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1. PRELIMINARIES

1. Copes AND IRROfS

Let X o= 01, «oo,al, ¥Vo= {1, o, D} he finite sets. A stochastie
Tuatrix 1 with a rows and b colurans will be called a channel. X, 1" are
the input and output slphabets (respectively} of the channel. We
denote the set of alt channels with input alphabet X and output alpha-
bet T by @ (X, V). A chanel w €€ (X, ¥} ean be used for compuiui-
cation from one person, the sender, to ancther person, the recciver.
There is given in advance a finite seb of messages %= {1, 0 N
one of which will be presented to the sender for transmission. We allow
the sender n randomized encoding and the veceiver a randomized do-
coding (ef. [, [61). Moroe precisely, the sender encodes the message DY
an encoding channel £ ¢ (R, X) with £(», z) being the probability
tlut input x is given to channel w When Messige v is presented to the
sender for trapsmission. When the recewver observes the putput ¥ ,mi the
trunsmission channel w, he decodes it by s decoding Ghiﬁfﬁﬁ‘_{ﬁ L Q’ Y9
with Diy, p) being the pmhability {hat the roceiver will deeide that
message 4 is intended. .

The taatrix ¢ = &(E, D, w) = EwDE¢ @{R, N} is the errar ma.tlm
of code (B, D) for charmel w. Ibs eloment efr, u) gives the %)*'C[b”h‘m:"
that, when v is presented to the sender the receiver will decide zifm;
Message ¢ i intended, when code (B, DY is used on ehannet . The
arerge evror probability over all messngos in the set & 12 thercfore

- i * " MY
W D) = 1= g e (B Dt
Research of both suthors sapporterd by the 1.5, vir Forea under Grand AF-
AF1rR168-1472 10 Cornelt Univarsity,
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One also con define the marfinal ervor

MUE, D w) = max (1 - elp, v))

vm!(”.ﬂt}

OF course, the maximal ervor for a code (I, D)) is greater than, or equal
to, the average error.

If we restrict the recetver fo using nonrandomized decoding ouly,
then D(y, i) has only 0 and 1 as elements. Further specialization leads
to the defiuition: A code { £, D)) 13 pure if only 0 and 1 oeeur as elementy
of &, D). Pure codes usually are defined (0] sy o system of pairs

W Adiw e X, 4, for d=1, .-, N

H

and AiN4d; =& for ¢ 3

The average error of a pure code is given by

)
Z; w(jiu:}

icay

and the maximal error by

Ay m&x {l e EW{,}iui)}

Et T FE &

Let ug denote the set of all pure codes of “length” N by ®(N, X, V) A
probability distribution » over ®(N, X, V) i8 a randem code. The error
mutvix e(w, 7] of 2 random eode » i3 given by

ety = ), e{F Dowhill, D)
bt

(®m

and the arerege ervor is given by

Aoy} = L — :‘, trace e{w, .
Shannon {71} pointed out that every (8, X, V) code (E, D) s equiva-
lent o rome random 9, X, V) code 7 in the scose that Agw, ri =
A, B, DY for antose £ @Y, V)L The eonverse is not true.

We will eall a geseral £, D) eode a code of type K, the spegial
eode of type K which uses only nonrundomized decoding one of type
K:. sl a pure code one of type K. Finslly s random eode will be
ealied one of type K, . For each type Ko id = 1, 2, 3, 43, A will denote
the maximum error and K the average error, For a azaagha channel 1t =
urimportant whether we work with average or with maximal etrars
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(¢f. [10}, Lemma 3.3.1,) However, for two channels treated simultane-
ougly it miready makes a difference—contrary to the belief of many
workers in the field—as was shown in [¢] Example 1, and the difference
becomes even more important for such complex systems &8 channeis
with arbitrarily varying channel probability functions (see below ). For
a detailed discussion see [2].

2 CHANNELS WITH ARBITEARY VARYING CHANNEL PROBABILITY Fung-
TIoNs (a.v.ch.)

Let X' = X = {1,:-+,af fort = 1, 2,--- and let Viw ¥ =
(L, -« Bl fort = 1,2 -+ Also let & = {w{-|-|s)|s € 5} be a st
of stochastic matrices with ¢ rows and b columns. By X, = I[?-; Xt
we denote the set of input n-sequences (words of length n) and by
¥, = []i=1 ¥* we denote the set of output n-sequences. Let 8' = 8§,
t=1,2 .- . For every n-sequence 8, = (8, -+-,8") € [ 8° we
can define a discrete memoryless channel P(-{| &) by P(¥a | Za 1 8} =
10wy || &) for every 2. = (&, -+*,%") € X. and every
yn = (3, =, y") € V.. Consider now the class of channels

Cn = {P('I't'?n) | 8 € S}

If we are interested in the simultaneous behavior of all these channels
we call this indexed set of chunnels a “channel with arbitranly varying
channel probability functions” (a.v.ch.). (Sender and receiver com-
municate wibhout knowing which individual channel actually governs
the transmission of any one letter.) The coding problem is completely
deseribed when we state which code type and which error the comsuni-
cators are allowed $o use. The combinations (K¢, Al (Kiy M), 7 =
1,2, -+, 4, are all possible, but not every possible combination corte-
spouds to a problem of practical interest. The errors for codes for Ca
are defined as h; = max, h(s) and AN = maxe A(s), where
Ri{3a)(resp. A:(s.)) is the average (resp. maximal) error for a code of
type K for channel P(+|-| 8). The variables of basic interest to us are
Nin, %)(resp. N(m, X)) = maximal cardinality of & set of messages
N for which we can find 8 Ki-code with average error not greater than
X (resp. with maximal error not greater than A).

3. Tre Jaymer

For the a.v.ch. as defined above a more intuitive description can be
given. Suppose that there is a ratioual malevolent being, the “jammer”

[T
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8a¥, who chooses a channel F(.}-|2,) 80 a8 to make eommunication
between sender and receiver as difficult a8 possible. Bensder and receiver
want to communicate with small error probability no matfer what the
choice of the jammer may be. It seems to be realistic that the jammer
should be able to randomize over different channels. Iet 2 be a o-algebra
of subsets of S which includes all sets which consist of a single element of
8. A randomization by the jammer is a probability distribution {p.d.}
g on (8, Z.), where 2, = [ Z is the ususl product o-slgebra. We
introduce the notation {J, for the case where the jammer does not ran-
domize, ; for the case where he randomizes with respect to product
probability distributions, and @y for the case where the jammer ean
randomize with an arbitrary ¢, on (8., Z.). In all these cuses the jam-
mer has no knowledge about the sequence the sender is going to send
(3} There are more possibilities for the jammer to randomize in the
case ", where the jammer knows the actual sequence being sent before
it is sent, Then the jammer can choose a p.d. ¢s, dependent on the word
2, to be sent. In order {0 have a short description for the different prob-
lems we shall use notation such as (K, X2, Q:, 3%). For instanes (-, -,
o, 37) deseribes problems introduced in [5]. Not all problems are essen-
fially different.

Lzanua 1. The problems described by (Ky, A, -, - ) are all equivalent,
As long az we use pure codes with mazimal error we need not distinguish
betwwen 3 and ™ and between the different kinds of randomization.

Proof, A code in the case (K;, N, o, §) is & set of pairs
f(wi, A)|i=1,--- , N}, wherew; € X, AiC ¥, , 4: N4; = &
for ¢ = j and

Pldijwia) 2 1=

for all o, € S, and foralli = 1, --. , N. Therefore we have

qus;(s-}P(Asimis») 212
forsllpd. g, and all i = 1, --- , N. This means that we have a code
for (Ky, %, @s, 3™) and a fortiori a eode for
(Bayh, @, Y7)
(e, ha, @, &)
(Ksy 2,81, 5)
Ky, ™, Qo, 3.
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A code in sny one of these cases is obviously a oode for

{Kﬂg )‘Bagﬂii}mé*
This proves the lemma,
Leuua 2. The problems (Ko, A, - , 47 are all equivalnt.

Proof. A code inthecase (Ko, &, Qe y 37) is given by a system of pure
todes

{(Msr’g*}rim i, - Niet Ri,

M&pwirmamlgﬁ)mdmm&ﬁwhiﬂhimmdﬂsﬂmm
contain & single element of R, such that

1 .
IIW;P'(’A‘E&'HHE&(P) z 1R
for all 4. € 8, . Therefore we have

f,a f% }; Pul Al i) 8a) dr(p)-dglen) 2 1=K
snd

slso
[ 23] P lo) datod) o) 2 1 = T

for a1 p.d.’s g on 4, . This mesns that we have & code (K, A, Q,37)
and o forfiors a oode for (Ko, ke, G, X7, A code in any ons of these
casee is obviously a eode for (Ko, Ko, Qe, 7).

4. Bipe INYORMATION

Until now we have sssumed that both sender and receiver do not
know which individual channel (ie, 5.} governs the transmission
(8, R™). We now adopt the following notation: &% shall mean that the
sender knows the kth eomponent (k = 1, -+, n) of the actual sequence
t» which the jammer will use, only after the first (k — 1) letters of the
word have been sent and received but before the Ath letter is to be sent.
8™ shall mean ihat the sender knows the entire sequence £ before
tranamission of the word begins. §*(g) shall mean that the sender knows
the jammer's distribution before transmission of the word begins, R shall
mean that the receiver knows the entire channel sequence & which
governs the transmission before he decodes a received code word, and
RW? ) shall mean that the receiver knows the distribution g used by the
jammer before he decodes a received code word.
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We shall use notation such as (s, Qs, 37, §*, B™) to give a complete
deseription. The type K: may be omitted because its index is determined
by M. Not every expression of this type makes sense. For instance,
expressions (+, -, 7, 87, - ) make no sense.

The fellowing cases have been studied:

1. {Xi H Q‘i ’ \L}_: S_u: )

The coding theorem and weak converse wers proved in [4]. In Section
IT we give a short, perspicuous, and very simple proof of a somewhat
stronger result (coding theorem and strong converse). A serious draw-
back to the use of random codes K, is that they require correlated
randomization between encoding and decoding. The sender, before
“transmitting any message, chooses a code at random, communicates the
result of his random experiment to the receiver, and then sends the
message according 1o the code selected. This procedure is repeated at
each message. It seems to the writers that this procedure cannot seriously
be considered as reflecting anything remotely resembling actual com-
munieation. Surely it is vastly more complicated for the sender to trans-
mit fo the receiver the designation of the code which i the outeome of
the chance experiment than it is to transmit the message itself. Yet a
new code must be transmitted with each message. Na doubt problems
involving correlated encoding and decoding have mathematies} inter-
est.” [8]

2. The more realistic cases (4 = 0,1,2)

{klei: S;+: Swr R—')
(hﬁ;Qi)Sﬁ.r S-r R+)

were introduced in [7], and necessary and sufficient conditions for the
wate to be positive were given. These conditions have useful applications
to several problems. (Compare for instance Section I1I , examples 1, and
2, and the forthcoming paper [3]).

3. In [4] Dobrushin considered the eases

(Xl ) Q#: 3“:- Smr R_)
(ng $ Qﬂ ¥ S“:r Sﬁ! R“)

Thus ke allowed randomized encoding, Randomized decoding seems fo
provide little advantage (ef. [5]), but randomized encoding sometimes
actually helps by either making a longer code possible or by reducing
the error (Example 1 of Section ITI). Communicators interested in



CORRELATED DECODING FOR CHANNELS 463

piving as much information through the channel ns possible should
therefore use codes of type Ki or K, whepever feasible. Dobrushin
states {without proof) a eoding theorem and weak converze, and gives
an exphicit formula for the capacity. In |6 solutions are given for even
more general cases. However, Example 2 in Section 111 proves that these
claims are incorreet and not justified.

1. CORRELATED DECODING
First we prove
Turores 2.1, Lel € consist of the single channel w, whose capactly 13
('(w) for codes of type Ks and maximal or average error N, 0 < A < L
The capacity for codes of type Ky, Ky, or Ki1s the same, for maximal or

averaqge error.

Proof. The statement for K, follows at once from the strong converse
for the discrete memoryless channel, and that for K. will follow at ence
from that for K;. By Lemma 3.1.1 of (10} the results are the same for
both average and maximal errer. Our result will therefore follow when
we prove that, for average error, randomization in encoding and deeod-
ing caunot inerease the capacity. Using maximum iikelihood decoding
we see immediately that randomized decoding eanmot increase the ea-
pacity. That randomized encoding cannob inerease the capacity follows
from Lemma 3 of {21 This proves the theorem.

We now turn our attention to correlaled decoding. Let & he the
(ordinary )} convex hull of €. Let H () be the entropy of the probability
veobor # = (m,, +* , Wa). Lt the rate K(r, w) of the matrix w be
defined by

Rir, w) = Hiry — ;W.‘H(w('if))s

. f
where 7 = 7w, Define

~ = mwax inf Rim w). (2.1)
r WwEE
By a theorem of Stiglitz [18] (see also [3], Lemma 4),
(2.2)

y = inf max R(z, w)-

wed x

We now give a very short and perspicuous proof of a theorem due to
Blackwell, Breiman, and Thomasian (4], Qur version is stronger because
we prove the strong, not the weak, cOnVerse.

iy
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Tusorem 2.2, The capacily of the channel in the case (%, Qn, 37,
igm, R") 18 i

Proof. The capacity cannot be greater than v, by ( 2.2} and Theorem
2.1. 1t therefore remains only to prove the coding theoren.

Let g, be any jammer’s probability distribution which we temporarily
hold fixed. We will prove that, when the jammer employs ¢, , there is o
pure code, whose average error is not greater than any given A,

} <A < 1, and whose length N satisfies, for any ¢ > 0 and all n larger
than a bound independent of ¢, ,

N > expin(y — ¢)}. (2.3)

This is the lemma on page 564 of [4) and constitutes most of the proof
of [4}
Let #* be a value of  such that
vy = inf R{=* w). (2.4)

wER
Lot

b= {t, -, )

be a sequence of independent, identieally distributed ehance variables
with the common distribution »*. Let

£= (4,1t

he a sequence of chance variables, with values in V', defined on the
same sample space a3/, and such that £ can be thought of as the chance
sequetice recelved when ¢ is sent over the channel., { What this means 18
obvious. } Of course the conditional distribution of t, given f = r (4ay ),
depends on 7 and g, . Write

[

(w0, Y s ),
Define the following functions for ¢ = | R %
f(;ﬁ(j,kijx, vy iy ke, e ki)
=log Pl = j 1" = b | £ = sy Jied
A T (2.3)
=g Plts = 710" =iy G 0T ek R
- log Pit, = Blfn =gy fea AV =k RRY -TE 8
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(F70 1 = Gif any of the three expressions Pl | in the right member of
1257138 zero. Write, for 7 = 1, -+ | n,

e A T A A

e (2.6)
e EVP 8 T T e T
Then
EV. =0 (27)
EVVy =10, {#7 [28)
EV.? < 4 constant independent of £ and {24)
For any set of values of 777 and €777 we have
ElF G, o FaE i'é::'i';);{ri--l;} PO 2y by (24) (2.10)

E
2V, |
ZLo converges stochastically to zero asn —» =, (211)
n ~

Forany ¢ > 0 we have, from (2.10) and (2.11),
f%ifﬁumWﬁ”jWW>ﬁwmwﬁql (2.12)
sj:l ;

WS — % uniformiy in g, .
The desired result, (2.3) now follows immediately from (212) snd
Shannon’s Theoremx 7.3.1 and 7.3.2 of [10}. .

We now complete the proof exuetly as in [41 Since, as has just been
proved, for any jammer’s distribution . there exists a code of type K:a.:
with wveruge probability of error at most A, which satisfies (2.3), it
follows from the minimax theorem that there exists u random C{K}E;
Le., one of type K., whose uverage probability of error is at most A for
EVErY n-sequence &, , which satisfies (2.3). This completes the proof of
the coding theorem and hence of Theorem 2.2,

We can now very quickly also prove the following

Tarores 2.3 The capacity of the channel in each of the sasgs_(ia ’ Qe
J ’ S%{g)? Rm)r {.il: QE; 3".: S“: R+(€I)), and (}“J QZ, 3‘ ? S {q)?
B7ty)) 7s also .,

Prouf. Obviously the capacity eannot be less than v, by Theorem 2.2.
Let the jammer use the worst channel w”, i.e., the one sueh that
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&
v = max Blx, w ),
»*

for every letter; we see that the capaeity cannot be greater than v, The
jammer can achieve 1" for esch letter by & product probability diziribu.
tion, This proves the theorem,

Obviously we can replace © by @, in the statement of Theorem 2.4;
in fact, the proof of the strong converse was actually given for Q) run-
domization.

We now prove

Tueoreym 2.4, The weak capactly of the channel in (he cases '3, . -,

387, B s

§ = max iﬂﬁf Rixm w10 gh 1,
(*Weak” capacity means that we prove the euding thearem and woak
eonverse, 1.e., the converse only for A sufficiently small.)

The proof of the coding theorem differs so little from the proof of the
coding theorem part of Theorem 2.2 that we omit it. As before, we use
Shannon's random coding thevrem o obtain & cude of the required
length for any given jummer’s strategy q. . Since the receiver knows the
actugl channel n-sequence which is being used {not only its probability
distribution ¢ ), he uses this fact in the decoding. Tt is elear then why
the rate of transmission can be 8. Of course, always 8 = 7.

For the proof of the weak converse we shal] noed

Lesya 3. For any ¢ > 0O there cxisls a finite subset N{n s of S such tha!

§ K:.}‘a‘i;ff Ri{z,w{ | | &)) (2.13)

~ max inf Rim, el < 400 €9

- 2EN

This is an easy consequence of Lemma 7 of 195 or Letama 4.2.1 of [10],

Temma 4. Lel Xy, 8 =1,--- , d, be nomnegalive chance variahles,
defined on the same probabilily space, such that EX, € e, =1, -, d
For any ¢ > 0 the probability of

B = (G Sdia+ e for s = I, oo, ol
safisfies

PIBY) 2 1_ , (214)
i 1T £
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Proof. {hdine i )
5 aE %z&y :f" ﬁég “%“ Q‘%?? g = ¥ L
Then |
FUX Y el
? “ e 2 _—
Pg ] Al 4 ey el o+ wi
Henen

sl therefupe

» . S
Hg}%i”§+é e

This terums i due 1o Shannon 131,

We now penecd to the proof of the WORK convers. Lﬁi:} > ?;}i
athitrury. We chall prove that, for A sufficiently EK{L&H, ‘3%@’ <Ay ’jg ot
suflicientis jarge, say 7, 80Y code of the type given i the slalemc
of the thesrem mest have jongth N sueh that

: 213
N < expintd -+ Il PAE
This 15 the desired result,

Tet ¢ now be the number of epf/s i Sind, and choose A and &
positive and so smaldl that

;} '
dief{ hg + g} e} i. (214

Buppose s random code of length A with average
we gel, using e raudomization only,

N . B2 B
l ¥ % b g o Ay .3.1 )
LSS i Palp A ) BTN
3 cm} g R E i.
: eneps g (9, o0, 8) (oA O
for all 5, <~ &, . By eonsidering only ‘a%i%qmsm €3 , :113;{2 L’I?} )'{,hat
eompound rhanpelsl, where 3 € Sinl We pblain, fraom (2.4 4

»

- : PSR — Ap, {’313‘}
inf %’ > py a2 s d | st 8 2 1= %o,

g™ {d g o1 4m] pEE
TES-AF )

and thersfore

i o N . 2 V=1 — A (2.19)
EFEE E 1{,&} lij Z 3[ ni;ﬂis(ﬁrr} % ﬁ?"is } ?‘!s) g g ]

i, e B P!
prEliy:

b

iy B

i it
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Now apply Lemma 4 to the chance variables
l N
A'a{ﬂ} = ] — .Ei' Z Pu(;.fi-i(ﬁuj i P i a0 = ("'}; Ty S}J\‘s-
o1

defined for 5 ¢ S{7} on the probability space B which has probability
mewsure # defined on it. Clearly,

X, 2 X (2.20)

- R F .
Henee, from Lemma 4 we obtain that there exists an element p~ I R
sueh that

N
b e oS P edile) | i |y = (s, s £din 4 e (220)
<Y gy
for s & S(n).
We now apply Lemma 4 to the sample space {1, ---, N}, with pd.
FYiy = 1/N for{ = 1, -+, N, and ehance variables
Xa{:i,} Sl S P&{n"fii(ﬁfa}ip‘m E B = (8, -+, «g)}, § < S{ﬂ)-
Then
E'JY_, £ ffi\)\(} "i‘“ 6;})} s & ,S{T))\‘
Hence
PHX, < did = S} = i (2,22
; i ()\{? + ‘5&) + E@],g & (’?)} = Eg{ho * ﬁe) T e )

and, from the definition of P, the number of clements in the set £ (5ua¥ )
i the lefs member of (2.22) is not less than
Nep
een cesmoeeconn st eeraen - E : e "T o T i
T F e 4 = Ve = N Gay)
Denote the elements of p* by dy, e = 1, .-+, Ny, It follows from the
definition of 1% wud from (2.22) that

P,;{,,ui;risﬂﬁg p Uy E A R C AR ? 5:}} 21— dEd(r\a} + ) + 5&! {22'3)

forv e } ... N, The inequality (2.15) now follows from 2.23) and
Theorem 2 of [9] i or Theorem 4.4.1 of [10]).

HI. REMARKS ON PAPERS 5] AND 1] A COUNTER-EXAMPLE TO
THEOREM 1 OF [4] AND THEOREM 2 OF i8]
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For every fixed 1 € X let T(i) denoto the minims! convex closed
systcrq of probability distributions on ¥ which contains all distributions
fiw(-171s) 8 £ 8}, The set of matrices

§ = tw(jlii=1-alw(|ielli=1al
je=1.e-b
is called the row convex closure of the set € The difference between the
POW €OV CR closure and the usual convex closure € of a system of matrices
lies in the fact that for each row we take a possibly different lincar
combination of its clements to obtain €.

Exasrre 1. Randomization in encoding can be an improvement over
nonrandomized encoding. Ieta = b = 3

1 0 0 0 1 G
w =10 1 0}, we =10 0 1

0 0 1 1 090
e = (w,w)

Obviously T(4) N T(7) # f fori# j. It follows therefore from Theorem
1of [7] that the capacity is 0 in the case (s, Qo gt 8,B).

As a consequence of Lemma 1 the capacity is also 0 in the
case (N, Qo, 3, S, B) Randomization in the encoding can be
interpreted as an enlargement of the possible input sequences for a
channel. Instead of the set of input n-sequEnces X, we bave the set
#(X,) = set of all p.d. on X, available for the encoding. We shall make
use only of the subset ®*(X,) = setof all product distributions on X .
Actually we shall use only all sequences 4n = q X g XX q,
which have ag components g either 8 or ¢, where

sia(1) = 1, a(2) =8(3) =70,

g:q(2) = ¢{3) = 1, q(1) =10

This means that we restrict ourselves to apecial letter by letter ran-
ex combination of

domizations. Randomization per letter means COnLY!
rows in our matrices, To find optimal codes using only g, means therefore

to find optimal codes for

. J 100 (01‘3‘)).
= o 3 102:‘_# ;
T T 015 14 15 034/]

Y
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in the case (A, Qu, 37, 87, B7) Now 71 N Ti2y = & and we
therefore can transmit with rate B > ¢« Theorem 1 of 710 A Jortiond
we can tranzmoit over our original channel with a positive rafe if we use

randomized eneoding,
Define

C'p = max inf Binx, w). (4.1}
£ wed

By u theorem of Stiglitz [12] (see also [3], Lemma 4),
Co = inf max Rix, w). (3.2}
wee
Dobrushin asserts without proof that
{1, 15 the capacity of the channel in the case

(e, Qy, 37, 87, 07) (3.3}

{13l Theorem 1, Remark 3), and that
(v 15 the capacity of the channel in the exse

(3,00, 37,8, R7) (3.1}

(5] end of puragraph following Eq. (4)). We shull uow prove, by
Example 2, that (3.3) and (3.4) are not true.

Examrie 2. (Counter-example to Theorem 1 in [5] and Theoram 2 in
3.

Suppose given two mairices w, w with 3 rows and 5 columns. We
denote the 7¢h row veetor in w by ¢ and the ith row veetor in @’ by 7.
We represent these vectors as points in £ Let w, ' be such that their
representation is given by the following figure 1. The point of interseetion
G of the Lines 1, 1" and 2, 2" is to be both § and 3. Computing C'p by
(3.2}, using a5 w the matrix all of whose rows are (7, we obiain that
Uy = 0. Thus, according to Dobrushin, the capacity of this ehannel in
the eages (X, @0, 57, 87, B Y and (R, @, 37, S, B} is zero.

We now randomize over the letters 1, 2 with probahility }4 each, and
vbtain the points L, I'. However, since the line L, 1) and the “line”
¢, G (which is T(3)) are disjoint, it follows from Thegrem 1 of [7] that,
for any A, 0 < A < 1, one can transmit 2t o positive rate with maximal
errer h. Hence in the case (X, G, 7, 87, R™), and, a fortiori, in the
vases (A, Qy, 87, 87, R7) and (%, G, 35,87, R™Y, one ean transmib
at a positive rate. This contradiets (3.3) and {34).
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Fra. t

This example also shows that randontization in encording ean lnorease
the capacitv, and therefore could have been uged in place of Example 1.

IV CHANNELS WITH ARBITRARILY VARYING, BINARY SYMMETRIC,
CHANNEL PROBABILITY FUNCTIONS

Case thy, (1, 37, &7, 87). Given

‘Lﬁ:\! 4

¢ =ttt =000
L s W R B AN 1oy s L — &

where 1 — 28 = inf | 1 — 287,
LY
TorEoreM 4.1. The capacily of this av.ch. i e st (A, W, Lil :
B R yvis€ =1 splogee+ (1 — ) log {1 — o), thatis, e capcily
af the discrcle memoryless channel defined by w.

Proof, Lt u, AL = 1, N1 be a A-code for the danee. i

Write
; ] — 5 &
w( - s = :
N B
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Define
Y 1l — &% — & ) ey By - 8
To et fr~g 4}1
Pt 1 — 98 P2 T — 28 (41
@y 8o — & t2 15— ay (
= 1=, = S— 12
p (l) 1m: l! p {2} i"""git : }

For & € & both p(-) and p™(-) are probability vectors. When the
sender wants to transmit message ¢(4 = 1,-.., N} he procecds as
follows: When the kth letter (£ = 1, .-+, n) will be transmitted sc-
cording to w{-|-| ) he uses the “random letter” "+ ) if the kth letter
of u is 1 and the “random lester” p®( <) if the kth letter of u: is 2.
Thus the probability, of receiving any output n-sequence y, when the
1th message is sent, is the same for all channel n.sequenees. We can
transmit with rate B 2 ', The strong converse follows from the strong

eonverse for the d.m.g, w and Theorem 2.1
In Theorem 4.1 we eould obviously have replaced §* by 8%,

Tueorem 4.2. The capacity of this avch, i the case (A, Gr, I,
SR yisalso C =14 splogay + (1 — s5)log (1 — s5).

Proof. Suppose the kth letter is sent sccording to w{-1+| &), and this
is known to the receiver. When the letter j(7 = 1, 2) is actually received,
the receiver performs an independent random experiment with proba-
bility distribution (- ) from (4.1) or (4.2}, and acts as if the outcome
of this experiment were the actus! letter received. It follows from the
computations in Theorem 4.1 that

(1 - & Sx) ({’m{}) 'Pm(l)‘) B (1 — 8 39)
81 1 = § 3’}[1)(2) pm(Z) 8¢ 1 — 3 .

The sceond matrix on the left being symmetric we obtain that

(i - & 31) Cm(l) 37(”(2)> (1 -~ 3 3&)
1 1 - & (2}(1> ?’3‘:2)(2} &% 1 -— Sp '
Thus, whatever be the channel n-sequence s, , the receiver randomizes in

such 2 way that the distribution of the virtual received sequence is the

same u8 that for the d.m.c. w. This proves the coding theorem. The
converse is chvious.

The method can be extended to a.v.ch. for which one matrix is right
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included {receiver B3 resp. left included (sender &%y by all others
{ef, Shannon {H1]).

Recriven: February 19, 1969

i

16,

1.

12,

is.
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