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1. INTRODUCTION

In the first part of the paper we give a common generalization of two
fundamental theorems of information theory: the noiseless coding theorem
and the coding theorem for noisy channels.

In order to state the result we need some definitions.

Let X and 9 be finite sets, which serve as input resp. output alpha-

bet of a discrete memoryless channel (DMC) with transmission matrix
n

n
(WO 1), ex, ey ¥" = ]17’: and 9" = ]1] Y are the input resp. out-

t nyut i -th e i
put words of length n. (WO"lu ))u nexn e is the n xtension

of the channel. X% and 9° are sets containing only the “empty word”

and ¥= U x", 9= U "
n=0 0

n=
*Research of this author was supported by the Deutsche Forschungsgemeinschaft.
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We introduce now the notion of a praefix code for the DMC. IV =
=(l,...,1,) denotes a vector with natural numbers as components.
A (¥, ))-PC (praefix code) for the DMC is a system of pairs {(u, D)):
1< i< N} with

(@) u, € ¥, DI.C‘;)[' for i=1,...,N,

N
(b) no element in D= _U1 D, is praefix of another element in D,
1=

(c) max W(Dflu,.) < A
]

In Theorem 1 of Section 2 we generalize Kraft’s inequality to (¥, \)-
PC’s.

Assume now that there is given a probability distribution (p.d.) P =

=(P,,...,P,) on the set of messages ‘llt ={1,...,N}. Then the gver-

1°°

age length of the (IV, \)-PC equals L = 7 Pl. Denote by L(P,\) the
=

smallest average length of PC’s with N code words and error probability

A. Our Theorem 2 in Section 3 states that

H( P)

L(P,A) = + O(YH(P)),

where H is the entropy function and C is the capacity of the DMC.

Praefix codes are special cases of sequential coding sc'iemes (SCS) for
DMC’s with complete feedback. If Lf(P, A) denotes the smallest average
length of SCS’s for (P, W) with maximal error probability A, then for
any &> 0 thereexistsa A, 0<A< 1, such that

H( P)

Lf(P, A= (1-96) + O(VH(P)) .

This weak converse type estimate is the content of Theorem 3 in Section 4.
We give now a brief sketch of the reasoning which led to these results.
Originally we were interested in the following search problem: Suppose

we are given a set Z = {zy. ., zN} of objects and exactly one element
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z; of Z isdefective (wrong, unknown) with probability P, [2 P.= l)

We want to identify the unknown element z, by testing some subsets A
of Z whether 4 contains z; or not. The result of a test is right and
false with probabilities g and 1 -8, respectively, and these cases are
independent of the other tests. Our goal is to minimize the average number
of tests needed to identify the unknown element with a probability larger
than a prescribed 1 — A (0< A< 1).

In case Pi=% fori=1,...,N Rényi [1] considered the quan-

tity L .. (P, \) = the minimal number of tests maximally needed in order
to identify the unknown element with probability larger than 1 — \. He

showed that one needs about lO(ng tests, where C is the capacity of

the binary symmetric channel (BSC) with crossover probability 1 — 8.

For general a priori distributions P = (P P ) one gets a mean-
ingful new problem only if one tries to minimize the expected number of
tests. It was noticed by Sobel ([2]) and also by others (see [3]) that in
the noiseless case (3= 1) this problem is equivalent to encoding a source
P= (P ..., Py) by a praefix code of minimal average length. The noise-

less coding theorem says that this length is about {Io—é%. (The same is

true for the more general uniquely decipherable codes.)

This and Rényi’s result suggest the conjecture that in our more gen-

eral search problem we should manage with about !'{_(CQ tests in average.

Rényi’s proof of his result is an existence proof based on a standard
random argument and gives no hint for a proof of the conjecture. However,
his problem can be formulated in a language more familiar to channel cod-
ing theoretists: Given the number N of messages how large a block
length n is needed to transmit those messages with small maximal error
probability over a BSC in case of complete feedback? In this formulation
the problem was solved already by Shannon ([4]) even for general

DMC’s: n~ ]O%N
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Moreover, the construction of [5] gives an explicit asymptotically op-
timal fixed blocklength coding scheme and therefore also an asymptotical-
ly optimal search strategy for Rényi’s problem.

Our search problem for general a priori distribution P is simply a
coding problem for BSC’s with complete feedback, if we permit sequential
coding strategies (SCS) and measure the code length by

N
L= 2 PEL,
=1

where EL ; 1s the expected number of symbols needed to encode the i-th
message. Passing from the BSC to general DMC’s one might conjecture that

~ HP)
L~=5.

Since on the other hand feedback does not increase the capacity of a DMC
one is led to conjecture this relationship also for praefix codes.

From a practical point of view it seems more appropriate to use the
average error concept

_ N
X=1~ 2 P.WD,u).
i=1 !

This changes the problem essentially. Results for this case are included in
the forthcoming [6].

In the second part of the paper we determine the capacity region for
multiple-access channels without synchronization (UMC) and thus give a
generalization of the results of [71, (8], and [9]. In [7] Dobrushin in-
troduced one-way channels without synchronization at the receiver and he
gave a formula for the capacity in terms of a limiting expression. In [8] a
computable formula for the capacity was obtained. The approach taken
there is linked to the maximal error concept and is not adaptable to UMC’s
in case of average error, the only error concept for which the capacity re-
gion of the MC is known (see [9], (10)). Here we proceed by a rather sim-
ple reduction to the synchronized case via list decoding. Our proof is even
in case of one-way channels much simpler than the previous one. It also
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applies to degraded broadcast channels without synchronization. The reader
familiar with those channels readily can see how our present approach can
be applied. The strong converse for unsynchronized one-way channels can
also be proved this way with the help of Margulis’ theorem ([11]. see
also [12]). This argument seems not to apply if average errors are genuine-
ly used.

2. A GENERALIZATION OF KRAFT’S INEQUALITY
Theorem 1.

(1) Let {(u,D): 1<i<N} bean (I¥,N)-PC for the DMC w,
then forall X\ (0< A< 1) and v (0<y< ]

N n..__dl’* 1 i }
(2.1) Z e" Cl"— (I—A)’Y +l°g{( _)\)( ‘“7) < 1,
i=1

where d depends only on w.

(2) One can give explicitly a function K(\) (see proof) such that
the following is true: if

N
2.2) > ." Cli+ KW)VI; <1

i=1
holds for IV = dy, ..., Iy) then there exists an (IV, \)-PC,
Proof.

(1) Let g be the unique output distribution on 9 which maximizes

2 pywix) log XX o

X,y q(»)
and let ¢" =gX...X q. It is well-known (see [13]) that
(2.3) 2w(y|x) logy—_(}—jl—x—)gc (x€ x)

y q(y)

and that for all u€ x”
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W(- [ u)
2.4) E, ., .log— < Cn
W(etu) qn(,)
(25)  Var,,.,, lg 2 < g,
q"(+)
where
d=max V log WC1%).
xex w70

and d =0, if the channel is noiseless.

We show now by a standard argument (originally due to Kemperman
[14]) that for u€ X" DC 9" with WDlu)>1- A

_C,,_VL_
(2.6) ") =1 -0 - y)e (=2

To see this, set

f.n n. WQ™ 1 u) nd
B={v"€ 9" log 7om > l/(l—m}

and derive from here

Cn+ (lfa;\)y ~n
e +q" (D)= WIDN B u) =

where we have used in the last step Chebyshev’s inequality and (2.4) and
(2.5).

Set now [*= _max [ and define D' =D, X \g)l*_l" for i=

i=1,...,

=1,...,N. Those sets are again disjoint and 6’*(Df) = ﬁli(Dl.). There-
fore,

y —_% N l.
1> :21 q"(D}) = ‘Z’l q (D) >
- '_—_
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N -cz-_]/—d—t-
>A-N-y Ze THEO
i=

which was to be proved. |

In the noiseless case d=0 and A= 0. By choosing v arbitrarily
small we get the classical Kraft-inequality.

(2) Our proof is based on a generalization of Feinstein’s maximal
coding method [ 15].

Let p beap.d. on ¥ and g=pw the corresponding p.d. on 9.
We make use of the notions and simple properties of typical sequences
~ and of generated sequences, both defined within c¢(\)Vn deviation (see
[13], Ch. 3). Denote by X"(p) the set of typical n-sequences and by
V™" (p, w,u) the elements of )" generated by u € X"(p).

Then for some known functions ¢, (N), ¢,(N), ¢ 3()\) and ¢, (M)

2POHW( 13N+ ey Vn
(2.7) 19" (D, w,u)| < e*

~H@n+cy(\) ¥n

(2.8) Qq"(v)<e for ve VW' (p,w,u)

and

(2.9) W' (p, w, w)lu) > 1 - c;(D)
where 1—c;(0)>1-3 if o(d) is large enough,

(2.10) p"E"@PH=1- c, (N> 0.

Without loss of generality we can assume that I <l,<...< Iy
Fora ¢t (1<t<N) and !'= (Iys.-. 1) let now {(u. D,): 1<i< ¢}
be a (I, A\)-PC with the following properties:

(@) u,€ ¥'i(p)

? i1 -1
(0) D;=0"p,w,u)— U Dy x 97k
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(© WDlu)>1-2

(d) The code is maximal in the sense that it is impossible to add an-
other (u, +1,Dt +1) Without violating (a), (b) or (c).

It follows from (2.9) that such a code exists,

If t<N then for every u e ’c'“(p) either u & {u,,...,u } and
for D= U D, x xler1mhi

21D W™, wuyn D)y > 2,

because otherwise the code could be prolonged or u € {u;,...,u} and
then

212) 91 w e p

by construction.

It follows from (2.9) that (2.11) holds also in this case. (2.10) and
(2.11) imply that

¢ 1(D) = > Yaywu) >
(2.13) weX'rt 1
>3 (1= ¢, = e,

On the other hand jt follows from (2.7) and (2.8) that
lev1 by Ly, =1
¢ D)= 2 gD, x 917y ¢
i=

(2.14)
< 2‘, egpﬁ)H(W(le))lﬁcl(A) V= H@)+ ey VT

i=1
By choosing for p a maximizing input distribution (pw = q), we obtain
t —
(2']5) q’l'+ I(D) < 2 e-— C1i+ cg(A) Vli )

i=1
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where c6()\) = cl(k) + c2(7\).
This and (2.13) imply

t
216 0<em< 2 e~ Clites®
i=

or

t —
1< Z e~ Cli+ (cg(M) - loges (A) VI,-.
i=1
This is a contradiction to our assumption t< N, if

K()\) = cs(A) — log cs(N),

because the terms in the sum of (2.2) are positive.
Q.E.D.

3. THE CODING THEOREM FOR PRAEFIX CODES

Assume now that a set M={l,... , N} of messages is given with
probability Pi that i is to be sent over the channel. We are interested
in the quantity

N
(3.1) L=LP)N= min P,.li.
N, -pes =1

Theorem 2 (coding theorem and strong converse). For any fixed A
0<A<)

L, n =28 1 o).
Proof. From Theorem 1 we get for

T = max (K(\), I/fl_fii)—'y ~ log (1 - (1 - 7))

the estimates

N N -
G2 min{ 2 pi; 2 e T <)<
i= i=
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N N
<L<min{_2’ _2’ "CHTV—

i=1
First we derive an upper bound on L.

Choose minimal integers l,. with

33 pee TV Gl m,

Then clearly,
- CL+TYI;
1= 'Z,Pl) e ‘.

i
The larger of the two solutions of the equation

log P,= — Cx + TYx

<1}.

is
IogP T2 T2 2 T2

04 X = C 2C2 + V('z—é'j) —Flogl’i<

| lOgPi T2 T

5 C +F'|' élﬂ—logPi.
C2
Therefore,
IL<x+ 1<——C—~+——§~V~ log P, + (1 +F]
C2

and hence

L< Zp<®Dy T 5pyipy
1 CE I
Since ¥ is a concave function we finally get

(G5  L< ﬂCP—) + O(VE).

Let now I¥ = (1,,...,1 ) be such that

3B.6) e STV

i
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and

37 L> 2 Pl.

We can write

_1 -CL-TyI. T
2Fl=c2-F, S PR

i'i
and hence again by the concavity of |
(8 L+VI>4 Z- P log e~ T
Define

o ST 1i;

i

0=

and use the inequality -
— 2P log P, <— JP log Q,
i H

in order to derive from (3.8)

69 L+ D> ER - Sptog Sem TV > BB

because of (3.6). An easy calculation yields finally

L> -Hicf—) — O(VH®)).

4. A LOWER BOUND ON THE MINIMAL AVERAGE LENGTH

LI(P, )

In case of complete feedback the sender has the possibility to encode
amessage by an encoding (vector-valued) function, that is, he chooses the
symbols to be send depending on the letters received in so far:
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f=[f1,f2(Y1),...,fk(Yl,...,Yk_l),...]
where fi € X, f: D¥-1ox for k=2,3,... .
The-distribution of ¥, depends on Yi,...,Y,_| and w.

An (0%, A)-SCS, is a system {(fl., D): 1<i< N}, where for i=
=1,...,N

@ D,c 9,

N
(b) nosequencein D= U D, is praefix of another sequence in D,

1=

in particular, the D.s are disjoint,
.(Yl,..., Yt_l)] where ¢

(c) f;- = [fl,'afzi(Yl )ee, (O SIS SERD 1

is the largest integer such that Y,,..., Y, isanon-trivial praefix of
an element in D,

(d) WD;If)>1-1,
© 1= 2 W' 5.

In order to derive a lower bound on Lf(P, A) we change a given
(I, N)-SCS in such a way that within every new decoding set all sequences
have the same length — a property which PC’s have by definition. At the
same time we keep control over the error probabilities.

Let I=1(e)=[I(1+¢)], that is, the smallest integer larger than
I(1+¢) and let
Ii

Bie)= U 9.
I=1

Then
4.1) W(Bi(e)‘ | fi)li < 71
and

I
1+ ¢

@42  WB(eFIf)<

— 28 -



For e such that Ae) = A+ =—— <1 we have then

T+e
43)  WD,NnB(OIf)>1-Ne)> 0.

Define now

(44)  D}={y": 3 pracfix of 3" in D, B (e)}

and for yl"eD;
1.
(45) f;'*(yt)=[f;'l’f;'2(yl),"‘!f;'s(yl’""ys 1) ,s+1""! ll*i]

where o, are arbitrary elements of X and Ops---sYy) is

*
is+1°°°

the praefix of y’i contained in D, N B(e). Again we have
(4.6) W(D;If;.*) 21 - Ae).

Now we are almost in the situation we discussed in Section 2, the on-
ly difference is that instead of code words we have constant length en-
coding functions, In Kemperman’s ([14]) strong converse proof for
fixed block length feedback schemes the analogue of (2.6) was established:

@7 §ipys e ittt

From here we can derive by the same arguments as the ones used in Sec-
tion 2:

N
48) 3 ¢ Clira®oll

i=1

As in Section 3 we conclude that

49)  2ZPi> H(P AP _ o(HPY).

1
T+e¢
choose € arbitrarily small, (4.9) implies

Since l— > +—1,— 1 andsince by choosing X arbitrarily small we can

Theorem 3 (weak converse). For given &> 0 there exists a \J)
such that
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e

L, P, N> (1 - 8) (L — 00HPY)

(or such that L (P,N)> (1 - H(P) for H(P) large)

5. THE MULTIPLE-ACCESS CHANNEL WITHOUT
SYNCHRONIZATION

Let X,9 and 3 be finite sets, X" = IIx, 9= ]]‘.2) and

n
= ]1] 3. Furthermore, let

(5.1) 3= U 3!
=0

where 3% constains only the “empty word”.

3 is the set of all finite output sequences. If x€ X and y € ) are
sent by the two senders w(z|x,y) is the probability that the sequence

z€ J is received by the receiver. Clearly, _Z w(z|x,y) =1 for every
z€3
x€E X, ye.
Notice that we permit the possibility of an erasure, that is, the receiv-
er receives the “empty word”. '

We assume a memoryless character of the channel:

n

WE" | x", y") = le(z 1%, ¥,)

for every x" =(x,,...,x,)€ X", y'=(0....,»)€Y" and Zn =
=(2y,...,2,)€ 3",

We denote by z, .. .z, an element of 3 obtained by writing the
terms of the sequence z,,...,Z, consecutively in their natural coder.
With this convention we define the transmission probabilities of an unsyn-
chronized multiple-access channel (UMC) by
5.2 PEIx",ym=_ 2 _WEx"y")

Zl...Z"-T-Z

-3 -



forevery x" € X", y"e€ 9" and z€ 3 (n=1,2,...).

A (n,M,N, ) code for the UMC is a system {(x;, »,, 'Di].): 1<i< M,
1<j< N} where u; € X", v, € ", D, C 3. D,NDy.=¢ for (i, /) +
#(i',j) and

1
(5.3) m,%’1)(1)5|ui, )<\

A pair of non-negative real numbers (R ,R,) Is called a pair of achiev-
able rates, if for any A (0< A< 1), and any €>0 there exists an

(n, M, N, Nr-code with LlogM>R, —¢ and 3 logN>R,—e foral

sufficiently large n. The capacity region 1 is simply the set of all pairs
of achievable rates.

¥’

Remark. If we would exchange the phrase “for all sufficiently large
n” by “for an infinite sequence of n’s” we would get a capacity region
U* which a priori might be larger. If this is not the case one says that a
channel has a capacity. Actually the known results in multi-user commu-
nication are all such that U= U7,

Even though our results hold in greater generality — in order to keep
the arguments simple — we make the

(5.4) Supposition

If w(z|x,y)>0 forsome (x,¥)€ ¥X 9 then 0</z)<B, where B
is a constant and I(z) equals the number of components of z, ie., the
length of the “letter” z.

We shall treat the UMC by comparing it with an MC, which we now
define. Let [ be a positive integer and let
It

xh,= Il x  «=12..)
s=It-1+1

m
xfym = 1 (D,
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Lad

Define (“1))r )t and (‘DI)’" analogously. We write for convenience X in-
stead of X!, resp. O instead of )7, and we define 3 as

I=@z=12,...2, 0<lz)<B for s=1,...,1}.
The transmission matrix of the synchronized channel J! is defined by
55 Wex,N=_ 2 _WZ,...,51%y)
Z,..1=2
For m=1,2,... and every X =(;l,.... )e(’c’)’". every ;"' =

= (.;;19 ce ,;m)e (VH™ and every z™ = (zl, e ,zm)€3”‘ the trans-
mission probabilities of J/ are defined by

5.6 Qemixm.ym) = Il we,lx,.5).

T is a (memoryless) MC with input alphabets 55, Y of sizes | X1, 19V
and output alphabet 3 C 3 of size A< |3 B+,

6. AN AUXILIARY RESULT

We shall need in the next section a result which allows us to reduce
list codes of small list size for the MC to codes of list size 1 without loos-
ing too much in rate or error probability. For one-way channels the argu-
ment was used in [16]. The present generalization is straightforward, but
we include the argument, because it is so brief. We give a general formula-
tion for channels without time structure.

Lemma (list reduction). Let {(u, ’,D ) 1<i<M; 1<j<N} be
an (1, M,N,\ L) list code for the MC w with alphabets X,V and J.
Then for M*< M, N*<N there exists a (1,M* N*, N\, 1)-subcode
{(ul , j , D ) 1 <s< M* 1< t<N*} with error probability
L
N

Proof. Let S, (i=1,... ,M*) and T] G=1,...,N*) be inde-
pendent random variables with distributions

* _3_ * L *
A <A+ 5(M M+N

-32 -



P(S,= k) = 7L P(T—l) 5
(6.1)
k=12,....M;1=12,...,N).

With every outcome
{Gs;, t,.): I<i<M*, 1<j< N*}

of {(S,, T].): 1<i<M* 1<j< N*} we associate codewords
{(usi, v’i): I<i<M* 1<j<N*}

and decoding sets

{(F :1<i<M* 1<j<N*}
Sifj

where

6 F,, =D ,- U D .
.2 s @G ST

For reasons of symmetry the expected average error probability of the en-
semble of codes
ENGSyy s Syyns Tl,...,TN*):
N*
= M* IN*- 12 E D w(zlug , vy )
=1 j=1 zEFg. T

equals
E Z w(zlusl,le)

¢
zEFS T

and this expression is upper bounded by

E 2 W(Zlusl,le) + E Z w(zlusl,le).
[l C
zEDS T "EDSITlnFSlTl

The first term is < A.

Assume now that (Sl, Tl) = (s, tl) and that z € D,l " The prob-
ability that z iselementof F¢ , thatis,of U Dg . is smaller
171 GH=1,1) I
than
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L * * _£ * 14_ *
W(M — (N —l)+M(M -—1)+N(N - 1)<

32 L « L

The same bound holds for the whole second term.
Q.E.D.

7. THE CAPACITY REGION AS A LIMIT

Since single letter characterizations of the capacity region of a MC are
known ([9], [10]), we know the capacity region €/ of J/, in particular
we know that €/ is a convex, compact set in E2.

Define now
(7.1) €= N ¢’

Clearly, € is again convex and compact. For all # which are multiples

of I: n=s(n)l a code for U induces canonically a code for J/ and
therefore U C €/ forall /. Hence.

(7.2) Nce= N ¢l
I=1

Remark. In order to show that actually also U* C ¢ holds one has
to vorry about the cases where n is not multiple of /:

smI<n<s(myi+[',1' <]

One could introduce a non-stationary MC, where every (s(n) + 1)-st com-
ponent is different from all the others. If #n is large, the effect of this
component is negligible as can be seen from [9].

The direct part: U D ¢,

Let now I(n) be a function of n such that I(n) =o0(n) and
lim I(n) = . A more specific choice of I(n) will be made below.

N+ oo
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Let s(n) be the unique number for which
(7.3) n' = s(n)l(n) < n < s(n)l(n) + I'(n), I'(n) < I(n).

Given an (n', M, N, M)-code {(u], vj*, D;;.): 1<i<M; 1<j< N} for
J™ | we can assign to every D} a decoding set D, for U by

.2

D..={z:zl...zn.zn,+} .z,

I

(z1 . zl(n),z“n)+1 e Zygmy e

_ . - =
"z(s(n)—l)l(n)"'Zn’)EDjj and z € 3, n' + 1 < t< n}

Also, we pass to a block length n code by defining for some x¢ X,

D) = = 1
YeY, u (u”, cees M), v, (vl.l,.. . ,v].n) with
— *
Uy = Uy
—_ *
vjz - Vjt

for 1<t<# and with

for n+1<¢t<n.
{(ui,v].,Di].): 1<i<M;, 1<j< N}

is now a block lehgth n list code for W with error probability < A and
list size

n(B + 1) + s(n)]

<

L(n) < ( ()
If we choose now I(n) such that
(7.4) Ln) < ens", 5n -0 (n-> )

then we can apply the list reduction lemma of Section 6 and get a list size
I code for U of essentially the same rates, What are the achievable rates
for J/™? Notice that the variances of the information densities occurring
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in the proof of the coding theorem for MC (191, [10]) now depend on I(n).
However, they are bounded by

log2(| ¥ | 91!,
and we thus can achieve with error probability A all rates in
€701 — n=1eN)Ystm) log?( X 11 1)1
where c(A) depends on A only.
The term in brackets tendsto 1 as n—> o if
(1.5)  In)*Vs(n) = o(n).

1
Since L(n) < exp{s(n)(logn+ log(B+ 1)}, I(n)=[n*] satisfies both
constraints: (7.4) and (7.5). This completes the proof of

Theorem 4.

U=4a¢.

8. A "COMPUTABLE” FORMULA FOR THE CAPACITY
REGION

Let €" and € be defined as in Section 7. We know that €” D €
and both sets are convex and compact in E. The quantities

(8.1) d(€", €) = max min p(a, b),
ac@" be@

where p is the euclidian distance, measures how well €” approximates €.

Theorem 5.

logn

(82)  d(e", €)< 7%

n=2,3,..)

where T< (1 + log 2(B + 2)) 112{; —lf,u’ (and B is defined in (5.4)).

Remark. The estimate is — to within the constant T — the best pos-
sible as can be seen from the following example: let ¥= (0,1}, 9={0,1}
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and w such that w(0|0,0) = w(0]0,1)=1, w(00|1,0)=w(00|1, 1) =
=1. Then €" ={(@a,0): a<n llog(m+ 1)} and € = {(0, 0)}.

Proof. Now we need for the first time that €" is characterized in
terms of information quantities: mutual information and conditional mutu-
al information (see [9] or [10]). This is the reason why €" and by the
Theorem also € can be numerically determined within any predescribed
RZ}y clearly

| H(f(2)) - H(Z}| = H(Z| fiZ)) < log max |{z: fz) = r}
and therefore also for three finite-valued random variables X, Y, Z:
(8.4 [IXAZIY) = KX AR )
and
HX AZ) - UX A fZ))]
do not exceed
log mrax 1{z: f(z) = r}|.
By the data processing theorem
(8.5) 2n€" D mEM
and
(8.6) n€* O meE™  for n>m.
These two inclusions imply that for any: € > 0 3In(e):
(8.7) dC" €y<e forall n>n(e).

(8.4) implies that

2n(B+ 1)+ 1

(8.8)  d(2n€", &™) < log ( |

) <logn + log 2(B + 2)

and hence

< log n . log 2B + 2)-

cn 52
(8.9)  dsn, €< 220 5
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For any real number h> 1 for which 2% is an even integer we there-
fore have

8.100 de? ! ¢

where T* =1+ log 2(B + 2). This and (8.7) imply that

d(¢2h—l’¢)<120d(@2h+1—1’€2h+1)<
8.11) 1+l
> h+1 h o~ h h
<T* 2 =T* = <T—
150 2+ 2k z;; 2! 2k
_e S 141 . _
where T=T 12(; ——5,— Any natural number n can be written as n=
=2F-1 (B> 1). Therefore
d(6",6) < T1°—g23ﬂ<rﬁ’—§l—” for n>?2

Q.E.D.
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