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CHANNELS WITHOUT SYNCHRONIZATION

R. AHLSWEDE, Okio State University and University of llinois
J. WOLFOWITZ, University of Illinois

Summary

Let X' = {l,...,a} and Y= {1,...,a} be the input and output alphabets, res-
pectively. In the (unsynchronized) channels studied in this paper, when an
element of X is sent over the channel, the receiver receives either nothing ora
sequence of k letters, each a member of Y, where %, determined by chance,
canbel,or2,0r...orL,a given integer. The channel is called unsynchronized
because the sequence received (for each letter sent) is not separated from
the previous sequence or the following sequence, so that the receiver does
not know which letters received correspond to which letter transmitted.

In Sections 1 and 2 we give the necessary definitions and auxiliary results.
In Section 3 we extend the results of Dobrushin [2] by proving a strong
converse to the coding theorem! and making it possible {o compute the ca-
pacity to within any desired accuracy.

In Section 4 we study the same channel with feedback, prove a coding the-
orem andstrongconverse, and give an algorithm for computing the capacity.

In Section 5 we study the unsynchronized channel where the transmission
of each word is governed by an arbitrary element of a set of channel prob-
ability functions. Again we obtain the capacity of the channel, prove a cod-
ing theorem and strong converse, and give an algorithm for computing the
capacity., .

In Section 6 we apply results of Shannon [4] and supplement Dobrushin’s
results on continuous transmission with a fidelity criterion.

1. Introduction

Let X = {1,--,a} be the “input alphabet’ and ¥ = {1,-+,a} be the
“output alphabet”. Write X*=X and Y =7Y for t=12,-. By
X, = II'_, X' denote the set of input n-sequences (words of length n) and
by ¥, = II’.,Y' denote the set of output n-sequences. Let Y, denote the
empty set, and ¥ = (J 2, Y, the set of all finite output sequences. Define
¥, = ', ¥'for n=1,2,-, where Y*=¥F for t = 1,2,---.

Let w( - | +) be a stochastic matrix, i.e.,
(1.1) w(p|x) = 0foreveryxeX, je¥,and T w(F|x) = 1 for every x€X.
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The transition probabilities of a synchronized memoryless channe! (s.m.c.)
are defined by

(1.2) PG, = T w7 |

for every x, = (x',--,x) e X, and every , = (F%,--, M e¥,, n = 1,2,---.
We denote by j7'7%.-- 7* an element of ¥ obtained by writing the terms of
the sequence 7,72, -, 7' consecutively in their natural order. With this
convention we define the transition probabilities of an unsynchronized me-
moryless channel (u.m.c.) U by

(1.3) P(ﬁlx,,)= Y P((ley"'syh")lxn)
ylyz...ynzy
for every x,eX,, 7e¥,n=1,2,--.
We now define an unsynchronized compound channel (u.c.c.). Let S be

an arbitrary index set and let I' = {w(-| - |s)| se S} be a set of matrices
which satisfy (1.1). For every se S define an wm.c. P(+|"|s) by

(1.4) PF|x|8) = T PG 7] %] 9)

jjiyz.,,yn=y

for every x,eX,, 7e¥, n=1,2,--.
Consider the class of channels

(1.5) §={P(-|-|9)|ses}.

If we are interested in the simultaneous behavior of all these channels we
call this indexed set of channels the unsynchronized compound channel S.
(For compound channels see [6] and [8].)

A code (n,N) is a system

{(ui,Ai)|i =1,--,N}, where u,eX,, 4,7,
(1.6)
ANA; =@ forisj.
Let 0<A<1. A code (n,N) is a A-code (n, N, 1)
(a) for the um.c. U, if P(A,-,u,') =1l—Afori=1,- N;
(1.7)

(b) for the w.c.c. §, if P(4;|u;|s) 21— Afor i =1,.,N and for
every seS.

We now introduce the unsynchronized memoryless channel with feedback
(u.c.f.). By this we mean that there exists a return channel which sends back from
the receiving point to the transmitting point the element of ¥ actually received.
It is assumed that this information is received at the transmitting point before
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the next letter is sent, and can therefore be used for choosing the next letter
to be sent. A code (n, N, A) for this channel is described as follows. There is
given a finite set of messages N = {1,---, N}, one of which will be presented
to the sender for transmission. Message ie N is encoded by an encoding
(vector valued) function ’

(1'8) fn(l) = [filafiz(zl): "':f:(zla "':Zt—l)’ '“:fin(zla “_,Zn—l)],

where f} is defined on ¥, for ¢ > 1 and takes values in X*, and Z*, Z%, --.,Z*
are the chance received elements of ¥ (known to the sender before he sends
Yz, 27 Y); £ is an element of X'. The distribution of the random
variables Z' (t = 1,2,-+-,n) is determined by f',-.f;'"*, and w(-|+). We
denote the probability of receiving 7, € ¥,, if i is thus encoded, by P(J, | £(D)
and the probability of receiving je¥ by

(19) PO = T B3O

-1

A code (n,N, 2) for the u.c.f. is a system
(110) {(fn(l)nA;)ll = 1”":N}9

where the £,(i) are as defined in (1.8), 4;<¥ for i = 1, N, 40 4; = %]
for i 5 j, and P(4;|§) 2 1 -4 for i =1, N.

The study of unsynchronized channels up to 1963 was summarized in [3].
The present model of an unsynchronized memoryless channel is due to Dob-
rushin [2]. The other channels described above have not been treated before.
Dobrushin proved (Theorem 1 of [2]) a coding theorem and a weak converse
for the w.m.c. under the additional assumption (1.11) on w(- ] -), which we
now describe.

Let I(7) equal the number of components of 7, i.e., the length of the‘‘letter”
7. There exist constants ¢; < 0, ¢; >0, such that

(1.11) ¢, £ I U(Fw(p|x) £ ¢, for every xeX.
jeY
The capacity C obtained by him is
(1.12) C = lim G,
n-ro

where? |

1 - 1 P(J-jlxn) ,
(119 Cy=supnt 2 T BPO 108 50 (o )PG)

the supremum being taken over the set of all probability distributions on X,

. o« 2 ’ »
2 All logarithms in this paper are to the base 2. The expression “exp { }” means "expz { }
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Instead of Assumption (1.11) we shall make, throughout this paper, the
assumption:

(1.14) Ifw(y | x) > 0 for some xe X, then 0 < I(y) £ L, where L is a constant.

This assumption is a little weaker than (1.11) with respect to the lower bound
on I(y) and certainly stronger than (1.11) with respect to the upper bound
on I(y). We prove a coding theorem and a strong converse under Assumption
(1.14) by using the method of ‘‘generated sequences”’, which was developed
in [5]. We also give an estimate on the speed of approximation in (1.12),
which makes it possible actually to compute C to within any desired accuracy,
i.e., makes C ‘“‘computable’’. We show by an example that this estimate is
the best possible to within a constant factor. The method of “‘generated se-
quences’’ turns out to be particularly suited to the treatment of unsynchronized
channels with feedback (Section 4) and unsynchronized compound channels
(Section 5). We prove coding theorems and strong converses for these channels
and make the capacities computable. These results could also be extended
to other channels, such as unsynchronized non-stationary memoryless channels
(cf. [1]), and unsynchronized finjte-state channels ([8], Chapter 6).

2. Auxiliary results

We now repeat the definition of generated sequences and the basic lemmas
about them. For proofs we refer to [5] or [8], Chapter 2.

Let w(- | *) be an a x a-stochastic matrix, which will be called a “‘channel
probability function® (c.p.f.). For an n-sequence u = (u*,-,u") e X, and an
n-sequence v = (v',---,0" € Y, define

(2.1) NGluw) = |{f{tst<n, u'=i}|for i=1,-a.
NGjluy=|{t| 1S tsnu' =i, o' = j}|
2.2)

for i=1,+a; j=1,--,a.

Let n = (7, -+,7,) be a probability distribution on X. The sequence u € X,
is called a m-sequence if

(2.3) |N(i|u) - nnil < ann(l— =), i=1,-,a.
The sequence v € Y, is said to be generated by u € X, if
24 [NGj|uv) — NGluwG | D] £ SING|uw(i [ (L - w(i] )T

for all i,j = 1,---,a, and a § > 2a to be chosen later. We denote the set of

m-sequences by X,(m), the set of sequences generated by ue X, by G(u) and
the set of sequences generated by any z-sequence by G(7).
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We also need the following definitions.

2.5  n' =(n},,7,), where nj = I aw(i|D, =10

7, (respectively n}) denotes the independent product distribution
(2.6) on X, (respectively ¥,) with 1-dimensional marginal-distributions
n (respectively n').
27 Bw|w) = [GW),
(2.8)  B(w|m) = |G(@)|.
H is the entropy function; for a probability vector p = (D1s**> D)
H(p) = — Zj-1pilogp.
Lemma 2.1. n,(X,(7) = %.

Lemma 2.2, P(G(u)lu) > 1~ ¢ for every ue X, where &' a*-%< %,
so that ¢’ — 0 as 6 — 0.

Lemma 2.3. If veG(n), then exp {— nH(n") — K(a, ) 1} < m(v)
< exp{—nH(n') + K,(a,5)/n}. The function K, is independent of v, n, @
and w.

Lemma 2.4, exp{nH(n')— K »(a,0) / 1} < B(w |z) <exp{nH(n")+ K1(a,0) NL3
The function K, is independent of n, m, and w.

(2.9)

Lemma 2.5. Let ueX,(n), then
exp{n 2‘, nH(w( ] i) — Ks(a,8)/n} < B(wlu)
: < exp{n X TEiH(W(’Il')) + Kj(a,8)+/n}.
i

The function K5 does not depend on %, #n, @ O W. '
These five lemmas suffice for the proof of the coding theorem and its strong

converse for the d.m.c. (see [8], Chapter 3), which we now state. Define the
constant C by

C = max(H(n") — Z mHW(" [ D).
i I
One can explicitly give a positive function K(4) of A, 0<A<1,such that;

Coding theorem. For any n and A there exists a code (#, N, A) with

N > exp {nC— a*K(1)/n}.

Strong converse. For any n and 1 there does not exist a code (n,N,2A)

such that
N > exp {nC + a*K(A)/n}.
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The function K( ) does not depend on the c.p.f. w( - | + } or upon the alpha-
bet size a.

If one weakens Lemmas 2.3, 2.4 and 2.5 by replacing K,(a,d) NP
Ky(a,8)/n, K(a,8)\/n by o(n), one obtains the coding theorem and its
strong converse with an accuracy o(n) instead of K /n. In Section 3 we will
give a definition of generated sequences for the u.m.c. such that these lemmas
hold with an accuracy o(n). The proof of the strong converse of the coding
theorem for the d.m.c. will then carry over verbatim to the u.m.c. The proof
of the coding theorem for the w.m.c. will require an additional argument.

3. Unsynchronized memoryless channels

In (1.2) we defined a synchronized memoryless channel (s.m.c.). We now
introduce a channel J with less synchronization to serve only as a tool. Let
I(n) be a function of n (n = 1,2,---) with positive integer values, such that
I(n) = o(n), and I(n) —» o0 as n — oo . Define s(n) = [n/I(n)] — 1, where [ ]
denotes the smallest integer larger than the number in the brackets. Let

Im).t

(X rwm) X fort=1,2-

s=I(n)(t-1)+1
and let :

(X I(n))m = :1—1 (XI(n))t'

We write for convenience X instead of X I allnd we define ¥ as
Y={3|5=75"5", 02159 <L, fors=1,-,I(n)}.
The transition matrix of the synchronized channel J is defined by
WHELE) = T P, )| (o, 1)
(G.1) Flogxm =3
for every % = (x!,--,x™™), je7¥.

For every %, = (#,---, 8 e(X Iinym the transition probabilities of J are de-
fined by

(3.2) 0G| %) = H1 WG| #)

for every J, = (5,+,7"e¥, and every m =1,2,. J is a d.m.c. with
input alphabet X of size 4™ and output alphabet ¥ ¥ of size
A< o™ DI We now treat the n.m.c. U by comparing it with the d.m.c. J.

Recalling the definition of C, given in (1.13) we see that J has capacity
I(n) - Cyny. If, in Section 2, we replace X by X, ¥ by 7, n by m, and a by
4, then the five lemmas of Section 2 hold for channel J, Now let m = s(n)
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and n’ = s(n) - I(n). Obviously, n’ differs from n by less than I(x). We now
use the enlarged alphabet X in the u.m.c. U. After these preparations we are
ready to state the basic definition:

7€Y is generated by ue A’s(,,) with respect to the u.m.c. U if there
(3.3) exist j',---,7*Me ¥ such that § = 7' 5*Mand (7,-,7*™) is
generated by u with respect to the channel J in the sense of (2.4).

Define G(w), G(rn), =,,, B(w*ln), B(w*lu) for channel J as in Section 2.
The corresponding quantities for channel U will be denoted by G*(u), G*(x),
a's B¥(w*|m), B*(w*|u). Then we have

Lemma 3.1, (X m(m) 2 %.
(This is Lemma 2.1 restated.)

Lemma 3.2. P(G*(u)|u) 2 1 —&'forevery u e X, where s’ < A%0-2< 4,
sothat ¢’ > 0asé— .
This is obvious from Lemma 2.2 and Definition 3.3.

Define M by

'« L+ s(n)
(3.4) M = log (" o )

We now prove the following lemmas.

Lemma 3.3. If veG*(u), then exp{—s(mH(n*") — K(4,8)[s(m)}*}
< gty (V).

Lemma 3.4, exp{s(m)H(n*") — K,(4,8)[s(n)]* — M} <B*(w* |7)
< exp{s(m)H(n*") + K,(4,6)[s(m)]*}.

Lemma 3.5. If ue X,,(n), then
exp {s(n) X mH(w*(" | D) — K3(4,9) [s(n)]# — M} < B¥(w* u)
l <exp{s(n) T mHW(+| D) + Ks(4,9)[smF}.

We prove Lemma 3.5 first. It follows from Definition (3.3) that
3.5) B¥(w*|u) < B(w* |w).

In order to get a lower bound on B*(w*l u) we have‘ to cou:(;t énbhow many
ways § can be written as J, -, 7M. This number is bounded by

(n’ | E(r; S(n)) '
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Therefore,
n'L + s(n)\*
(3.6) Bw* 1) ( ( )) < B*(w*|u)
s(n)
Similarly,
n’'L +s(n)

-1
(3.7 B(w*ln)( ) < B*(w*|m) £ B(W*|m).

s(n)
Lemma 3.5 now follows from Lemma 2.5, (3.5) and (3.6). Lemma 3.4 follows
from Lemma 2.4 and (3.7). Lemma 3.3 is a consequence of Lemma 2.3 and
the Definition (3.3).

Using Lemmas 3.1—3.5, instead of Lemmas 2.1—2.5, enables us to carry
over verbatim the proof of the strong converse of the coding theorem, given
for a d.m.c. in [8], Chapter 3, to the wm.c. U.

One also can prove the strong converse of the coding theorem for channel
U by using the strong converse of the coding theorem for the d.m.c. J. Ob-
viously, an upper bound on the length of a code for channel J is a fortiori an
upper bound on the length of the ‘“‘corresponding’’ code for the w.m.c. U.

To prove the coding theorem we need an additional argument, because
Lemma 3.3 is not the exact analogue of Lemma 2.3. We now supply this addi-
tional argument and prove the coding theorem. Without loss of generality
we take A < 4. We begin the construction of a code for channel U as in [8],
Theorem 3.2.1. Choose ¢ > 24 so that Q(G(u) lu) = 1—%Afor everyue Xy
Then also P(G*(u)lu) = 1 — A for every ue X,,,. Let {(ui,Ai)[ i=1,,N}
be a code for channel U such that the following conditions are satisfied:

(a) u; € A“;;.s(n)(n):~ i=1,-,N.

(b) 4; = G¥u) — USL4;.

(© P(4]u)z1-4, i=1,-,N.

(d) The codeis maximalin the sense that it is impossible to add an element
(uy+1,Ay+1) such that (uy(, Ay, () satisfies (a), (b) and (¢) for i = N + 1.

From Lemmas 3.1—3.5 we see that the proof of [8] would go through
verbatim if we could only give the proper lower bound on the number of
sequences in |JY.4 4;. In order to obtain this lower bound we proceed as
follows. We define sets By,i=1,+,N, by B;= {(5, -, )| * - 7@ e 4}
and prove that {(u;, B))|i = 1, -+, N} has the following two properties.

(e) Itisa code with maximal probability of error A for the d.m.c. J.

' (f) The code is maximal in the sense that it is impossible to add a pait
(uy+1,By+1), Where uy,i€ X, (n) and By., = G(uys,), such that
{(u1,By), (g4 1,By+1)} is a code with maximal probability of error A
for channel J.

Property (e) follows from the definitions of U and J. Suppose Property (f)
did not hold. Then we could find a pair (uy1,By41), With ., € Zy(n)
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and By.; = G(uys+,) such that {(u;,By),"-,(Uy41,By+1)} 15 & code with
maximal probability of error A for channel J. Define

Ay+1 = {J7|J7 = J71‘”J75(") for (fl,"'afs(n))EBNH}‘

Because Byy; (\B; = for i =1,.--,N, and because of the way in which
the B;,i=1,---, N, were constructed from their respective 4;, Ay+1 (N 4i=J
for i =1,---,N. Since By.; < G(uy.y), dy+1 < G*(uy4q). From this and
the fact that P(Ay.q|ty+1) Z OBy |tiy+1) 21— A4, we obtain a contra-
diction to (d) and thus prove (f).

From Properties (e) and (f) of the code {(u;, B;) |i = 1,++, N} for channel J
we have that, for every u e X,,,(n),

N
o(6wn U Bilu)>2-it = 3,
i=1
and hence that, for every ue X, (n),

N
Q(_L=J1 B G(n)lu) > 31,
Hence

N
Tsn) (191 B;N G(ﬂ)) >3-34 = 9i/16.

Applying Lemma 2.3 for channel J we obtain that the set U?’:lBiﬂNG(n)
contains at least exp{s(n)H(n*") — K (4, 6) [s(n)]*} sequences. Hence Ui=14;
contains at least exp{s(n)H(n*") — K {(A,8)[s(n)]* — M} sequences. .
Let N(n,A) be the maximal N for which a code (1, N, A) ex.1s.ts. We ob'tsfm
the following result. For any A, 0 < A <1, one can give explicitly a positive

function K(A) such that

(3.8) N(n, 2)> exp{nCien — (loga)-I(n) — K(HA[s(n)}* — M}.
We have already obtained the result that

(3.9 N(n,2) < exp{nCpq, + (loga)-I(n) + K(HA[s(m)]*}.

We now choose I(n) such that

(3.11) At Jn <g* @O [y < nF
We can choose

(3.12) I(n) = T-logn,

with

(3.13) T = [16+(L + 1)loga]~*,
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For this choice of I(n) we obtain, by Stirling’s approximation, the following
bound on M. For n = 4,

loglogn

< .
(3.14) M=Zce(a, L) n Tog7

H

where ¢(a, L) can easily be computed explicitly, and does not depend on the
transition matrix of the channel. Define T'(1,a, L) = T-*K(4) + loga + c(a, L).
From (3.8), (3.9), (3.11), and (3.14) we obtain that for any A, 0 <1< 1, and
for n 2 4,

, nloglogn
(3.15) N(n,1) > exp{n'CTlogn -7 —Eg_n__}
and

, nloglogn
(3.16) N(n, ﬂ.) < exp{nCTlog,, + T - —W].

We now prove that lim,, C, exists and give an estimate on the speed
with which C, approaches this limit. Choosing I(n)= 4T -logn with T as
in (3.13), we obtain, by the same argument as before, that we can compute
a T"(4,a,L) such that for any 1, 0< A< 1,

” loglogn
3.17) N(n,1) > exp{nC*Tlog,, —~T"n- Tozn }
and
. . loglogn
(3.18) N(n,A) < exp{nCHlog,, +T"n- Togn } .
Fix A at any value between 0 and 1. It follows from (3.15)(3.18) that
»loglogn
(319) ICTlogn - C-}Tlog nl =T W’
where
TIII — TI + TII‘

Choose n = 2%,2%"" ..., successively. We obtain that

['4 h
|CT2h . CTZ""“I é T '2—7,
(3.20)
1 h -+ 1
| Crzh-i-l - CTZ"I é T 2,‘_1_1 )

and so on. (3.20) implies that lim,,_, ,Cy,» exists. Denote this limit by C. Then
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o
I CTzh-1 - C é T 2 = T"
=0
(3.21)

8

< T“”—h-, with T® = v ¥ L7
Zh p=0 20

for h = 2,3,---. Choosing I(n) = «aTlogn with o between % and 1, we obtain
(3.17) and (3.18) with Cyrin T” teplaced by Curiogm T(o), where
T' £ T(x) £ T". Therefore

»loglogn
(3-22) ICT]ogn_ CaLTIognl =T logn )
and
h

w
|Cran — Cagan| £ T R

For any n there exist h,o (3 < o S 1) such that n = «T2". Then (3.21),
(3.22) imply that
h
ICH - CI < (Tm + T(4-)) 51;_
(3.23)

@) logn —logaT oT .

= (T"+T -

As a consequence of (3.23) we obtain

Theorem 3.1. There exists a positive T*(a,L), which depends only upon
a and L and can be explicitly computed by application of our argument above,

such that
logn

n

|C,,-—C|§T*

for n = 2. .
The following examples show that Theorem 3.1 is, t

T*, the best possible.
Example 1. Let X ={0,1}, ¥ = {0} and w such that w(0]0) =1,
w(00|1) = 1. We have C, = n-1log(n +1), C =0.
Example 2. T*hasto depend on the alphabetlengtha.LetX ={1,2,,a},
Y = {0} and w be such that
w(0[1) =1, w(00(2) = 1,+-,w(00--0|a) = L.

o within the constant

Then C, = n-*log(n(a—1)+1), C= 0.
From (3.17), (3.18) and Theorem 3.1 we obtain
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Theorem 3.2 (Coding theorem and strong converse for the uw.m.c.) For
any 4, 0<i<1,

N(n9 )’) >eXp{nC —_ T**(l’ a, L) ﬂ%glingf}

and

N(n,%) <exp {nC + T*(), a, L) %}

for n = 4. T* can be explicitly computed.

4. Unsynchronized memoryless channels with feedback

We define I(n), s(n), X, ¥ as in Section 3. Let
@D F={frw|fro = [P SHED o 2 -, 21O}

be the set of all possible vector valued encoding functions with I(n) components.
Using Definition (1.9) for P( [ f), we define the transition matrix of a syn-
chronized channel J as follows.

y

(4.2) whF|f) = S BTN
x...xyl(n =y

for every feF, je¥. For every f,, = (f,-,f™eF, = II"F the trans-
ition probabilities of J are defined by

nt

(4'3) Q(J’m Ij;n) = I—.IZ:L W*(j;tlft) for every y, = (j;l: B -m)er
t

and every m = 1,2,-. J is a d.m.c. with input alphabet F of size less than
(@™ PYI® and output alphabet ¥ of size A less than ¢(E+DIM

The following lemma, due to Muroga [9], allows us to restrict ourselves
to a suitable subset F* of F, where | F#| < o=+ 101@),

Lemma 4.1. Let w be an a x b-stochastic matrix, which serves as the
transition matrix of a d.m.c., and let p be the rank of w. Then there exists a

p X b-submatrix w’ of w such that the corresponding d.m.c. has the same
capacity.

Replacing 7 by F*, we can proceed as in Section 3 to obtain a lower bound
on N'(n,2), the maximal N for which an (n,N, A)-code exists for the u.c.f.
Denoting the capacity of J by Cf,, we obtain, as in (3.8), that

“4)  N(n.f) >exp{nCfy,y — K(DA*Ts(m)]* ~I(m)(loga) — M}.



Channels without synchronization 395

In order to give an upper bound on N’(n,4) we make use of two results,
which we state as lemmas.

Lemma 4.2. [(2) is due to Shannon, (b) is due to Kemperman and Kesten.
The topic is discussed and referenced in [8], pages 49-55.]

(a) The capacity of a d.m.c. remains unchanged under feedback.

(b) The maximal length of an (n,N,A)-code for a discrete memoryless
channel with feedback and capacity C* is smaller than exp{nC*+ K(1,w)/n}
for n = 1,2,..-, where K(4) depends on A and the c.p.f. w (strong converse
for d.m.c.f. [8], Theorem 4.9.1).

Lemma 4.3. For an u.c.f. it is sufficient to consider only encoding func-
tions £, = (fL.fHZY), - f(Zh e 270, o, f5(2Y o+, 207 Y)  for  which
@z, 7Y = g(Ziz? - Z'Y for t =1,2,-+,n. More explicitly, for
 any code {(f,,(i),At)I ie., =1,N} we can find a set {g,,(i)!i =1,-,N} such
that P(A1|gn(l)) = P(Ai |f;l(i)) fori=1,-,N.

Proof. Let A<¥ and f* be such that P(4|f,") > P(4|f,) for all
f.€F,. We shall find a g, = (gl,gZ(Zl),---,g"(Zl-.-Z."-l)) such. tha:t
P(A|g,) = P(A|f¥). Denote by j4 the sequences in A which start with 7.
The optimality of £ implies that

=1

(4.5 Pl -4 | e, -, 70 Y) ds maximal for every Fraeen

=1, ot— neol,. -1
Consequently, we can find a g"(7' - 7'~ Y)such that P(5++- 14| g 7))
is maximal. Now f**~? is such that

i n— T XX ".'1—2
2: P(}71 J-"t"'lAlf::m(J-jl,"',J7"—1))P(J/"—1 ‘ f* 1 yl, , ))
1

-
(4.6)
is maximal for every 7%, 7" 2.

. . ' . . . 4.3.
Repeated iteration of the earlier argument yields Leml?la

We now give an upper bound on N/(n,A). Let s*(n) = [n/I(n)I]1 alldI

n* = s*(n)l(n). Obviously n*—n = I(n). An (n,N, A)-code for a channe

can be modified into an (n* N, A)-code for the channel. Map the encoding
functions
guili) = (g4 gUZYees, gH(Z - 2"7)
into
Foeon(i) = (Lg% 8222, 8" C)]y A O COIRD
and define |

A* _ {(y-j_ e -—s*(n)) l le "'J-i s"’(ﬂ)EAi}.
i = - )
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It follows from Lemma 4.3 that
(4.7) {(Boem(D, AF)| 1 = 1,-,N}

is an (s*(n),N,A)-code for channel J with feedback. It follows from (4.7)
and Lemma 4.2 that

(4.8) N/(n, %) <exp{nC{,, + I(n)(loga) + K(A,w*) [s*(m)]* }.

Comparing (4.8) with its analog (3.9) we notice one essential difference. In
(3.9) K(4) does not depend on I(n), but in (4.8) K depends on I(n) because
w* depends on I(n). We now prove that CJ converges to a limit C/ and give
an estimate on the speed of approximation without using (4.4) and (4.8). The
arguments we are using can also be used to give a different proof for
Theorem 3.1.

We make use of

Lemma 4.4. Let X, Y, Z be finite sets, ¢ a mapping from Y onto Z and
w a c.pf. with input alphabet X and output alphabet Y. Define
w**(zlx) = E¢(y)=zw(y|x) and denote by S,(z), zeZ, the number of
solutions of ¢(y) = z, ye Y. The following inequality holds:

w(y|%)

max 2 w0y 9log ST

. (2] %)
max X % pwtzInlos 5 s G T

< max logSy(z).

zeZ

For a proof see [2], (4.1)-(4.5).

With n’ = s(n) - I(n) we have n’ 4+ I(n) =2 n = n’. This, together with the
obvious inequality nC/ = n’C’, implies

(4.9) |nCl —n'Cf
It follows from Lemma 4.4 that

< I(n)loga.

(4.10) |W'Clh — n'Cly| < log ((L e S(n)) :
s(n)

Choosing I(n) = [logn] we get

(4.11) | n'Cif — [lognls(m)Cluog | < K(a,L) 1 lolgolgof -

for some constant K(a,L). We obtain from (4.9) and (4.11) that
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loglogn

(4.12) Cf — Clogm| £ Ky(a, L)——2— Dogn

for n =4,5,--- and some constant K,(a,L). Choosing I(n) = 2[logn] we
obtain

loglogn

(4.13) | Cr = Chiegm| £ Koo, D)=
for n = 4,5,-.- and some constant K,. From (4.12), (4.13) we obtain

loglogn
logn ~

(414) l C{iogn] - Cg[logn]l é (Kl + KZ) '
Repeating the argument used in (3.19)-(3.23) we get that lim,.,, C; exists
and that the following theorem holds.

Theorem 4.1. Let CY =lim,., C!. There exists a K(a,L) such that
|cf- | s K== 1°’°’"
for n =2,

From (4.4), (4.8) and Theorem 4.1 we obtain

Theorem 4.2. (Coding theorem and strong converse (within ¢), for the
u.c.f) For any 4, 0<A<1, and any n 2 4,

loglogn
N¥(n, 1) > exp{an — K*(4,a,L) ' n Tonn } .
For any 4, 0 <A< 1, and any & >0, one can compute ng(4,€) such that,
fOI‘ all n -—2— nO(A: 3)9

N¥(n, %) < exp{n(C’+ &)}

5. Unsynchronized compound channels

Recall the definition of an u.c.c. given in (1.4), (1.5), (1.6). We also make

the following assumption.
S,
(5.1)  If ye¥ is such that w(7|x|s) >0 for some xeX and some s€
then 0 £ I(j) £ L

Define
(5.2) C =n-tsupinf XL X (%) PP | %] 9)
" pn SES ¥n€Xy Fe¥
P(5|%,19)

X log 5 e IP(F 1%, |9’




308 R. AHLSWEDE AND J. WOLFOWITZ

the supremum being taken over the set of all probability distributions p, on
X,. Denote the maximal length of an (n,N,A)-code for § by N(n,4). Our
aim is to prove the following two theorems.

Theorem 5.1. One can give explicitly a function T*(a,L) such that
|C,~ C| < T*n~"logn forn = 2,-.

Theorem 5.2. (Coding theorem and strong converse for the u.c.c.) For
any A, 0<A<1,and n =z 4,

5 s nloglogn
N(n,2) > exp{nC T#*(4,a,L) “Tosn }
and
- - nloglogn
N(n,2) < exp{nc + T#*(A,a,L) “Togn } .

T** can be explicitly computed and € = lim,,, C,.
The proofs are based on a combination of the ideas used in the proofs
of Theorems 3.1, 3.2 and the ideas used for the proof of the coding theorem

for compound channels ([6] and [8], Chapter 4).
We define I(n), s(n), X, ¥ as in Section 3. The transition matrix for the

synchronized, channel J(s), s€ S, is given by

(53) W*(y- l ﬁl S) = z P((y-la Tt y--I(n)) | (xla .“,xI(n)) |S)

yl...yr(n) =5
for every %= (x%,+,x'™), je¥. For every %, = (&,-,¥"e X, the
transition probabilities of J(s) are defined by

(5.4) 0G| 9) = I11 Wi | ] )

for every 7, = (3%,--, 7 e¥, andeverym = 1,2,---;s€8.

We now treat the w.c.c. § by comparison with the compound chanmel
J = {J(s)|seS}. J has capacity I(n)- Cy(, ([8], Theorem 4.3.1, 4.4.1).

First we give an upper bound on N(n,4). Let s*(n) = [n/I(n)] and
n* = s*(n)l(n), as in Section 3. Obviously n* —n = I(n). An (n,N, A)-code
for § can be modified into an (n*,N,1) code for §. Denote this code by

{(ui = (uils"'su?* ’Ai)li = l’aN}
Define

1 *
U = (Ui:"':vi ("))s
where
of = Oy ¢

for
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t=1,-,5%n),
and
B, = {('1,... s*("))ly s*(n)eA}

Then, {(ui,B,-)] {=1,--,N} is an (s*(n),N, A)-code for J. The strong converse
for compound channels gives
(5.5) N(n,2) < exp{nCy,y + (loga) - I(n) + K(D)4*/n}.

We now derive a lower bound on N(n,2) to be given in (5.21). Consider
the set of all stochastic matrices with a'® rows and 4 = a1 columns
with elements which are integral multiples of 271" except for perhaps the
%ast element in every row. Let I'” be any subset of this set of matrices, with
index set S’ and of minimal cardinality, which satisfies the following:

For any w*(+|-|s), seS, there exists a w(- |-|sNel’

(5.6)  such that [w*(j|i|s) — w*(j|i]s)| S 4" 9~ IsIE
fori=1,--,a"™;j=1,-,4.

We shall say that w*(+ |- | s") approximates w*(+ |- |s). Define z'(s) by

(5.7) nj(s) = % mw*(j|i]s) for seS and seS’.

Lemma 5.1, If wH( - l . IS/) approximates wH( l . I s), then, for any =,
| H(n'(9) — Hw'(")| S 42 - 270002
I Z o H(w*( - lils) — Z mH(w*( - Iilsr))l < A% 2—[s(n)]'l’/2_

This follows from an easy calculation (see for instance the proof of Lemma
4.2.1 in [8], Chapter 4).

Lemma 5.2. Let b be a positive constant, Choose I(n) = K - logn, K such
that g(&+DKIsn < p'® and let w*(+|-|s") approximate w¥(: |-|s). Let

ue X,y and V < ¥,y,, such that Q(V |u]s)>b. Then

| %((IV/}u if | <a

where a, - 0 as n — oo, and a, depe
or W] ]9,

This is a slight modific
was kept fixed, while here its size increases with
proof given there carries over to the present case Wi

nds only on b and »n and not on u, Vv,

ation of Lemma 4.2.2 of [8]. There the alphabet
n, but so slowly that the

ithout any essential change.
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We now introduce an u.m.c. F(s") with transition probabilities F( - | - 8")
given by

(5.8) F(y

~

xs(n)

s(n)
s') = 2 :l=_Il wH(F| £ s).

fl...ﬁs(n) mj

Let v be the image of X, under the canonical mapping from Xy onto X,
where n’ = s(n) - I(n) as in Section 3. For ¥V < ¥ define

B = {(7%, -, 7|7 - 7°® = 5eV},
then
F(V| %)

S,) = Q(B|£s(n)ls')'

Suppose Q(B | JT:S(,,)|S’) >b, and w*(- | ' |s’) approximates w¥(- [ : |s). Then,
according to Lemma 5.2, Q(BIJ'ES(,,)| s) > b for n sufficiently large and there-
fore also

(5.9) P(V |v|s)>b.

It suffices therefore to prove a coding theorem for {F(-|-|s")|s"€S'}.

We shall say that jeY is generated by ue Ys(n) with respect to the u.m.c.
F(-|+|s), if there exist 7%,--,7®eY¥ such that j = j'-.. 7@ and
(F*, -+, 7™) is generated by u with respect to the channel J(s') in the sense
of (2.4). Define G(u I s, G(n| "), (8"}, B(w*(s") | ), B(w*(s") ! 1) for channel
J(s") and G*(u |s’), G*(7z|s’), (s, B*(w*(s’)|1z:), B¥(w*(s")|u) for channel
F(-]+|s" as in Section 3.

Lemma 5.3. If veG(n|so) (") G(n|sq0), then

(5.10) | B (s0)) — B (so0))| < ZeAo0t 92

EOT
with K, a constant.

A proof is given in [8], Chapter 4, (4.3.10) to (4.3.18).

Now we are ready to prove the coding theorem. Without loss of generality
we assume that A< 1. Let A’ <A, A’ >0. It follows from Lemma 5.2 and
(5.9) that, for some n = ny(4,4"), a code with probability of error < A’ for
F={F(-|"|s")|s'e8} corresponds to a code with probability of error
< A for 8. Let 8 >24 be sufficiently large so that Lemma 3.2 holds with
¢’ < 1A', Let {(u;,4))|i = 1,---,N} be a code for F such that the following
conditions are satisfied:

(2) uiefs(n)(n): i=1,-,N,

() 4di= Uses G*(“i' 5) — U§_=11 4;.

(©) F(di|w|shz1-4,1=1,--,N and s'eS".

(d) The code is maximal in the sense that it is impossible to add an ele-

ment (uN+1,AN+1) such that (uN+1’AN+1) SatiSﬁeS (a.), (b), and (C) for
i=N4+1.
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In order to obtain a lower bound on | Uy, Ail we proceed as in the proof
of the coding theorem in Section 3. We define sets B;, i = 1,---, N, as in Sec-
tion 3. Then {(u;, Bi)li = 1,---,N} is a code with maximal error probability
A’ for channel J' = {J(s’)ls’ €S'}. As in Section 3 one can show that it is
impossible to prolong the code by (uys(,By+1), Where Uy, € )?s(,,)(ﬂ),
By+1 © Uy es:Gluy+1|57), and such that the resulting code has maximal
error probability A’ for channel J'. This implies that for every ue )?s(,,)(n)
there exists an s, &S’ such that

N
Q( U BiﬂG(u|so)|u[so) > 3.
i=1

Since |S'| < 24*", Lemma 2.1 implies the existence of an soo €5’ and a set
(5.11) no(R) Z a4

and such that, for every u€R,

N
(5.12) Q( U Bi n G(u I Soo)l U ISOO) > %ﬂ.t.
=1
Then (5.11), (5.12) imply that
N O - s2ym
(5.13) ﬂ;(,,,(iyl BN G(ﬂlsoo)lsoo) > Sy,

Tt follows from (5.13) and Lemma 2.3 that

> _91_4;_ g2 exp{s(r)H(*(s00) — Ki(4, O)[sm)]*}

N
| U BN 6(a]s00

and therefore

(5.14) | G A4,N G*(n|soo)l > 21% 24" exp{s(m)H(m*'(s00)) =
= Ki(4,6)[s(i)]t — M.

We now give an upper bound on |( UY. 4) () G*(xs00)| . Cortainly,

! (zg Ai) N G*(n|s00) | £ | (iQJiBi) N G(m|s00) |

(5.15) .
< X IBiﬂ G(nlsoo)[-
i=1

. | * h
If ve B;N G(n[ Soo) then either v€ G(ui|soo) or there exists an s* 7 Soo SUC
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that ve G(u;| s*) and therefore v e G(n|s00) () G(m |s*). As a consequence of
Lemma 5.3

K 441 + )

(5.16) | H(n'(s%) ~ H(n'(s00)) | < 0N

Let sg, be such that
(5.17) Z T H(w*( - | i|s§‘,‘0)) = max{z_: o H(w*( - | i Is))lG(nls) N G(x|s0)7 &}

(5.15), (5.16), (5.17), and Lemma 3.5 imply that

| (L=J1 Ai) N G*(nlsoo) '
(5.18)
S N-2%exp(s(n) T mHW(:|i]sd0) + Ko(d, ) [s)]¥).

(5.14) and (5.18) imply that

N > 3427 exp{s(m)[H(n'(s00) — ?'neH(W*('I 1 |s§0))]
~ /MK (4,8) + K5(4,8)) — M}
(5.19) > A" exp{s(n) [H(x'(s3o)) — -:’3 mH(WH(- | i[s5o)]

— /1242 + K (4,6) + K3(4,8) + K, A%1 + §)2] — M}

and with an optimal choice of = and I(n) = Kslogn, K 5 suitable

(5.20) N@n,2») > exP{nC'Ks Jogn — T(a,L,2) nl;}f;;g n} :

From (5.5) and (5.20) one can now derive Theorem 5.1 and Theorem 5.2 by the
same arguments as those used in (3.19)-(3.23).

6. Continuous transmission with a fidelity criterion

In this section we give the improvement of Dobrushin’s Theorem 3 which
can readily be obtained by applying the results of Shannon [4] (see also
Wolfowitz [7]) to Dobrushin’s argument. Since the application is straight-
forward we give only the results. We assume familiarity with the definitions
and notation of [2] as they relate to its Theorem 3, so as not to repeat several
pages of a cofnplex system. We replace Dobrushin’s R by $ to avoid confusion
with Shannon’s distortion function R(), familiarity with which we assume.

Let n information digits be transmitted by a block code of word length »'

over the unsynchronized channel of capacity C. Write n = n’S. For arbitrary
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positive ¢ and sufficiently large n the 2" information sequences are spanned
(see [7]) by 2"*® sequences of the same space to within distortion D + ¢,
i.e,, to within average Hamming distance <n(D + &). Let D* be the mini-
mum of all D such that
C

— >
5 = R(D).
Then one can generalize Theorem 3 and (2.10) of [2] as follows. For arbitrary
positive & there exists a transmission method such that

E(y(s,H)|2) £ (t—5)D* +9),
E(¥(s,0)|2) £ (¢ —)(D*+9).

For n sufficiently large, the expected proportion of information symbols
wrongly decoded, among the first n transmitted, is not less than

R-1 (',(5'3) - &.
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