, {234}).

Then {u,(123),...,u y.(123), u N (124), ... uy(234) ,
(7] ] +1
Ay o Ay} is a2 (n,N,X) code for C*.
Application of Theorem 4.3.1 of [6] gives C(7) 2_0123/«0124/\0134/10234
We want to prove the converse in (%,xo). Assume the infimum is
taken for C123.
We introduce an averaged channel
(-] : (-1-1s)
P e = z p P cl-lg
n =1 S 'n
for which

(8) by +py+tpgdl-g

(b)) + b, + 0y, by + g+ 1y, Pp+Py3+py<l-x

and X, 1s the maximal value of x for vhich a solution of (a)

(b) exists.

s

Univ,
Bibliohek |
Bielefe_ld_f

e
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We use the solution
_ 1
PL=Pp=P3=3 P =C

_ 1
XO_§

It follows that
- - 11 -
C,(}) = C123 for ) € (va)’ and therefore C(%) 0123.

(3 %)

Assume that the maximum is taken for C123 /\Clzh /\034.

Then C(%) 2_01234A Cypy A Cqy follows as usual by taking

and

%of the {u;(123) | 1

I
I._J
-
.
=
(el
-

Il
=
-
‘.
=
R

%of the {u,(124) | 1

% of the {ui(34) | 1=1,...,N} .

In the future we shall say shortly that we use a (%y%y%) -

fraction (or in general a (al,...,an) - fraction).

If now C34 = 0123 /\0124 /\034, then we use an average
11

p = (pl,...,pu) = (0,0,535) and obtain the desired result.

We can therefore assume w.l.0.g. that

Cyp3 & Cypy A Cqy

Cyp3 2 C3y A Coy

C1p3 2 Cogn A Cpy



184 C134’4 ng = 524 [or C234 /\'14 = “l&]’ we immediately get
- . P S N 1 1
c(x) < Coy Dby using an average p = (¢,5,0,%) Torp = (5,0,0,5)_]
It remains to consider
C123 £ Copps Cgy
“123 2 Cagys Cy3y
In order to get an averaged channel with c(X) = C123 in
1 _ me o 1
(3’Xo)’ p = (pl""’p4) must satisfy p, + Py + Ps > 1 - 3
pl+p2+p4_§_l—x
Py + P3 {1-x
p2 + P3 < l - X
D) + P3 {1-x
Let X, be the maximal x for which a solution exists. We get
_2 =D =1 = & . =2
X, = 5) P} = Py = py = 5 3 P3 = ¢ as a solution,
. (21
Case: (5,2)
We can assume the infimum = C123 /\Clh»/\CQM /\C34
Use the fraction (%, %, %, -5]:) for K = {(123),(14),(24),(341)} to
prove
c(™) 2 Clog ACyy ACy, A Cay
If the infimum is taken for C usep = (l 1 1 l) and if
123 Y¥P = \n oy 7
the infimum is taken for ClM’ for instance, use p = (%, 0, 0, %).

In either case we get (%) < C123 /\Clu /\024/\C34.
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Case: (%, )

e

That the expression given atove in Example 3 is a lower bound,
is trivial; take the fraction (%,%). To prove that the expression

given 1s an upper bound, we consider first the case

1.) The maximum is taken by C123.A Cy -

Subcase a.)

C1p3 NCy = C1p3

Thus Cjq 2 Cyp A Cays Cy3 A Cops Cog ALy

Cipr C130 Cpg 2 Cipy implies Cppq 2 Cays Coys Cpy -

We can assume that 0123 D Cjkl’ because if for instance Cqg) > C1p3

then C, = Cy,s
We have therefore finally C, 2.0123 > Cayr Cons Cyys Cyyre

and we can use the average (0,1,0,0).

Now define p = (%, %3 %, %). Then C(%) € c (X) = C1p3
Subcase Db.)
Cy < C103

Use p = (0,0,0,1).

2.) The maximum is taken by 012,4 034. W.l.o.g. Cy,= Cin A 034.

Ww.l.0.g. C

2 1 1 1 . .
Use (5, 5 &> 3)' Con > Cy, implies 4,h # 1, but then
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2 - s
p(e) + p(h) = = {1 -7%. Cyhn > Cy, implies {1,h,n} = {2,3,43.
But Cpa) ACy < Cy, implies that C; = C;,. Use p = (1,0,0,0).

)

wro

Case: (%,

1.) The maximum is attained by (*) = s /\Cl3 A C23 ACy and by

no term (Clh /\Cnu).

£ 2, 5 £) to prove ¢(X) ) (%),

If ¢, = (*), then the converse is obvious: p = (0,0,0,1). Assume

Use fraction (

therefore, w.l.0.g., that C;, = (*). It follows that Cay < C,, and

also Cy, Cqy < Ci,- Usep= (-]3'-, %, 0, %) to prove C(%X) < Ca(T) < ().

) to

rOf -
e

2.) W.l.o.g. assume 012 N 034 = (*). Use the fraction (

s

prove C(X) D (*).

Assume 012 S 034 W.1.0.8. C13 _<_ 012

therefore C,), C13 < Cio < Cqy- Again, two cases:

(C 3l A C, 3 /A Cpy NC ) < Cip A 034 implies either C; = Cy,,
and we are finished, or C, 23 A Coy ¢ C,,, and therefore w.l.0.g.

023 < C12. We have 013, 140 © 23 g _<_ 034- Use p = ('g:?;,g: ).



-53 -

B.) Cay = Cyp
Therefore C., = Cy, » Cqas Cqpe Use p = (3, 0, 3, 3)
34T Y12 £ Y137 V14 3 733

C,(A) = Cgy D C(X).

Case: (%u %)

W.l.0.g. let the value I of the formula be C12/\03 /\Ch’

Use the fraction (%, %—, %) to get C(X) 2 Cin A c3 Ny

1 1 1 1
Suppose I = 012, use p = (E’ I E"E)‘

C. for instance, then use p = (0,0,1,0).

Suppose I 3

Case: (%, 1) is obvious.
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