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This paper continues the study of algebraic code capacities, which were
introduced by Ahlswede (1971). He states an upper bound for the rates of codes
which have the property that the code words form a linear space and the
decoding procedure is arbitrary. It was asked (problem 5) whether this upper
bound is actually the capacity if we deal with average errors. We answer this
question in the affirmative for binary discrete memoryless channels. For non-
binary discrete memoryless channels we obtain slightly weaker result: If we
allow those codes which have as code words a coset of a group which is a linear

space, then the upper bound is again the capacity. An example shows that the
result is not true for maximal error.

In paragraph 3 we prove that the linear code capacity for compound channels

with invariant transition probabilities equals the capacity for compound
channels as given by Wolfowitz (1960).

I. Basic DEFINITIONS AND AUXILIARY RESULTS

1. Channels, Probabilistic Codes, and Errors

Let X = {l,..., a} denote the input alphabet and let ¥ = {l,..., a} denote
the output alphabet. Let X, =[]y X denote the set of sequences
X, = (#%..., x") where xt€ X, t = 1,..,n and let Y, = ]—I:;l Y denote
the corresponding set of sequences y, = (y%,..., y*), y' e ¥, t = 1,..., . We
call x,, an input word of length n and y,, an output word of length n. We define
a channel probability function (c.p.f.) to be an a x a stochastic matrix

w(' | ).
(1.1.1) Adiscrete memoryless channel (d.m.c.)is asystem # ={P,(- | ") |# =
1, 2,...3, where

k)

Po(yn | ) = [] w(3* | 2%

t=1
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BOUNDS FOR NOISY CHANNELS I 125

for all x, € X,,, y,€Y,, n=1,2,... We also refer to 2 as the d.m.c.
given by z(- | -).
Let S be an arbitrary set, and let {s(- | - | 5) | s € S} be a collection of c.p.f.’s.

(1.1.2) We call #(S)={P,{ | |s)|seS, n=1,2.} a compound
channel if we are interested in the simultaneous behavior of these channels:
each n-sequence x,, is transmitted according to P,(- | - | 5) for some s € § and
the channel may vary arbitrarily from one n sequence to the next. Given a
probability distribution (p.d.) g on S,

(1.1.3) We define an averaged discrete channel #* = {P,*(- | ") |n =1, 2,..}
by
Pn*(yn | xn) - Z qun(an Xn 13)

SES

forallx, e X, ,y,eY,,n=12,...

(1.1.4) A code (n, N) is a system {(u; , 4)),..., (un, Ax)}, where u; € X,
A."Cyn, i e 1,...,N, and AzﬂAJ - Q, i #j.

(1.1.5) A code (n, N) is called a code (n, N, A) (with maximal error)

(1) for the d.m.c. 2 if
P(A;lu)y=1—24 1=1.,N,
(i) for the compound channel Z(S) if
P (A;|u;|s)=>1—Xx foral seS, ¢=1..,N,
(i) for the averaged channel Z* if
P *(A;|u)=1—A i=1,..,N.

(1.1.6) A code (n, N) is called a code (n, N, A) (with average error)
(i) for the d.m.c. Z if

1 N
Y P(4;|u) = 1—A
> >
(i) for the compound channel #(S) if
l N
+ & PlAiluls) =1 —X  forall seS.
-1
(iii) for the average channel #* if

N
AR
i=1

643/19/2-3
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(1.1.7) Let N{n, A) denote the maximal length of an (n, .V, A) code, and let
N(n, X) denote the maximal length of an (n, N, A) code.

(1.1.8) We say the (n, N) code {(x,,4,) i - 1,.., N} is a maximum
likelihood code with respect to # if

{9n!yneYyand P(y, ) - max Py, w);C 4,

C{yn iyn € yﬂ and P(_Vn “i) E [JHE!?(. P()’n u/); for 10 1y N.

(1.1.9) The (n, N) code (1.1.8) is called a strict maximum likelihood code
(s.m.lc)if

A ={ynlyneYyand P(y,lu) = max Py, (w)j  for i == L., V.

We define the entropy of a probability vector « == (, ,..., m,) to be

(1.1.10) H(m) = — z m logm, .

i=1

(All logarithms in this paper are to the base 2.) Denote the rate for the proba-
bility = on X and c.p.f. w(- | - | 5) by

(L1 R(m $) = H(n'(s)) — ¥, mH(w(- | i}5)) where ='(s) is the proba-
bility vector on Y given by

w(s); =Y mw(jlils) for j=1..,a

2. Shannon’s Channel Capacity

(12.1) A number C > 0is called (Shannon’s or weak) capacity of a channel
if

(i) forany 8 > 0and A (0 < X << 1) there exists a code (1, 27€~%, A)
all sufficiently large #, and if

(i) for any 8 > 0 there exists a A — A(8) such that for all sufficiently
large 7 there does not exist a code (m, 27CH3})

.

Part (i) is called the coding theorem and part (it} is called the weak converse
of the coding theorem.



BOUNDS FOR NOISY CHANNELS I 127

(1.2.2) C is called the strong capacity if (i) holds and (ii) is replaced by:

(') for any 8§ > 0 and M0 << A <C 1), there does not exist a code
(m, 2#4€-8}) for all sufficiently large n,

Note that (1), (ii") imply (i), (ii). (ii") is called the strong converse of the coding
theorem. Analogous definitions can be given for (n, N, A) codes. (i), (i) are
equivalent to

(1.2.3) inf lim * log N(n, ) — inf ffm L iog N, %) = C.
g n n

A0 n M

(1), (11") are equivalent to

(12.4) lim .

n o
3. Algebraic Codes

We assume that X (resp. Y) is a Galois field with @ = p° elements (which
we denote by GF(a)) where p is a prime and s is an integer, and we
identify X, (resp. Y,) with the vector space of dimension zn over GF(a).
That is, for x,, = (x,..., x") e X, , &, = (¥,..., ¥") € X,,, and A € GF(a), we
have

log N(n, A) = Hﬁllog Nn,A) =C forall A, 0 <A <1
non

X, + X, = (%, + Xy ey &%+ &7)
and
Ax, = (Axl,..., Ax™),

where the sums x? + & and the products Ax? are defined in the sense of GF(a).

(1.3.1) A code (n, N) is a pseudo-group code if {#; ,..., 45} is a subgroup of
X, and the 4,’s are arbitrary. Let ¢ denote the canonical isomorphism between
X,and Y, :forx, e X, , ox, = y,, where y* = xt, ¢t = I,...,n.

(1.3.2) A pseudo-group code is called a group code if there exists a set
of representatives {l, ,..., [;} of the cosets of {gw ,..., puy} for which
Ai - {11 + (puz yosey IL —l_ (pui}, i = 1,..-, N.

(1.3.3) A group code is called as linear code if {u ,..., uN}. is a subspace of
X, . Note that if a = p, group codes and linear codes coincide.

(1.3.4) An (n, N) code is a pseudo-linear code if it is a pseudo-group code
and {u, ,..., uy} is a subspace of X, .

(13.5) {(u;, Ay),..., (un, Ay)} is a pseudo-shifted group code (n, N) if
there exists a pseudo-group code with code words {iy ..., iy} and an x, € X,
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such that 4, = & + ¥, ,1 = 1,..,, ¥, and the decoding sets 4, , 1 -+ 1., N,
are arbitary.

(1.3.6) {(ug, Ap)yes (un, Ay)j 18 2 shifted group code (n, V) if there eXists
a group {i, ,..., fy} and an x, € X, such that 4, - & -+ %, i Lo N
and if there exists a system of representatives {ly ,..., [} of the cosets of
{@l; ,..., plly}suchthat A; = { « gt .., I ~+ qu},t = 1, N

(13.7) An (n, N) code is a shifted lincar code if it is 2 shifted group code
obtained from a group code for which {u, ..., uy} 15 2 subspace of X, .

(1.3.8) We say that an (n, N) code {(u;, 4y).-... (un, Ay)} is a pseudo-
shifted linear code if there exists a pseuda-linear code with code words
{if, ..., iy} and an x, € X,, such that u; = #; + %, ..,y = Uy = %n

4. Algebraic Code Capacities

We introduce the concept of algebraic code capacities. We say that

(14.1) ¢+ = inf Tim :;log No(n, )
and

IR
(14.2) Cp = Alilg h_ﬂx;qn log N (n, A)

are the upper and lower capacities respectively of a particular algebraic COd'e
concept, where N,{u, A} denotes the maximal length of (n, N, A) codes of this
type. We make this more precise in the following table:

(1.4.3)
Algebraic code Maximal length  Upper capacity  Lower capacity
concept of (n, N, }) codes (1.4.1) (1.4.2)
neet .
Group code N,(n, ) C,* Co™
Pseudo group code No(n, ) C,t Gy
Linear code Ni(n, ¥ Crt Gy~
Pseudo linear code N, (%% cr. o
Shifted group code N, (n, A) oyl Co
Pseudo shifted group code Noyl(n, N C;, Co
Shifted linear code Nan, X C;, Ca
Pseudo shifted linear code N, (n, %) Ca, Ca,
P
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If C,~ — C,~, we talk about the group code capacity (for maximal error)
C, . Analogously, we define C,, C;, C,,, C,,, Cyy, and Cq, . If we talk
about average error, we talk about the quantities N,(n, A), Cu , C,~ corre-
sponding to the quantities in (1.4.3). If C,* = C,~, we talk about the group
code capacity (for average error) C, . Anaiogously, we define C,, C;, C, ,
C,,C,,,C,, and Ca, -

5. Auxiliary Results

Before proceeding to the main results, we first state some known theorems
and introduce some concepts to which we will refer later. We state now a
fundamental result in coding theory, to which we will refer many times
throughout this paper. We precede the statement of the theorem by some
definitions and notation. Let U x ¥ be a finite or countable probability space
with elements (x, ) and a probability distribution Q(w, v). Let P(v | u) be
the conditional probability on F given u, and let Q'(x), Q"(v) be the marginals
of O on U and I, respectively. Let u;*,..., uy* be pairwise independent
random variables taking values in U according to P(u* = u) = Q'(u).
For each set of values of u,*,..., uy™ we define NV disjoint subsets 4, *,..., 4y*
of by 4, = {v | P(v]| u,*) > max;_; P(v | u;*)} and N random variables
& ..., & by

& = PAS u™) = Y P|u¥)
veA]"®
(L.5.1) Let
Q(w, v)
1) = 18 Guyprte)y -

Then we have the following theorem due to Shannon (1957):

Tueorem 1.5.1 (Random Coding Theorem). Let o > 1 be arbitrary. We
have

N
L5 Be <L 4 0w, ) 1100, 0) < loga),
f==1

Another result we will make use of is due to Fano (in Wolfowitz
(1964)). Using the same notation as for the random coding theorem, let
{(uy, 4y)ses (uy, A4 N)} be an (N, A) code. Without loss of generality, we may
assume that 4, U -+ U A, = V. Let Q' be the distribution on U defined by
O, () = 1/N, i = 1,..., N. Let P(- | -) denote a channel and let Q(x, v) ==

Oy’ ()P (v | ).
(1.5.2) Let R(Q') = E(I(u, v)). Then we have
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THeorReM 1.5.2. For any channel, a code (N, A) satisfies
(1 —Xlog N < R(Q,) + 1.

We now introduce the concept of a systematic code and state a lemma
relating systematic codes and linear codes. We first introduce some necessary
preliminary notation. Let o be a permutation of {1,..., #}, and let oi denote
the image of ¢ under ¢. Then ¢ induces a mapping o* of X,, onto X, and 2
mapping ¢** of Y, onto Y, given by

(1.5.3) o*x, = o*(x,..., 2") = (¥7,..., x°")
and

0%y, = a**(yL,..., y7) = (3°,..., ")
forx, e X, , v, €Y, . It follows from (1.1.1) that

(1.5.4)  Py(yul|x,) = Pifo**y, [ a*x,)  for x,€X,, yneVa.

(1.5.5) An (n, N) linear code is called a systematic code if there exists 2
matrix P = (p;), i = L., k, j = k + 1,..., n, with coefficients in GF(p*)
such that {u .., uy} = {u|u = (a',..., a*, b1,..., b7), where a' € GF(p*),
t = l,.., & and

k

bj = z aipij fOl‘j =k + 1,.-., n}.

i=1

The first k components are called the information digits and the last (2 — &)

components are called the check digits. We have the following lemma
(Ahlswede, 1971 and Peterson, 1961):

LemMa 150 If {(uy , A),..., (uy, Ap)) is a linear code, then there exists a

permutation o such that {(c*u,, o**A4)),..., (c*uy, 0¥ AN} 1s a systematic
code and P(A; | u;) = P(c**4; | o*u,).

I1. AvceBraic CobeE CAPACITIES FOR SEVERAL CHANNELS

The results in this chapter extend theorems of Elias (1955) and Dobrushin
(1963), and partially resolve a problem raised by Ahlswede (1971, unsolved
Problem 5). We define a channel with invariant transition probabilities
(c.i.t.p.) as a d.m.c. given by a matrix w(- | -) which satisfies w(j|?) =
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w(j+ k|74 k) for all 4, j, ke GF(a), where the sums j + &, 1 + k& are
defined in the sense of GF(a). We state these results in our terminology.

THeoREM 2.1 (Elias). Let X = Y = GF(2). Let P be a binary symmetric
dm.c. ThenC = C, = C,.

Turorem 2.2 (Dobrushin). Let X = Y = GF(a), where a = p*, For a
c.it.p.
(1) C = C, = C, and therefore also
(ll) C = Cy = C_sl .
The definition of C 1, given in (1.4) depends on the way in which we define
the field structures in .X and Y. Let C"< be the value of Cl corresponding to

an optimal choice of field structures. Let «* be the uniform distribution on X.
Ahlswede (1971) asked whether C“; R(m*, w).

1. The Pseudo Linear Code Capacity for the Binary Discrete
Memoryless Channel

The proof of the theorem which follows makes use of an idea of Elias (1955).

THEOREM 2.1.1. Let Zbead.m.c.withX =Y = GF(2). Then
N,(n, §) > 2nRir*m—K;Vn

where K is a constant depending on A but not on 2 or n and n* = (}, }).

Proof. 1t is sufficient to prove the result for large 7. Suppose we have a
pseudo-linear code with 2% elements. Let G denote the set of code words.
Then we can find a set of generators, u, ,..., 4, such that u€ G implies

k
Z w,, o,e€GFQ2), i{=1,.,k

The idea of the proof is as follows: select generators at random, form a
pseudo-linear code, and apply the random coding theorem to prove the result.
Fix n and &, & < n. Independently select sequences

u]_ = (ul ’ ul ye u1 ), .y uk = (uk g ukn),

where ute X, i = 1,.., k, t = 1,...,n, choosing the components of each
sequence independently with probability } that either element in X will be
chosen.
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Form a code with 2* words, u;, j = 0,..., 2¥ — 1, by taking ail poss:dble
linear combinations of # ..., u, . Note that the u; are not necessarily distinct,
since 4, ,..., %, may not have been linearly independent.

(211)  u; = oty + oy + 0+ aply,,  where o€ X,

t = 1,..., k. Let u, be the zero vector corresponding to oy, = 0, £ = 1,..,, k.
Then we have

(2.1.2) ut = aput + - + oty = 0,.., 2% — 1. Since the totality of
components of u; ,..., 4, are independent, the 4%, t = 1,..., n are independent.
Hence the components of each word are chosen independently. Moreover,

(2.1.3) Plut =0} = Put =1} =1,t =1,..,n,j % 0.Ifj % 0, there is
at least one coeficient «;, £ 0. If Z'le a;u;t = 0, obtain a new sequence
(uF?), where

u;kt:ult l:}ér,

t ¢
Wit =t 1.
For this sequence,

k
L I
Z anul - 1.

l=1

Hence, there are at least as many sequences (ut,..., 1Y) producing u = !
as there are u;* = 0. By symmetry, we obtain that there are as many sequences
producing ;! = | as there are producing u, = 0. Thus, the components of
the words u;, j # 0, are independent and equidistributed.

We now show that the words u, , u,,, , j, m # 0, # mare independent. We
show

2.1.4) Puf = x, u,!t = 2y = lforx, «' e X, t = 1,.., n It then follows
that

(2.1.5) Plu} = x, u,! = x'} = Plu = x)Plu,t = x'}. Then u, uy,' are
independent for each ¢ which implies that u;, u,, are independent. To prove

(2.1.4) we note that since j 5 m, we have &y 7 Oy fOr sOME 7, S2y 5 = 1
and ay,, = 0. Then given (u,,..., %) such that

k k
(216) 2 aut =0, Z O‘mlult = 0,

I=1 I=1
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define u}* = ut | # r, and u;‘.‘i =, + 1. Then

k k
(2-1.7) Z aﬂu;‘t = 1, Z Otmlu?(t - 0-
=1

l=]

Hence, we can now see that there is a one-to-one correspondence between
sequences which produce #;f = u,,' = 0 and ones that produce #;* == 1,
u,' = 0. Hence,

(2.1.8) Pfut =0, u,! =0} = P{ut = 1, u,* = 0}. But

(2.1.9) 1 =Plu,! =0} = Plui = 0,u,! =0} + P{ut = 1, u,* = 0} which
implies

(2.1.10) P{ut =0, u,,t = 0} = P{ui = 1, u,* = 0} = } and the other
relations in (2.1.4) easily follow.

(2.1.11) Let s = 2% — 1. Since u,,..., #, are pairwise independent, we
may apply Theorem 1.5.1. Let K, be an ensemble of codes of the above type.
Then for arbitrary 8 > 1, we have that

@y Ly

i=1

+ Ou{(w, v) | I(u, v) < log Bs},

o -

where Q,{(u, v)} = O, (W)P,(v | «) and O, is the source distribution on X,
given by

(2.1.13) 0,'(u) = ﬁQ’(u‘) = —217;— forall uelX,.

If (2.1.12) is less or equal X' < }, then there is a code (, s, X).
(2.1.14) Let d, d’ be such that
2-Vi L O (1. < nR(x*, w) — d’ v} <X,

where I, = I(u, v) = ¥, I'(ut, v*). This is possible by Chebyshev’s
inequality and the fact that Eo/(I') = R(z*, w) and hence Eg -(I,) =nR(n*,w).

(2.1.15) Choose 8 = 2¢v7 and % such that
s =2k 1<K InR(r* w)—(d+d)Va < QR

Note that Bs < 2nRtr*a)-2'Vn implies

(2.116) O, < log B} < Qull, < nR(w*, ) — d’ v/},
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Since 2nRim*.w)-(d+8)Vn -~ 2kt there is a constant Ky such that
(2.1.17) InR(r* wI-K3yVn o Dk,

Hence we have a code {, 5, X'), {(#, 4,%),..., (%, 4,7)}. Add the. code word
1, to this code with decoding set . Then the average error for this new code
is given by

R R VA
i=1

1 , s Xr
s+1  s4+1 5

s+1 s+ 17T

Since s tends toward oo as n tends toward oo, there exists n* such that
n == n* implies

5

s+ 1

—i——+ A< 2) = A

We now have a code (», 2%, X), where

9k =, InRin*.wl-K5Vn,

Now replacing the preceding decoding scheme by a maximum likelihood
decoding scheme for u, , u,°,..., #,% we can only improve on the error proba-
bility.

Now if 1y , #,%,..., #.% are not distinct, the set of generators was not linearly
independent. If 7 is the maximal number of linearly independent code words
in the set of generators, then 27 is the number of distinct code words. Replace
the dependent code words by £ — » words so that we achieve a set of k
linearly independent generators, and hence 2* distinct code words. Decode
maximum likelihood and obtain a (n, 2¥, X) code and the theorem is proved.

For completeness, we include the weak converse of Theorem 2.1.1. This
result was proved by Ahlswede (1971). The proof given here is different.
Let {(u; , A)),..., (un, An)} be a linear or pseudo linear code. Let

t t =4 =
'n'it —_ Hu] ‘u.? z]’\.f’ 15"‘? N}l fOl’ Z —_ 1"", a.

We first state a result of Ahlswede (1971):

LemMa 2.1.1. Let X =Y = GF(a), where a = p*. Then either
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‘THEOREM 2.1.2. Let X = V = GF(a), where a = p*. Let P be a d.m.c.
given by w. Then (1 — AN, (m A) < nR(m*, w) + 1, where

a* = (};s— youny —plT)

Proof.  According to Lemma 1.5.1, we can restrict ourselves to systematic
codes. Let {u, ,..., uy} be the code words of any systematic code as described
under (1.5.5). We have from Theorem 1.5.2 that (1 — ) log N < R(Q;,) + 1,
where Q. (#;) = 1/N, i = 1,..., N. Let Q;f be the marginal distribution of
Qo on{u | i = 1,..., N}. We have

(2.1.18) R(Qy,) < Yri R(QF). By Lemma 2.1.1, we have that Q{f(0) = 1
or Ogf(¢) = 1/p% i = 1,..., p* Since R(z*, w) = 0 if ;! == 1, we have from
(2.1.18) R(Oy,) < nR(=*, w) where n* = (1/p*,..., 1/p*).

From Theorem 2.1.1 and Theorem 2.1.2 we have:

THEOREM 2.1.3. Let & be a d.m.c. given by w. Let X =Y = GF(2).
Then

C, = R(r*, w), where =* =(},1).

Theorem 2.1.3 is a solution of unsolved Problem 5 of Ahlswede (1971) in
the case X = ¥ = GF(2).

Theorem 2.1 is a corollary of Theorem 2.1.3. To see this, we first prove the
following

Levma 2.1.2. Let P beac.itp. Let G = {u, ..., uy} be a subgroup of X,, .
Then there exists a maximum likelihood decoding scheme (1.1.8) for G which ts
also a group decoding scheme (1.3.2), and maximal error equals average error
Sor this decoding scheme.

Proof. Let u; be the zero code word. Let V; ={y,|y,€Y, and
P(y, | ;) = max; ,, P(y, | u;)}. Let V' be a set obtained from V) by
choosing exactly one representative of each coset of G which has elements in
V,. Then we define

Al = {yn |yne Yn and P(yn ! ul) = r?#afp(yn I u,-)}U Vll‘

(2.1.19) Letd, ={o+ u;|ve A}, i=2,..., N. Then {(u;, Ay),..., (un, An)}
is a maximum likelihood code since 4; N A; = &, 1 # J, and

Plo+u;lu) =Py = gr;ﬁx P(v | u;)

= max P(v + u; | 1)




136 AHLSWEDE AND GEMMA

forallwe 4,,i = 2,..., N. But (2.1.19) is a group decoding scheme if we le.t
{I, ..., I} = A; . From (2.1.19) it follows that P(A,-.} u,") = P(4; ), %
j = 1,..., N. Hence maximal error and average error coincide.

Since a binary symmetric channel is a c.it.p., Theorem 2.1.3 and
Lemma 2.1.2 imply Theorem 2.1.

2. The Pseudo Shifted Linear Code Capacity for the Discrete
Memoryless Channel

The following theorem is proved with the help of the methods of Dobrushin
(1963).

Treorem 2.2.1. Let 2 be a d.m.c. given by w, and let X = ¥ = GF(a),
where a = p°. Then

Nﬂlm(n) R) > 2”R(Tr*,u')._xxn\/_n_

where n* = (1/p,..., 1/p*) and K; is a constant depending on X and a but not
on w or n.

Proof. Tt suffices to prove the result for large n, Suppose we have 3
shifted linear code with @* words. Then we may find a set of generators
tl) ,..., ik, such that for any code word u, 4 = Zle i, + e, wherea; € GF(a),
i1=1l,.,kandec X,. '

To choose 4, ,..., #, , independently select & sequences of length each
component in X, choosing the components of each sequence independently
with probability 1/a that any element in X will be chosen.

Form a code with a* words by taking all possible linear combinations of
fly ..., # , and adding a word e = (é,..., e") € X, , chosen in such a way that

each component ¢! € X! is equally likely and the choice is independent of
idy',..., t, and e' is independent of e*, t # s.

(2.2.1) uj == ajlﬁl + tee + O‘jkﬁk + e,j = ],..., ak, Where ®jq € X? l = 1’“" k.
Let @;* denote the quantity

ﬂjt — ailﬁlt + + ag’kﬁkt
and let @; denote the quantity
4, = (},..., a).

Consider the expression P(u;! = jlat =1). Since u}! = i1, I ¢, we have

Pt =jlaf =) = Pt =j —I) =1,
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But then we have
Plut =j) = ¥, Plut =4 = ) Pl = 1) = .
Similarly, -
Plu, =j) = ";77 .
Next we show that u; and «; are independent for i # j. We have

P{ﬁl = K seeny ﬁ,c = Xp 4 U; = x}

P{ﬁi XY e ﬁk = X | u; = x} = P{l’l — x}
t
= anP{ﬁl == xl yorey ﬁk - xﬂ ) e —= X — Ot,lxl _— - aikxk}
] 1

(@"ye+ = (@)

Hence the variables 4, ,..., @ remain independent and identically distributed
under the assumption u; = x. Note next that the mapping b — ob, a,
be GF(a), « # 0, is a one-to-one mapping of GF(a) onto GF(a). Thus if a
random variable ¢ is uniformly distributed on GF(a), so is «£. It follows now
from the definition (2.2.1) of ; , u; that

up = u; + Gytty + A Gl
Assume &, + 0. Then

P{u’ —_— fi ui —_ x, ﬁl — xl yrevy ﬁk_l = xk_l}
1

= P{&klik =K — X — &lxl i —&kwlxk—l , u; = x} - E;,"—
and hence, by the formula for total probability,
P{uj:.i(ui:":x}z;;.

Hence #; and u; are independent.

Now since # ,..., #g: are pairwise independent, we may apply the random
coding theorem, Theorem 1.5.1, to the ensemble of codes of the above
type and obtain that the expected value of the average errors of the codes in

the ensemble is less or equal
1
B
If (2.2.2) is less or equal J, there is a code (n, a*, A).

(2.2.2) + Oni(s, ©) [ I(u, v) < log Ba*}.
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Let d, d’ be such that
(2.2.3) 2-aVn Q. {l, < nR(@*,w) —d va} <X

This is possible, as in (2.1.14), by Chebyshev_’s inequality and Eg Al,) =
nR(m*, w). Similar to (2.1.15), choose § = 2¢¥™ and & such that

(2.2.4) aF < 2nR(n*,w)»~(d+d’)*/_'r: < @i,
Then Bat < 2nRir*w)—d'Vn implies
@25) O, < logBa¥} < Qul, < nR(r*,w) — &’ V)
From (2.2.4), since @b+l 3> JnRirtw)—d+d)Vn there is a constant K such that
(2.2.6) InR(x*w)-K5Vn < gk,
From (2.2.5) and (2.2.6), it follows that
Ny (m, 1) > 2nRirt =KV,
We now prove the weak converse of Theorem 2.2.1.

Turorem 2.2.2. Let 2 be a d.m.c. given by w, with X = ¥ = GF(@)
where a = p°. Then

(11— R)Nslp(n, N < nR(m*, w) + 1,
where n* = (11p,..., 1/p*).

Proof. Let G’ denote the set of code words in an (n, N, A) pseudo shifted
linear code. From Lemma 1.5.1 we may assume that G’ was obtained from
a systematic code, whose code words we denote by G, by the addition of some
X, € X,, that is, G' = {u -+ x, | ue G). Since for G, either mf =1 of
wt = 1/p%, 1 = 1,..., p%, it easily follows that either there is a j such that

mt=1ormt =1fp%, i =1,.,p", for G'. The theorem now follows from
‘Theorem 1.5.2 and (2.1.18) in Theorem 2.1.2.

From Theorem 2.2.1 and Theorem 2.2.2 we have

THEOREM 2.2.3. Let 2 be a d.m.c. given by w with X = Y = GF(),
where a = p*. Then

Cslp = R("T*’ ﬂ))
where n* = (1/p%,..., 1/p%).

Part (it), Theorem 2.2, follows from Theorem 2.2.3 and Lemma 2.1.2.
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3. The Linear Code Capacity for Compound Channels with Invariant
Transition Probabilities

We now extend Theorem 2.2 to the case of a compound channel with
finitely many channels. In order to prove this result, we first prove two
lemmas.

(2.3.1) A symmetric channel is an @ X a stochastic matrix whose rows are
permutations of each other and whose columns are permutations of each
other. The following lemma is due to Dobrushin (1963).

Lemma 2.3.1. 4 c.i.t.p. is a symmetric channel.
Proof. The permutation j; - j,- defined by j,- — j; = 4,y — 1), has the
property that
w(jy | i) = w(ji | ).

To see this, note that

w(jy | i) = w(jy — jr | i — )
= w(i, — 1y | i — Jr)
= w(jy | ix).
Similarly, the permutation 7; — 7+ defined by i,y — i, = jir — j, has the
property that
w(jy | 1) = w(j | iv).

Hence a c.i.t.p. is symmetric.

(2.3.2) Let #(S) be a compound channel given by {w(-|-|s)|se S}
| S| < 0, X =Y = GF(a), where each @(-| - |s) is a citp. Let #*
denote an averaged channel over #(S) with distribution {g,|se S}. Let
E,(K) denote the expected value of the average errors of codes in a system K
of (n, N) pseudo-linear codes, where the probability distribution on K is
determined by #* and by a source distribution Q," on X, . Let

Qn — Qn’ X Pn*'

(2.3.3) Let K* be the system of (n, N) pseudo shifted linear codes obtained
from K, and let the distribution on K* be such that for each of the a* pseudo
shifted linear codes corresponding to the pseudo-linear code G, say G,*,
t = 1,..., a" we have

0,4(CY) = = 0uG)
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Limma 2.3.2. Under the conditions (2.3.2) and (2.3.3) we have
E,(K) = E{K*).

Proof. Let G* = {(w,*, A,%),.., (un™ Ay e K* Let G be a code in
K such that the set of code words G, * of G* is obtained from the set of code
words G, of G by adding an element %, € X, , that is,

Gu* = {u+ xnluEGu}'
Then for each P,(- | * | s) we have

Pv 4 %, %, 15) == Pofv]uls)
so that
(2.34) Pxv+x,|u+x,) =Pw|u) forall ve Y,, #€Gu.
Then from (2.3.4)

NG = - ¥ PHAF )

Q==

-

M=

‘}fﬁ IP*(Ai+xn1ui+xn)

1 N
=N ‘;P*(Aic | ;)
= XG).

It now follows from (2.3.3) that E,(K) = E(K*).

TuroreM 2.3.1.  Let #(S) be a compound channel given by {w(- | * | )| $€ Sk

| S| < o0, where w(- | - | 5) is @ citp. for all se S. Let X = ¥ = GF(@)
where a = p*. Then

C,=C,=C= max iI:fR(rr, 5)

Proof. First we note that for each w(: | - | ), n* = (1/a,..., 1/a) 1 the
maximizing input distribution since each channel is symmetfic by
Lemma 2.3.1. Hence C = min,s C, . Also, since each channel is symmetric;
the output distribution corresponding to =* is again n*, We proceed now
precisely as in Theorem 2.2.1 to choose @* code words which form an (%, a)
shifted linear code, are equidistributed, and are pairwise independent.
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We consider the ensemble K of (n, a*) linear codes on the channel

(2.3.5) Px( ) = ) aPul" - 19),

ses§

where {g,| s S}isap.d. on Sand ¢, > 0, s € S. Let K* be the ensemble of
shifted linear codes corresponding to K. By Lemma 2.3.2, we have

E.(K) = E,(K*). Hence by Theorem 1.5.1 applied to K*, we obtain

(2.3.6) E(K)=E, (K* < ’1§ + 0.y, ©) | I(u, v) < log Ba*}
We have

(2.3.7) I(u,v) = log _QQT(;‘Q%J)”
P.*(v %)
0.()
ZseS qs‘Pn(vl u %S)
1/a®

= log a® -+ log Z g Pp(v| u [s)

€8

> loga® - ), q,log Py(v|u s)

P.(v]us) |%
=l 1| "
P.(v| uis)
= Z qs lOg Q:('v)l

sES

= Z QJn(us v s)'

sES

= log

= log

From (2.3.7) we have that I(u, v) < log Bo* implies
Z godp(u, v; 5) < log Ba*

and thus "
(238) Qn{(ua ‘U) i jn(", ‘U) < IOg ﬁa")}
< Qn z(u! 7}) Z ern(u» v 5) 18 log 5ak§
<Y Ouf(w, ) | 1n(w, v; 9) < log Ba*}.

643/19/2-4
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Let d, d’ be such that

(2.3.9) 207 Y Qully(, 35y nC - d ) A

<5
That we can obtain (2.3.9) follows from Chebyshev's inequality and from
Eo AL(9) nC.,  scS
Choose B — 2-4¥7 and & such that
(2.3.10) gt < 2nC AV n - ghed,
Then fa* < 28C-4'n implies
@311)  OufL{s,v;s) < log fa¥)
L0, vy 5) 7 nC - d’ \,/}i}

for all s € S. From (2.3.6), (2.3.8), (2.3.9), and (2.3.11), we obtain E,(K) = A
and from (2.3.10) we obtain that there exists a constant K; such that

—
ak > MC-Kxvn,

Hence there is a code (n, 2"¢~K3 V%, }). This proves C,’ = C. Since, clearly,
Cy, < C we have 6cp — C. By Lemma 2.1.2, we have C; = C, = C, = C,

and the theorem is proved. The following results were announced Dby
Ahlswede (1971):

CorOLLARY 2.3.1. For the compound channel (S) given by {w(: | | 5)|$€ S}
| S| << oo, where eachw(: | - | s)is binary symmetric d.m.c.,

C, = C, = C = max inf R(n, s).

7 s€§

Proof. 'This follows directly from Theorem 2.3.1.

CoroLLARY 2.3.2. Let P(S) be a compound channel given by {z(:| * [s)| $ € Sh
| S| < co, where each w(- | * |s) is a binary symmetric d.m.c. Let {¢, |s€ ‘St}

be a p.d. on S with q, > 0 for all s€ S. Then, for the “binary symmetric
averaged channel” P* given by

PACI) =2 aPalt 10 18),  n=1,2,,

1Y
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we have
C, - C, =C.

Proof. It was shown by Ahlswede (1971) that if C, denotes the capacity
of #(S), then C, is also the capacity of #*, The result now follows from
Corollary 2.3.1.

4. Examples

Note that Theorems 2.1.3, 2.2.3, and 2.3.1 hold regardless of the field
structure defined on .X. It was shown (Ahlswede, 1971) that for some channels
the capacity of the channel depends on the field structure defined on X and V.
Let C,*, where u is one of the previously defined subscripts for C, denote the
u-capacity corresponding to the optimal choice of field structures.

Theorem 2.2.3 implies C,; = R(n*, w). Example 5 of Ahlswede (1971)
shows that C} < R(n*, w)p In Example 1 to follow, we show that
Ch. < R(=*, wi It is perhaps surprising that, in this case, maximal error
andpaverage error lead to different capacities.

ExamriE 1. C., < R(z*, w). Let

100
w={100].
010

Fix any field structure on X' = (ay, 4, a3). Forv* = (4, 1, }),
R(m*, w) = log, 3 — 3.

A systematic code with rate ~R(x* w) must have &~ (1 — §log3)n
information digits.

Let G’ denote an arbitrary (n, N) pseudo shifted linear code obtained from
a systematic code, and let G, denote the set of code words of G'.

(2.4.1) There is a subset of G, of cardinality 2* with only 0’s and 1’s in the
information digits.

To see this, note that G, = {u + x, | u € G,} for the systematic code G and
some x, € X, . Let G,;, , G, denote the sets of elements obtained by taking
the first 2 components of elements in G, , G, respectively, and let x, denote
that element of X, whose components agree with the first £ components of
x, . Since G,;, = X, it follows that G, = X;.

Assume g, # 0, and without loss of generality, assume a3 = 2.
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(2.4.2) Only for sequences u, , u, such that there exists at least one com-
ponent in which one sequence takes the value 2 and the other sequence takes
one of the other values are there sets 4, , 4, such that both P(4, | ) >0
P(4,| u;) > 0. Any two elements of G,” must have property (2.4.2). '

The subset (2.4.1) has this property only if its check sequences have this
property. But the maximal cardinality of such a set of check sequences is 2",

We have & ~ (1 — 3 log 3)n > n/2 so that 2 > 27~% Hence the
subset (2.4.1) does not have property (2.4.2) and so neither does G,,’. Hence
C3, < R(m*, w).

For completeness, we include the following example, which was proved by
Ahlswede (1971) for an averaged channel.

ExampLE 2. There exists a compound channel such that

= C,* < inf R(r%,s) < C.

Let
100
wl: 010,
010
010
w, ={100],
010
Wy =

010

010).

100
By symmetry, R(r*, w,) = inf, R(n*, 5) and

inf R(m*, 5) = log 3 — § > 0.

Let G be an (n, N, }) pseudo-group code, where A <C 3. Since the code
words of G form a group, # € G, implies —u € G, . Let F be any field structure
on {a, , a,, a,}. Note that any changes in field structure are simply permuta-

tions of the input alphabets of w, , @, , wy . (The field structure on the output
alphabet is irrelevant in this case.) Let w* be the channel

0/100
w* =11010}.
2\010



BOUNDS FOR NOISY CHANNELS I 145

Since except for the zero element, # # —u and

Py(ylu)y =Py —u) forall yeV,, forany 4 and 4,
Punld|4)+ Po(d| —u) < 1.
Hence

l N
=7 2 Panld; | u;

= % [P*,,(A 10)+ 3 [Pualdn %) + Pun(d | -"u)]]
P ey

1 1 N—1 2
\<“N+N 7 <§ for N > 3.

Hence C,* = 0.

RecEeivep: June 22, 1970; ReviSeD: January 25, 1971
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